
Journal of
Mathematical

Inequalities

Volume 15, Number 3 (2021), 1299–1310 doi:10.7153/jmi-2021-15-87

ABSOLUTELY MONOTONIC FUNCTIONS INVOLVING THE COMPLETE

ELLIPTIC INTEGRALS OF THE FIRST KIND WITH APPLICATIONS

ZHEN-HANG YANG AND JING-FENG TIAN ∗

(Communicated by T. Burić)

Abstract. Let K (r) be the complete elliptic integral of the first kind. In this paper, we prove that
the function Fp (x) = (1− x)p expK (

√
x) is absolutely monotonic on (0,1) if and only if p �

π/8 , and −F ′
p (x) is absolutely monotonic on (0,1) if and only if 1/2 � p�

(
π +4+

√
16−π

)
/8 .

This generalizes a known result and gives several new inequalities involving the complete elliptic
integral of the first kind.

1. Introduction

For real numbers a,b , and c with −c /∈ N∪{0} , the Gaussian hypergeometric
function is defined as

F (a,b;c;x) =
∞

∑
n=0

(a)n (b)n

(c)n

xn

n!

for x ∈ (−1,1) , where (a)n denotes Pochhammer symbol defined by

(a)n = a(a+1) · · · (a+n−1) =
Γ(n+a)

Γ(a)
,

for n ∈ N and (a)0 = 1 for a �= 0, here Γ(x) =
∫ ∞
0 tx−1e−tdt (x > 0) is the gamma

function. F (a,b;a+b;x) is called a zero-balanced hypergeometric function.
For later use, we list the behavior of the hypergeometric function near x = 1 as

follows ⎧⎪⎪⎨
⎪⎪⎩

F (a,b;c;1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

if c > a+b,

F (a,b;c;x) = (1− x)c−a−bF(c−a,c−b;c;x) if c < a+b;

(1.1)
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in the case of c = a+ b , F (a,b;c;x) is called zero-balanced function, which satisfies
the asymptotic relation

F (a,b;a+b;x) =
R(a,b)− ln(1− x)

B(a,b)
+O((1− x) ln(1− x)) (1.2)

as x → 1, where

B(z,w) =
Γ(z)Γ(w)
Γ(z+w)

, Re(z) > 0, Re (w) > 0

is the classical beta function and

R(a,b) = −2γ −ψ (a)−ψ (b) , (1.3)

here ψ (z) = Γ′ (z)/Γ(z) , Re (z) > 0 is the psi function and γ is the Euler-Mascheroni
constant.

The complete elliptic integrals K (r) and E (r) of the first kind and second kind
are defined on (0,1) by

K (r) =
∫ π/2

0

1√
1− r2 sin2 t

dt,

E (r) =
∫ π/2

0

√
1− r2 sin2 tdt,

respectively. They can also be expressed by the Gaussian hypergeometric function

K (r) =
π
2

F

(
1
2
,
1
2
;1;r2

)
=

π
2

∞

∑
n=0

(1/2)2n
(n!)2

r2n, (1.4)

E (r) =
π
2

F

(
−1

2
,
1
2
;1;r2

)
=

π
2

∞

∑
n=0

(−1/2)n (1/2)n
(n!)2

r2n. (1.5)

By the asymptotic relation (1.2) it holds that

K (r) ∼ ln
4
r′

as r → 1−, (1.6)

where and in what follows r′ =
√

1− r2 . Due to the importance of the complete el-
liptic integrals in different branches of mathematics such as geometric function theory
and quasiconformal mappings, a variety of properties of combinations of them and
other elementary functions including monotonicity, convexity and inequalities have
been widely studied, see for example, [1], [2], [3], [4], [5], [6], [7], [8], and recent
papers [9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

In 1992, Anderson, Vamanamurthy and Vuorinen [3, Conjecture 3.1 (6)] conjec-
tured that (

r′
)2 � r′ expK (r)−4

exp(π/2)−4
� 2

√
1− r

2− r
(1.7)
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for r ∈ (0,1) . This was solved by Qiu, Vamanamurthy and Vuorinen [6] and was
improved as (

r′
)2

<
r′ expK (r)−4
exp(π/2)−4

< r′ <
2
√

1− r
2− r

for r ∈ (0,1) . In 1996, Qiu and Vamanamurthy [6, Theorem 1.2] showed the function
r 	→ r′ expK (r) is strictly decreasing and concave from (0,1) onto

(
4,eπ/2

)
.

Recently, Yang, Qian and Chu [10, Theorem 3.1] proved that the function r 	→
(r′)p expK (r) is strictly increasing on (0,1) if and only if p � π/4 and strictly de-
creasing on (0,1) if and only if p � 1.

Recall that a function f is called absolutely monotonic (AM, for short) on the
interval I if it has nonnegative derivatives of all orders in the region, that is,

f (k) (x) � 0 for x ∈ I and k = 0,1,2, . . .

(see [19]). Clearly, if f (x) is a power series converging on (0,c) (c > 0), then f (x) is
AM on (0,c) if and only if all coefficients of f (x) are nonnegative.

The aim of this paper is to study the absolute monotonicity of the functions

Fp (x) = (1− x)p eK (
√

x) (1.8)

and lnFp (x) on (0,1) . Our results are contained in the following theorems.

THEOREM 1. Let Fp be defined on (0,1) by (1.8).
(i) −(lnFp)

′ is AM on (0,1) if and only if p � 1/2 .
(ii) Fp is AM on (0,1) if and only if p � π/8 = 0.392 . . . .

THEOREM 2. Let Fp be defined on (0,1) by (1.8).
(i) −F ′

p is AM on (0,1) if and only if 1/2 � p �
(
π +4+

√
16−π

)
/8 = 1.340 . . ..

(ii) Fp is AM on (0,1) if and only if p � π/8 = 0.392 . . . .

REMARK 1. Taking p = 1/2 in Theorem 2, we immediately see that the function
the function Fp

(
r2
)

= r′ expK (r) is strictly decreasing and concave from (0,1) onto(
4,eπ/2

)
. So Theorem 2 is a generalization of Qiu and Vamanamurthy’s result in [6,

Theorem 1.2].

2. Proofs of Theorems 1 and 2

For convenience, we use Wn to denote the Wallis ratio:

Wn =
(2n−1)!!

(2n)!!
=

Γ(n+1/2)
Γ(1/2)Γ(n+1)

.

Clearly, Wn has the following properties:
(i) Wn satisfies the recurrence relation

Wn+1 =
n+1/2
n+1

Wn; (2.1)
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(ii) Wn satisfies the inequality (see [20])

Wn <
1√

π (n+1/4)
. (2.2)

Moreover, using the notation Wn , K (r) and E (r) can be represented as

K (r) =
π
2

F

(
1
2
,
1
2
;r2;

)
=

π
2

∞

∑
n=0

W 2
n r2n, (2.3)

E (r) =
π
2

F

(
−1

2
,
1
2
;1;r2

)
= −π

2

∞

∑
n=0

W 2
n

2n−1
r2n. (2.4)

We now establish the recurrence relations of coefficients of the power series of
Fp (x) and lnFp (x) .

LEMMA 1. Let x ∈ (0,1) and p ∈ R . (i) lnFp (x) has the power series represen-
tation

lnFp (x) = K
(√

x
)
+ p ln(1− x) =

∞

∑
n=0

bnx
n, (2.5)

with b0 = π/2 and for n � 1 ,

bn =
1
n

(π
2

nW2
n − p

)
. (2.6)

(ii) Fp (x) has the power series representation

Fp (x) = (1− x)p eK (
√

x) =
∞

∑
n=0

anx
n, (2.7)

where the coefficients an = an (p) satisfy: a0 = eπ/2 , a1 = (π/8− p)eπ/2 and for
n � 1 ,

an =
1
n

n

∑
k=1

kbkan−k. (2.8)

Proof. (i) Using (1.4), (2.3) and

ln(1− x) = −
∞

∑
n=1

xn

n
,

we immediately get

lnFp (x) = K
(√

x
)
+ p ln(1− x) =

π
2

∞

∑
n=0

W 2
n xn− p

∞

∑
n=1

xn

n

=
π
2

+
∞

∑
n=1

(π
2

nW 2
n − p

) xn

n
,
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which implies the first assertion.
(ii) It is clear that

Fp (x) = exp

(
∞

∑
n=0

bnx
n

)
=

∞

∑
n=0

anx
n.

Now, differentiation yields(
∞

∑
n=0

nbnx
n−1

)
exp

(
∞

∑
n=0

bnx
n

)
=

(
∞

∑
n=0

nbnx
n−1

)(
∞

∑
n=0

anx
n

)
=

∞

∑
n=0

nanx
n−1,

then multiplying x gives(
∞

∑
n=0

nbnx
n

)(
∞

∑
n=0

anx
n

)
=

∞

∑
n=0

nanx
n.

Using Cauchy product formula and comparing the coefficients of xn , we have

n

∑
k=0

kbkan−k = nan,

which implies (2.8). This completes the proof. �

LEMMA 2. Let bn be defined by (2.6) for n ∈ N . Then (i) bn < 0 if p � 1/2 and
bn > 0 if p � π/8 ; (ii) the sequence {(n+1)bn+1/(nbn)}n�1 is increasing if p � 1/2 .

Proof. To prove the desired results, we need to prove the sequence
{
nW 2

n

}
n�1 is

strictly increasing with
1
4

� nW 2
n < lim

n→∞

(
nW 2

n

)
=

1
π

.

In fact, using the recurrence relation (2.1), we have

(n+1)W 2
n+1−nW2

n = (n+1)
(

n+1/2
n+1

)2

W 2
n −nW2

n =
1
4

W 2
n

n+1
> 0,

which implies that the sequence
{
nW 2

n

}
n�1 is strictly increasing. It follows that

1
4

= 1×W2
1 � nW 2

n < lim
n→∞

(
nW2

n

)
=

1
π

,

where the limit relation holds due to

nW 2
n = n

[
Γ(n+1/2)

Γ(1/2)Γ(n+1)

]2

∼
1
π

n×
(
n1/2−1

)2
=

1
π

,

as n → ∞ .
Now, with the aid of the above fact, we prove the desired results.
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(i) If p � 1/2 then

nbn =
π
2

nW 2
n − p � π

2
1
π
− 1

2
= 0.

If p � π/8, then

nbn =
π
2

nW 2
n − p � π

2
1
4
− π

8
= 0.

(ii) To show the sequence {(n+1)bn+1/(nbn)}n�1 is increasing if p � 1/2, it

suffices to check that (n+1)bn+1 (n−1)bn−1 − (nbn)
2 > 0 for n � 2. Using the re-

currence relation (2.1) and simplifying yield

(n+1)bn+1 (n−1)bn−1− (nbn)2

=

[
π
2

(n+1)
(

n+1/2
n+1

)2

W 2
n − p

][
π
2

(n−1)
(

n
n−1/2

)2

W 2
n − p

]
−
(π

2
nW 2

n − p
)2

=
π
8

W 2
n

(n+1)(2n−1)2
ϑn,

where
ϑn = (8n−1) p−4πn2W 2

n .

Utilizing the known Wallis inequality (2.2) and 2p � 1, we get

ϑn > (8n−1)
1
2
−4πn2 1

π (n+1/4)
=

1
2

4n−1
4n+1

> 0,

which proves the monotonicity of the sequence {(n+1)bn+1/(nbn)}n�1 . �
We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1. (i) If −(lnFp)
′ is AM on (0,1) , then bn � 0 for all n � 1.

This yields

lim
n→∞

(nbn) = lim
n→∞

(π
2

nW2
n − p

)
=

1
2
− p � 0,

that is, p � 1/2. Conversely, when p � 1/2, by (i) of Lemma 2 we see that nbn < 0
for all n � 1, which implies so is bn .

(ii) If lnFp is AM on (0,1) , then b1 = π/8− p � 0, that is, p � π/8. Conversely,
if p � π/8 then nbn � 0 for all n � 1 due to (i) of Lemma 2, thereby completing the
proof. �

Proof of Theorem 2. (i) The recurrence relation (2.8) can be written as

an = bna0 +
1
n

n−1

∑
k=1

kbkan−k. (2.9)

Then

an+1 = bn+1a0 +
1

n+1

n−1

∑
k=0

(k+1)bk+1an−k. (2.10)
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Eliminating a0 from the above two relations, we get

an+1− bn+1

bn
an =

1
n+1

n−1

∑
k=0

(k+1)bk+1an−k − 1
n

bn+1

bn

n−1

∑
k=1

kbkan−k

=
1

n+1
b1an +

n−1

∑
k=1

(
(k+1)bk+1

n+1
− bn+1

nbn
kbk

)
an−k,

which, by an arrangement, gives

an+1 =
(

bn+1

bn
+

b1

n+1

)
an +

1
n+1

n−1

∑
k=1

(
(k+1)bk+1

kbk
− (n+1)bn+1

nbn

)
kbkan−k.

(2.11)
Now, if −F ′

p is AM on (0,1) , then

F ′
p (x) =

[
(1− x)

π
8

F

(
3
2
,
3
2
;2;x

)
− p

]
(1− x)p−1 eK(

√
x) � 0

for all x ∈ (0,1) . This yields

p � π
8

(1− x)F
(

3
2
,
3
2
;2;x

)

for all x ∈ (0,1) . By the formulas (1.1) we have

p � π
8

sup
x∈(0,1)

[
F

(
1
2
,
1
2
;2;x

)]
=

1
2
.

which gives the first necessary condition. The second follows from

a1 =
(π

8
− p
)

eπ/2 < 0 and a2 =
64p2−16(π +4) p+ π2 +9π

128
eπ/2 � 0,

which implies p �
(
π +4+

√
16−π

)
/8 = 1.340.. .

Assume that 1/2 � p �
(
π +4+

√
16−π

)
/8. We have known that a1,a2 < 0.

Suppose that an � 0 for 1 � n � m . We prove am+1 � 0 by induction. Let us return to
the recurrence relation (2.11).

By Lemma 2, we see that ((k+1)bk+1/(kbk)− (n+1)bn+1/(nbn))< 0 and kbk <
0 for 1 � k � n− 1. If we check (bn+1/bn +b1/(n+1)) > 0 for 2 � n � m , then
am+1 < 0. In fact, we have

bn+1

bn
+

b1

n+1
=

n
n+1

(n+1)bn+1

nbn
+

b1

n+1
>

n
n+1

3b3

2b2
+

b1

n+1

=
1

n+1

(
n
3b3

2b2
+b1

)
>

1
n+1

[
2
75π/512− p
9π/64− p

+
(

1
8

π − p

)]

= −512p2−8p(17π +128)+3π (3π +50)
8(64p−9π)(n+1)

> 0



1306 Z.-H. YANG AND J.-F. TIAN

due to 1/2 � p �
(
π +4+

√
16−π

)
/8. The sufficiency thus follows.

(ii) The necessary condition for Fp to be AM on (0,1) follows from a1 = (π/8−
p)eπ/2 � 0. Suppose that p � π/8. A direct verification gives a0 = eπ/2 > 0,

a2 =
64p2−16(π +4) p+ π2 +9π

128
eπ/2 > 0.

Assume that an � 0 for 0 � n � m . By Lemma 2, we see that bk � 0 for p � π/8
and k � 1, by the recurrence formula (2.8) we immediately get am+1 > 0. Using the
induction we arrive at an � 0 for all n � 0.

This completes the proof. �

3. Several functional inequalities

As applications, we give several functional inequalities involving the complete
elliptic integral of the first kind K (r) .

PROPOSITION 1. Let ak = ak (p) for k � 0 be defined by (2.8) with a0 = eπ/2 .
The double inequality

ln
∑n

k=0 ak (q)r2k

(r′)2q < K (r) < ln
∑n

k=0 ak (p)r2k

(r′)2p (3.1)

holds for r ∈ (0,1) if 1/2 � p �
(
π +4+

√
16−π

)
/8 and q � π/8 .

Proof. By Theorem 2 the inequality

Gp,n (x) := (1− x)p eK (
√

x)−
n

∑
k=0

ak (p)xk =
∞

∑
k=n+1

ak (p)xk < 0 (3.2)

holds for x ∈ (0,1) if 1/2 � p �
(
π +4+

√
16−π

)
/8. Set x = r2 . Then this inequal-

ity implies the second one of (3.1). Similarly, the inequality Gq,n (x) > 0 for x ∈ (0,1)
if q � π/8 implies the first one of (3.1). This completes the proof. �

REMARK 2. Taking n = 0 in the double inequality (3.1) yields

π
2

+2q ln
1
r′

< K (r) <
π
2

+2p ln
1
r′

(3.3)

for r ∈ (0,1) with the best constants p = 1/2 and q = π/8. This result was proven
in [10, Corollary 3.6]. Evidently, Proposition (1) is a generalization of [10, Corollary
3.6].

Note that the function x 	→ x−n−1G1/2,n (x) is strictly decreasing with

lim
x→0

G1/2,n (x)
xn+1 = an+1

(
1
2

)
and lim

x→1−
G1/2,n (x)

xn+1 = 4−
n

∑
k=0

ak

(
1
2

)
.
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We have[
4−

n

∑
k=0

ak

(
1
2

)]
xn+1 <

√
1− xeK (

√
x)−

n

∑
k=0

ak

(
1
2

)
xk < an+1

(
1
2

)
xn+1

for x ∈ (0,1) . We obtain therefore the following proposition.

PROPOSITION 2. Let ak = ak (p) for k � 0 be defined by (2.8) with a0 = eπ/2 .
The double inequality

ln
∑n

k=0 ak (1/2)r2k +[4−∑n
k=0 ak (1/2)]r2n+2

r′
< K (r) < ln

∑n+1
k=0 ak (1/2)r2k

r′

holds for r ∈ (0,1) . The lower and upper bounds are sharp.

REMARK 3. Taking n = 0 in Proposition 2 yields

ln
eπ/2 +

(
4− eπ/2

)
r2

r′
< K (r) < ln

eπ/2 +(π/8−1/2)eπ/2r2

r′
(3.4)

for r ∈ (0,1) . The left hand side inequality of (3.4) was proven in [6, Eq. (1.4)], while
the right hand side one seems to be a newcomer. Furthermore, we have the following
corollary.

COROLLARY 1. Let α,β � 0 . The double inequality

ln
(α

r′
+
(
eπ/2−α

)
r′
)

< K (r) < ln

(
β
r′

+
(
eπ/2−β

)
r′
)

(3.5)

holds for r ∈ (0,1) if and only if α � 4 and β � β0 = (π +4)eπ/2/8 = 4.294 . . . .

Proof. Necessity. The necessary conditions for the double inequality (3.5) to hold
for r ∈ (0,1) can be deduced from the following limit relations

lim
r→1−

[
ln
(α

r′
+
(
eπ/2−α

)
r′
)
−K (r)

]
� 0, (3.6)

lim
r→0

K (r)− ln
(
β/r′ +

(
eπ/2−β

)
r′
)

r2 � 0. (3.7)

Using the asymptotic formula (1.6) we have, as r → 1−

ln
(α

r′
+
(
eπ/2−α

)
r′
)
−K (r) ∼ ln

(α
r′

+
(
eπ/2−α

)
r′
)
− ln

4
r′

= ln

(
α
4

+
eπ/2−α

4

(
r′
)2)→ ln

α
4

.
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This together with (3.6) implies α � 4. Expanding in power series leads to

K (r)− ln
(

β/r′ +
(
eπ/2−β

)
r′
)

=
π
2

(
1+

1
4
r2
)
− π

2
−
(

βe−π/2− 1
2

)
r2 +O

(
r4) ,

as r → 0, which gives

lim
r→0

K (r)− ln
(
β/r′ +

(
eπ/2−β

)
r′
)

r2 = −
(

β − π +4
8

eπ/2
)

e−π/2.

This in combination with (3.7) indicates β � (π +4)eπ/2/8 = β0 .
Sufficiency. Since the function α 	→ ln

(
α/r′ +

(
eπ/2−α

)
r′
)

is increasing on
[0,∞) , it suffices to prove the double inequality holds for r ∈ (0,1) when α = 4 and
β = β0 . Since the double inequality (3.4) can be written as

ln

(
4
r′

+
(
eπ/2−4

)
r′
)

< K (r) < ln

(
β0

r′
+
(
eπ/2−β0

)
r′
)

,

the sufficiency follows. This completes the proof. �
A function f : (a,∞) → R is said to be superadditive if

f (x)+ f (y) � f (x+ y) for x,y ∈ (a,∞) . (3.8)

If − f is superadditive, then f is called subadditive on (a,∞) (see [21]). Petrović [22]
showed that every convex function f : [0,∞) → R satisfies a functional inequality

f (x)+ f (y) � f (0)+ f (x+ y) for x,y ∈ [0,∞) (3.9)

(see [22]). In fact, this conclusion is also true for any interval [0,a) (a > 0). Let
Gp,n (x) be as in (3.2). It is clear that

lim
x→0

Gp,n (x) = 0.

By Theorem 2 we immediately get the double inequality

2Gp,n

(
x+ y

2

)
< Gp,n (x)+Gp,n (y) < Gp,n(x+ y)

for x,y,x + y ∈ (0,1) if p � π/8. The double inequality is reversed if 1/2 � p �(
π +4+

√
16−π

)
/8.

PROPOSITION 3. If p � π/8 , then the double inequality

2

(
1− x+ y

2

)p

e
K
(√

(x+y)/2
)
+2∑n

k=0 ak (p)

[
xk + yk

2
−
(

x+ y
2

)k
]

< (1− x)p eK (
√

x) + (1− y)p eK (√y)

< (1− x− y)p eK (
√

x+y) + ∑n
k=0 ak (p)

[
xk + yk − (x+ y)k

] (3.10)

holds for x,y,x+ y ∈ (0,1) . The inequalities (3.10) are reversed if

1/2 � p �
(

π +4+
√

16−π
)

/8.
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Taking n = 0 in Proposition 3 and noting a0 (p) = eπ/2 , we have

COROLLARY 2. If p � π/8 , then the double inequality

2

(
1− x+ y

2

)p

e
K
(√

(x+y)/2
)

< (1− x)p eK (
√

x) + (1− y)p eK (√y)

< (1− x− y)p eK (
√

x+y) + eπ/2

holds for x,y,x+ y ∈ (0,1) . It is reversed if 1/2 � p �
(
π +4+

√
16−π

)
/8 .

REMARK 4. Putting p = 1/2 and letting y = 1−r2 , x→ r2 in the above corollary
we obtain

4+ eπ/2 < r′eK (r) + reK (r′) <
√

2eK (1/
√

2) =
√

2exp

(
Γ(1/4)2

4
√

π

)
(3.11)

for r ∈ (0,1) , here we have used the asymptotic formula (1.6) and the identity

K

(
1√
2

)
=
√

2
∫ 1

0

dx√
1− x4

=
Γ(1/4)2

4
√

π
.

Clearly, the lower and upper bounds are sharp.
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