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ON THE UNIFORM CONSISTENCY OF FREQUENCY

POLYGONS FOR ρ−–MIXING SAMPLES
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(Communicated by X. Wang)

Abstract. In this paper, the frequency polygon is considered as a nonparametric density estimator
for ρ− -mixing samples. By the moment inequality, we prove the uniformly strong consistency
of the estimator and obtain the corresponding rate under some mild conditions. The results
obtained in this paper extend and improve some existing ones in the literature.

1. Introduction

At the outset, let us recall the notation of frequency polygon. Suppose that X is a
randomvariable with a density function f (x) and let X1,X2, · · · ,Xn be the sample drawn
from the population X . Consider a partition · · ·x−2 < x−1 < x0 < x1 < x2 · · · of the real
line into equal intervals Ik = [(k−1)bn,kbn) of the length bn , where bn is the bin width.
For a given x ∈ R , there exists k0 such that (k0− 1

2 )bn � x < (k0 + 1
2 )bn . Consider two

adjacent histogram bins Ik0 = [(k0 − 1)bn,k0bn) and Ik1 = [k0bn,k1bn) , where k1 =

k0 +1. Define vk0 =
n
∑
i=1

I((k0 −1)bn � Xi < k0bn) and vk1 =
n
∑
i=1

I(k0bn � Xi < k1bn) ,

which are the numbers of the observations falling into the intervals mentioned above,
respectively. The values of the histogram in these previous bins can be denoted by fk0 =
vk0n

−1b−1
n and fk1 = vk1n

−1b−1
n . Then, the frequency polygon f̂ (x) can be defined as

f̂ (x) =
(

1
2

+ k0− x
bn

)
fk0 +

(
1
2
− k0 +

x
bn

)
fk1 (1.1)

for x ∈ [(k0− 1
2 )bn,(k0 + 1

2 )bn) . As pointed out in Scott (1985), the frequency polygon
estimator f̂ (x) has convergence rate similar to those of kernel density estimators and
greater than the rate of the histogram. As for computation, the computational effort
of the frequency polygons is equivalent to the one of the histogram. For large bivari-
ate data sets, the computational simplicity of the frequency polygons and the ease of
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determining exact equiprobale contours may outweigh the increased accuracy of a ker-
nel density estimator. Since the frequency polygons has the two advantages mentioned
above, it is of value and interest to investigate it further.

Recently, scholars have obtained some results on frequency polygons. For ex-
ample, Carbon et al. (1997) gave the optimal bin widths asymptotically minimizing
integrated mean square errors, asymptotic variance, uniformly strong consistency and
the convergence rate of the frequency polygon for α -mixing processes; Carbon et
al. (2010) proved asymptotic normality of the frequency polygon for random fields;
Bensaid and Dabo-Niang (2010) derived the integrated mean square errors and uni-
formly strong rate of consistency of the estimator in continuous random fields; Xing
et al. (2015a,2015b ) investigated the uniformly strong consistency of the frequency
polygon estimator under negatively associated samples and ψ -mixing samples, respec-
tively. Motivated by the literature above, we further investigate the uniformly strong
consistency of the frequency polygon under ρ− -mixing samples, which has not been
obtained in the literature before. Furthermore, the corresponding rate of convergence is
also obtained.

In the following, we recall the concept of ρ− -mixing random variables. For two
nonempty disjoint sets S,T of real numbers, we define dist(S,T )=min{| j − k|; j ∈
S,k ∈ T} .

DEFINITION 1.1. A sequence {Yi,−∞ < i < +∞} is said to be ρ− -mixing, if

ρ−(s) = sup{ρ−(S,T );S,T ⊂ Z,dist(S,T ) � s} → 0 as s → ∞,

where ρ−(S,T )=0 ∨ sup{corr( f (Xi, i ∈ S),g(Xj, j ∈ T ))} , and the supremum is taken
over all coordinatewise increasing real functions f on R

S and g on R
T .

It is obvious that ρ−(s) � ρ∗(s) . It is easy to see that {Yi,−∞ < i < +∞} is nega-
tively associated (Joag-Dev and Proschan, 1983) if and only if ρ−(s) = 0 for s � 1. So
ρ− -mixing is weaker than ρ∗ -mixing and can be regarded as the asymptotically nega-
tive association or negative side ρ∗ -mixing. Consequently, the study of the limit prop-
erties for ρ− -mixing variables is of much interest. Since the concept of ρ− -mixing
variables was introduced by Zhang and Wang (1999), many applications have been
found. For example, Zhang and Wang (1999) and Zhang (2000a, 2000b) obtained mo-
ment inequalities for partial sums, the central limit theorems, the complete convergence,
and the strong law of large numbers; Wang and Lu (2006) established some inequalities
for the maximum of partial sums and weak convergence; Zhang (2015) established the
complete moment convergence for moving-average process generated by ρ− -mixing
variables; Huang et al. (2016) proved the complete convergence and complete moment
convergence for weighted sums of ρ− -mixing random variables; Wang et al. (2019)
investigated the Berry-Esseen bounds of weighted estimator in a nonparametric regres-
sion model for ρ− -mixing samples, and so forth.

In this work, we further study the uniformly strong consistency of the frequency
polygon density estimator and obtain the corresponding rate under some mild condi-
tions. The results obtained in this paper extend and improve some existing ones in the
literature. Moreover, some numerical analysis is also presented to support the theoreti-
cal results.
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Throughout this paper, we always suppose that C denotes a positive constant
which only depends on some given numbers and may vary from one place to another.
The bin width and the density function are denoted by bn and f (x) , respectively, and
the limits are taken as n→ ∞ unless indicated otherwise. �x� stands for the integer part
of x . The rest of this paper is organized as follows. Main results and some simulation
results on finite sample performance of frequency polygons are detailed in Sections 2
and 3, respectively. The proofs of the results are presented in Section 4.

2. Main results

To obtain the main results, we need the following assumptions:
(A1) {Xi,1 � i � n} is a ρ− -mixing sample with the common density function f (x) .
(A2) The bin width bn satifies bn → 0 and nbn → ∞ .
(A3) {τn,n � 1} is a sequence of positive constants satisfying lim

n→∞
τn = 0 and

liminf
n→∞

(nδ bnτn)>0 for some 0<δ<
1
2
.

Based on the assumptions above, our main results can be given as follows.

THEOREM 2.1. Suppose Assumptions (A1)− (A3) hold. Then for any compact
subset D of R ,

sup
x∈D

| f̂ (x)−E f̂ (x)| = o(τn) a.s.. (2.1)

Furthermore, if f (x) is differentiable for x ∈ R and | f ′(x)| � M for some M >0,
then,

sup
x∈D

|E f̂ (x)− f (x)| = O(bn). (2.2)

Thus,

sup
x∈D

| f̂ (x)− f (x)| = o(τn)+O(bn) a.s.. (2.3)

THEOREM 2.2. Suppose Assumptions (A1)− (A3) hold. Then for any T>0,

sup
x∈[−nT ,nT ]

| f̂ (x)−E f̂ (x)| = o(τn) a.s.. (2.4)

Moreover, if f (x) is differentiable for x ∈ R , | f ′(x)| � M for some M > 0 and
E|X1|2/T<∞ , then

sup
x∈R

| f̂ (x)− f (x)| = o(τn)+O(bn) a.s.. (2.5)

Taking τn = n−δ b−1
n in Theorem 2.1 and Theorem 2.2, we can get immediately

the following corollary.
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COROLLARY 2.1. Suppose Assumptions (A1) , (A2) are satisfied, f (x) is differ-
entiable for x ∈ R and | f ′(x)| � M for some M>0. Then

sup
x∈D

|E f̂ (x)− f (x)| = O(Ψ(n)) a.s., (2.6)

where Ψ(n) = max{bn,n−δ b−1
n } → 0 as n → ∞ . Further if E|X1|2/T<∞ for some

T>0 , then

sup
x∈R

| f̂ (x)− f (x)| = O(Ψ(n)) a.s.. (2.7)

REMARK 2.1. Comparing Corollary 2.1 with the corresponding result of Carbon
et al. (1997), we have the following improvements or extensions:

(i) The conditions f (x) � M1 for some M1>0 and |x|1/(2T) f (x) → 0 as x → 0
are not needed here.

(ii) The assumption sup
(x,y)∈R2

f j|i(y|x) � M2<∞ for all i< j and some positive con-

stant M2 is not required here.
(iii) The moment condition is improved from E|X1|(2+ε)/T < ∞ for some ε > 0

and T > 0 to E|X1|2/T < ∞ .
(iv) The structure of the sample is extended from α -mixing to ρ− -mixing.

REMARK 2.2. Xing et al. (2015a) obtained the corresponding results for nega-
tively associated samples by using the exponential inequality of negatively associated
random variables. However, we do not know whether the exponential inequality holds
for ρ− -mixing random variables or not. So we adopt the Rosenthal-type moment in-
equality to obtain the results. The convergence rate is slightly slower but the conditions
are weaker than those of Xing et al. (2015a). Moreover, noting that ρ− -mixing in-
cludes negative association, our results generalize the corresponding results of Xing et
al. (2015a).

3. Numerical simulation study

In this section, we carry out a simulation study to examine the performance of
frequency polygons with ρ− -mixing samples. The simulation will be conducted under
the following two cases.

Case 1. Consider the MA(1) process:

Xn = εn −θεn−1,

where {εn,n � 1} are independent and identically distributed and εn ∼ N(0,σ2
ε ) . It is

obvious that E(Xn) = 0 and Var(Xn) = (1+ θ 2)σ2
ε , so Xn ∼ N(0,(1+ θ 2)σ2

ε ) . It is
easy to see that {Xn,n � 1} is both NA and ρ∗ -mixing and thus ρ− -mixing.

For the purpose of comparison of the different estimators, we consider frequency
polygon estimator, Epanechnikov kernel estimator (i.e., the K(u) = 0.75(1−u2)I(|u|�
1)), and histogram estimator. Take the bin widths bn = (logn/n)1/4 , θ = 0.4, σε =
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Figure 1: Comparsion of different estimators for n = 100,200,300,400 under Case 1

0.7, and the sample sizes as n = 100,200,300,400, respectively. We use R software
to compute the estimators for 500 times to obtain the final values and then compare
them with f (x) in Figure 1 under different sample sizes. It reveals in Figure 1 that both
the frequency polygons estimator and Epanechnikov kernel estimator perform better
than the histogram estimator for each sample size, and there is no obvious difference
between the frequency polygons estimator and Epanechnikov kernel estimator.

Case 2. ρ− -mixing process which is neither NA nor ρ∗ -mixing. Let {ξn,n � 1} ,
{ηn,n � 1} and {τn,n � 1} be three independent sequences of i.i.d. standard normal
random variables. Let

Xn =

{
ξm, if n = 2m−1

−ξm, if n = 2m
,
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Yn =

⎧⎪⎨
⎪⎩

ηm, if n = 22m−1

−ηm, if n = 22m

τn, otherwise

,

and Zn = Xn
2 +Yn . From Zhang and Wang (1999), it follows that {Zn,n � 1} is ρ− -

mixing. For the density function of Zn , noting that

FZn(t) = P(X2
n +Yn � t) =

∫ t

−∞
dΦ(y)

∫ √
t−y

−√
t−y

dΦ(x) =
∫ t

−∞
(2Φ(

√
t − y)−1)dΦ(y),
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Figure 2: Comparsion of different estimators for n = 100,200,300,400 under Case 2
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thus,

fZn(t) =
dFZn(t)

dt
=
∫ t

−∞
ϕ(

√
t− y)(t − y)−

1
2 ϕ(y)dy

= 2
∫ ∞

0
ϕ(s)ϕ(t − s2)ds =

1
π

∫ ∞

0
e−

s2+(t−s2)2
2 ds.

Other settings are the same as those in Case 1, we also use R software to compute
the three estimators for 500 times to obtain the final values and then compare them with
f (x) in Figure 2 under different sample sizes. It can be seen that Figure 2 shows a
similar conclusion as those in Case 1.

In specific, we also compute the RMSE of three estimators as presented in Table 1
under different sample sizes, respectively. We can see that in both two cases, the more
the sample is, the smaller RMSE is. It also reveals that the RMSE of both the frequency
polygon estimator and Epanechnikov kernel estimator are smaller than that of the his-
togram estimator for each sample size, and there is no obvious difference between the
RMSE of the frequency polygon estimator and Epanechnikov kernel estimator.

Table 1: The RMSE of the estimators

Case Estimator n = 100 n = 200 n = 300 n = 400

1
frequency polygon 0.051820 0.040587 0.035284 0.032109

Epanechnikov kernel 0.048170 0.038136 0.033279 0.030406
histogram 0.103775 0.087102 0.079361 0.073087

2
frequency polygon 0.002488 0.002027 0.001993 0.001464

Epanechnikov kernel 0.002101 0.001645 0.001597 0.001099
histogram 0.021402 0.018259 0.016892 0.015706

4. Proofs of the main results

In this section, we first present some lemmas which are useful in proving the main
results.

LEMMA 4.1. (Zhang and Wang, 1999) Increasing functions defined on disjoint
subsets of a ρ− -mixing field {Xk;k ∈ Nd} with mixing coefficients ρ− (s) are also ρ− -
mixing with mixing coefficients not greater than ρ− (s).

LEMMA 4.2. (Wang and Lu, 2006) For a positive real number q � 2 , if {Xn,n �
1} is a sequence of ρ− -mixing variables with EXi = 0,E|Xi|q<∞ for every i � 1 , then
for all n � 1 , there exists a positive constant C =C(q,ρ−(·)) such that

E

(
max

1� j�n

∣∣∣∣∣
j

∑
i=1

Xi

∣∣∣∣∣
q)

� C

⎛
⎝ n

∑
i=1

E|Xi|q +

(
n

∑
i=1

EX2
i

)q/2
⎞
⎠ . (4.1)

Proof of Theorem 2.1. Noting that D is a compact subset of R , we can assume that
D = [−B,B] , without loss of generality, where B is a positive constant. Set Dj = [( j−
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1/2)bn,( j +1/2)bn) , where j = −rn,−(rn −1), · · · ,(rn −1),rn and rn = �B/bn�+1.
Since (rn +1/2)bn = (�B/bn�+3/2)bn � (�B/bn�+1/2)bn = B+bn/2>B ,

⋃rn
j=−rn

D j

= [−(rn +1/2)bn,(rn +1/2)bn) ⊃ [−B,B] . Thus for any ε>0,

P

(
sup
x∈D

| f̂ (x)−E f̂ (x)|>ετn

)
= P

(
max

−rn� j�rn
sup
x∈Dj

| f̂ (x)−E f̂ (x)|>ετn

)

�
rn

∑
j=−rn

P

(
sup
x∈Dj

| f̂ (x)−E f̂ (x)|>ετn

)
. (4.2)

Recall that − 1
2 � 1

2 + j− x
bn

� 3
2 and − 1

2 � 1
2 − j + x

bn
� 3

2 for any x ∈ Dj , which

implies that sup
x∈Dj

| 12 + j− x
bn
| � 3

2 and sup
x∈Dj

| 12 − j + x
bn
| � 3

2 . Hence, we have

P

(
sup
x∈Dj

| f̂ (x)−E f̂ (x)|>ετn

)

� P
(
(| f j −E f j|+ | f j+1−E f j+1|)>2ετn/3

)
� P(| f j −E f j|>ετn/3)+P

(| f j+1 −E f j+1|>ετn/3
)
. (4.3)

For a given j , set ζi = I{( j − 1)bn � Xi < jbn}− EI{( j − 1)bn � Xi < jbn} ,
i = 1,2, · · · ,n . ζi can be decomposed into ζi = ζi(1)− ζi(2) , where ζi(1) = I{Xi �
( j−1)bn}−EI{Xi � ( j−1)bn} and ζi(2) = I{Xi � jbn}−EI{Xi � jbn} . It follows
from Lemma 4.1 that {ζi(1),1 � i � n} and {ζi(2),1 � i � n} are also ρ− -mixing
with |ζi(1)| � 2 and |ζi(2)| � 2. Thus, by the Markov inequality and lemma 4.2, it
follows that for any q > 2,

P
(∣∣ f j −E f j

∣∣>ετn/3
)

= P

(∣∣∣∣∣
n

∑
i=1

(ζi(1)−Eζi(1))

∣∣∣∣∣+
∣∣∣∣∣

n

∑
i=1

(ζi(2)−Eζi(2))

∣∣∣∣∣> ετnnbn/3

)

� P

(∣∣∣∣∣
n

∑
i=1

(ζi(1)−Eζi(1)

∣∣∣∣∣> ετnnbn/6

)
+P

(∣∣∣∣∣
n

∑
i=1

(ζi(2)−Eζi(2)

∣∣∣∣∣> ετnnbn/6

)

� Cb−q
n τ−q

n n−qE

∣∣∣∣∣
n

∑
i=1

(ζi(1)−Eζi(1))

∣∣∣∣∣
q

+Cb−q
n τ−q

n n−qE

∣∣∣∣∣
n

∑
i=1

(ζi(2)−Eζi(2)

∣∣∣∣∣
q

� Cb−q
n τ−q

n n−q

⎛
⎝
⎛
⎝ n

∑
i=1

E|ζi(1)|q +

(
n

∑
i=1

Eζ 2
i (1)

) q
2
⎞
⎠

+

⎛
⎝ n

∑
i=1

E|ζi(2)|q +

(
n

∑
i=1

Eζ 2
i (2)

) q
2
⎞
⎠
⎞
⎠

� Cb−q
n τ−q

n n−
q
2 ,
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which together with nbn → ∞ and liminf
n→∞

nδ bnτn > 0 for some 0<δ< 1
2 that for suffi-

ciently large q ,

∞

∑
n=1

rnP(| f j −E f j|>ετn/3) � C
∞

∑
n=1

b−1−q
n τ−q

n n−
q
2

� C
∞

∑
n=1

b−q
n τ−q

n n−
q
2 +1

� C
∞

∑
n=1

n−( 1
2−δ )q+1<∞. (4.4)

Similarly, we also have

∞

∑
n=1

rnP
(| f j+1 −E f j+1|>ετn/3

)
� C

∞

∑
n=1

n−( 1
2−δ )q+1<∞. (4.5)

A combination of (4.2)-(4.5) yields that

∞

∑
n=1

P

(
sup
x∈D

| f̂ (x)−E f̂ (x)|>ετn

)
< ∞.

From the Borel-Cantelli lemma, we can easily get

sup
x∈D

| f̂ (x)−E f̂ (x)| = o(τn) a.s..

Now, we will prove (2.2). Set

ηi(x) =
(

1
2

+ j− x
bn

)
I(( j−1)bn � Xi < jbn)+

(
1
2
− j +

x
bn

)
I( jbn � Xi < ( j +1)bn)

for x ∈ Dj . Then we have

f̂ (x) =
1

nbn

n

∑
i=1

ηi(x). (4.6)

Using Taylor’s expansion for F( jbn) and F(( j−1)bn) around x ∈ Dj , we have

P(( j−1)bn � Xi < jbn) = F( jbn)−F(( j−1)bn)
= F(x)+ f (x)( jbn − x)+O(( jbn− x)2)

−[F(x)+ f (x)(( j−1)bn− x)+O((( j−1)bn− x)2)]
= f (x)bn +O(b2

n).

Similarly, P( jbn � Xi < ( j +1)bn) = f (x)bn +O(b2
n) . Therefore,

Eηi(x) =
(

1
2

+ j− x
bn

)
[ f (x)bn +O(b2

n)]+
(

1
2
− j +

x
bn

)
[ f (x)bn +O(b2

n)]

= f (x)bn +O(b2
n). (4.7)
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Noting that the term O(b2
n) in the above equality is independent of x and j , we have

sup
x∈Dj

|E f̂ (x)− f (x)| = sup
x∈Dj

∣∣∣∣∣ 1
nbn

n

∑
i=1

Eηi(x)− f (x)

∣∣∣∣∣= O(bn). (4.8)

Thus,

sup
x∈D

∣∣E f̂ (x)− f (x)
∣∣= O(bn), (4.9)

which together with (2.1) yields (2.3). The proof is completed. �

Proof of Theorem 2.2. Set An = (−∞,−nT )∩ (nT ,∞) for T > 0 and define Dj =
[( j−1/2)bn,( j+1/2)bn) , where j =−rn,−(rn−1), · · · ,(rn−1),rn with rn = �nT/bn�
+1. Then,

P

(
sup

x∈[−nT ,nT ]
| f̂ (x)−E f̂ (x)|>ετn

)
= P

(
max

−rn� j�rn
sup
x∈Dj

| f̂ (x)−E f̂ (x)|>ετn

)

�
rn

∑
j=−rn

P

(
sup
x∈Dj

| f̂ (x)−E f̂ (x)|>ετn

)
.

By the proof of Theorem 2.1, (2.4) can be derived. In what follows, we will prove (2.5).
Since An = (−∞,−nT )

⋃
(nT ,∞) and E|X1|2/T < ∞ for T > 0,

∞

∑
n=1

P

(
sup
x∈An

f̂ (x) > n−1

)
�

∞

∑
n=1

P

(
n⋃

i=1

{Xi ∈ An}
)

�
∞

∑
n=1

n

∑
i=1

P
(|Xi| > nT )

=
∞

∑
n=1

nP
(|X1| > nT )

=
∞

∑
n=1

n
∞

∑
j=n

P
(
jT < |X1| � ( j +1)T)

=
∞

∑
j=1

P
(
jT < |X1| � ( j +1)T) j

∑
n=1

n

� C
∞

∑
j=1

j2P
(

j < |X1| 1
T � ( j +1)

)

= C
∞

∑
j=1

E|X1| 2
T I( j < |X1| 1

T � ( j +1))

� CE|X1| 2
T < ∞.

Therefore, we obtain that

sup
x∈An

f̂ (x) = O(n−1) a.s.. (4.10)
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Noticing that f (x) is differentiable for x ∈ R and | f ′(x)|< M , we have for any x ∈ An ,

0 � f (x) = |x|− 2
T |x| 2

T f (x) � n−2. (4.11)

Thus, it follows that

sup
x∈An

f (x) = o(n−2). (4.12)

Combining (4.10) and (4.12) yields that

sup
x∈An

| f̂ (x)− f (x)| = n−2 = o(bn) a.s.,

which together with (2.4) implies that (2.5) holds. The proof is complete. �

Acknowledgements. The authors are most grateful to the Editor-in-Chief and anony-
mous referees for carefully reading the manuscript and valuable suggestions which
helped in improving an earlier version of this paper.

RE F ER EN C ES

[1] N. BESAID, S. DABO-NIANG,Frequency polygons for continuous random fields, Statistical Inference
for Stochastic Processes, 10: 55–80 (2010).

[2] M. CARBON, B. GAREL, L. T. TRAN, Frequency polygons for weakly dependent processes, Statistics
and Probability Letters, 33: 1–13, (1997).

[3] M. CARBON, C. FRANCQ, L. T. TRAN, Asymptotic normality of frequency polygons for random
fields, Journal of Statistical Planning and Inference, 140 (2): 502–514, (2010).

[4] H. W. HUANG, J. Y. PENG, X. T. WU, B. WANG, Complete convergence and complete moment
convergence for arrays of rowwise ANA random variables, Journal of Inequalities and Applications,
Article ID: 72, (2016).

[5] K. JOAG-DEV, F. PROSCHAN, Negative association of random variables with applications, Annals of
Statistics, 11 (1): 286–295, (1983).

[6] D. W. SCOTT, Frequency polygons: theory and application, Journal of the American Statistical As-
sociation, 80 (390): 348–354, (1985).

[7] X. J. WANG, Y. WU, S. H. HU, The Berry–Esseen bounds of the weighted estimator in a nonpara-
metric regression model, Annals of the Institute of Statistical Mathematics, 71, 1143–1162, (2019).

[8] J. F. WANG, F. B. LU, Inequalities of maximum partial sums and weak convergence for a class of
weak dependent random variables, Acta Mathematica Sinica, English Series, 22 (3): 693–700, (2006).

[9] G. D. XING, S. C. YANG, X. LIANG,On the uniform consistency of frequency polygons for ψ -mixing
samples, Journal of the Korean Statal Society, 44 (2): 179–186, (2015).

[10] G. D. XING, S. C. YANG, Uniformly strong consistency of frequency polygons for negatively associ-
ated samples, Communications in Statistics-Simulation and Computation, 46 (3): 2168–2175, (2015).

[11] L. X. ZHANG, A functional central limit theorem for asymptotically negatively dependent random
fields, Acta Mathematica Hungarica, 86 (3): 237–259, (2000).

[12] L. X. ZHANG, Central limit theorems for asymptotically negatively associated random fields, Acta
Mathematica Sinica, English Series, 16 (4): 691–710, (2000).



1298 W. WANG, H. HUANG, Y. WU AND K. CHEN

[13] Y. ZHANG, Complete moment convergence for moving average process generated by ρ− -mixing ran-
dom variables, Journal of Inequalities and Applications, Article ID: 245, (2015).

[14] L. X. ZHANG, X. Y. WANG, Convergence rates in the strong laws of asymptotically negatively as-
sociated random fields, Applied Mathematics-A Journal of Chinese Universities, Series B, 14 (4):
406–416, (1999).

(Received January 16, 2021) Wei Wang
School of Big Data and Artificial Intelligence

Chizhou University
Chizhou, 247000, P. R. China

Haiwu Huang
College of Science

Guilin University of Aerospace Technology
Guilin, 541002, P. R. China

Yi Wu
School of Big Data and Artificial Intelligence

Chizhou University
Chizhou, 247000, P. R. China

Kan Chen
School of Mathematics and Statistics

Chaohu University
Hefei, 238024, P. R. China

e-mail: kanchenchu@126.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


