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Abstract. Let A,B,X and Y be n×n complex matrices such that A and B are positive semidef-
inite, then

‖AX +YB‖� 1
4

(‖W1‖+‖W2‖+W4) ,

where
W1 = A+A1/2 |X∗|2 A1/2,

W2 = B+B1/2 |Y |2 B1/2,

W3 = A1/2XB1/2 +A1/2YB1/2

and

W4 =
√

(‖W1‖−‖W2‖)2 +4‖W3‖2.

Multiple results are given in this paper.

1. Introduction

Let Mn denote the algebra of all n× n complex matrices. For A ∈ Mn , the
singular values of A are the eigenvalues of |A| = (A∗A)1/2 which are denoted by
s1(A) � s2(A) � . . . � sn(A) , they satisfy s j(A) = s j(A∗) = s j(|A|) for j = 1,2, . . . ,n .
The spectral norm ‖.‖ is defined as ‖A‖ = s1(A) and the Schatten p -norms ‖.‖p are

defined as ‖A‖p =

(
n

∑sp
j

j=1

(A)

)1/p

for 1 � p � ∞. The symbol |||.||| will denote any

unitarily invariant norm which are norms on Mn satisfying |||UAV ||| = |||A||| for all
A ∈ Mn and all unitary matrices U, V ∈ Mn , (see, e.g., [6] or [11]). It is pointed out
in [9] that if A,B ∈ Mn are positive semidefinite, then

||A+B|| � max{‖A‖ ,‖B‖}+‖AB‖1/2 . (1.1)

Kittaneh [13] gave a refinement of inequality (1.1) so that

||A+B|| � max{‖A‖ ,‖B‖}+
∥∥∥A1/2B1/2

∥∥∥ . (1.2)
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Kittaneh [14] provided an improvement of inequality (1.2) as follows

||A+B|| � 1
2

(
||A||+ ||B||+

√
(||A||− ||B||)2 +4

∣∣∣∣A1/2B1/2
∣∣∣∣2) . (1.3)

It is shown in [4] that if A,B ∈ Mn are positive semidefinite, then

s j(A+B) � s j

((
A+

∣∣∣B1/2A1/2
∣∣∣)⊕(B+

∣∣∣A1/2B1/2
∣∣∣)) (1.4)

for j = 1,2, . . . ,2n . Norm inequalities versions of inequality (1.4) are listed below

||A+B|| � max
{∥∥∥A+

∣∣∣B1/2A1/2
∣∣∣∥∥∥ ,
∥∥∥B+

∣∣∣A1/2B1/2
∣∣∣∥∥∥} (1.5)

and

‖A+B‖p �
(∥∥∥A+

∣∣∣B1/2A1/2
∣∣∣∥∥∥p

p
+
∥∥∥B+

∣∣∣A1/2B1/2
∣∣∣∥∥∥p

p

)1/p

(1.6)

for 1 � p � ∞. Zhan in [15] showed that if A,B∈ Mn where A,B are positive semidef-
inite, then

s j(A−B) � s j(A⊕B) (1.7)

for j = 1,2, . . . ,2n. A generalization of inequality (1.4) is given in [2], so that

s j(AX +XB) � s j(C⊕D) (1.8)

for j = 1,2, . . . ,2n , where
C = C1 + |C2| ,

C1 =
1
2
A+

1
2
A1/2 |X∗|2 A1/2,

C2 = B1/2X∗A1/2,

D = D1 + |D2| ,
D1 =

1
2
B+

1
2
B1/2 |X |2 B1/2,

and
D2 = A1/2XB1/2.

Audeh, in the same paper, showed that

s j(AX −XB) � s j (M⊕N) (1.9)

for j = 1,2, . . . ,2n , where

M =
1
2
A+

1
2
A1/2 |X∗|2 A1/2

and

N =
1
2
B+

1
2
B1/2 |X |2 B1/2.

Readers interested in singular value inequalities should return to [1], [3], [4], [5] and
[10]. We present a considerable generalizations of the inequalities (1.3), (1.4), (1.5),
(1.6), (1.8) and (1.9).
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2. Main results

We need the following lemmas. The first lemma is proved in [7], the second lemma
is obtained in [6], the third lemma is provided in [8] and the fourth lemma is given in
[12].

LEMMA 2.1. Let A,B ∈ Mn . Then

s j(AB∗) � 1
2
s j(A∗A+B∗B)

for j = 1,2, . . . ,n.

LEMMA 2.2. Let A ∈ Mn be positive semidefinite and let f be a non-negative
increaing function on [0,∞) . Then

s j( f (A)) = f (s j(A))

for j = 1,2, . . . ,n.

LEMMA 2.3. Let A,B ∈ Mn be normal and let f be a nonnegative concave func-
tion on [0,∞) . Then

||| f (|A+B|)||| � ||| f (|A|)+ f (|B|)||| .

LEMMA 2.4. Let A,B,C,D ∈ Mn(C).Then∥∥∥∥
[

A B
C D

]∥∥∥∥�
∥∥∥∥
[ ‖A‖ ‖B‖
‖C‖ ‖D‖

]∥∥∥∥ .

All functions in this study are continuous, the symbols A and B denote for positive
semidefinite matrices. A considerable generalization of inequality (1.3) will now be
presented .

THEOREM 2.5. Let A,B,X ,Y ∈ Mn(C) . Then

‖AX +YB‖ � 1
4

(‖W1‖+‖W2‖+W4) , (2.1)

where
W1 = A+A1/2 |X∗|2 A1/2,

W2 = B+B1/2 |Y |2 B1/2,

W3 = A1/2XB1/2 +A1/2YB1/2

and

W4 =
√

(‖W1‖−‖W2‖)2 +4‖W3‖2.
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Proof. Let S =
[

A1/2 YB1/2

0 0

]
and T ∗ =

[
A1/2X 0
B1/2 0

]
. Then

‖AX +YB‖ = ‖ST ∗‖
� 1

2
‖S∗S+T∗T‖

=
1
2

∥∥∥∥∥∥∥∥

[
A A1/2YB1/2

B1/2Y ∗A1/2 B1/2 |Y |2 B1/2

]
+[

A1/2 |X∗|2 A1/2 A1/2XB1/2

B1/2X∗A1/2 B

]
∥∥∥∥∥∥∥∥

=
1
2

∥∥∥∥
[

W1 W3

W ∗
3 W2

]∥∥∥∥
� 1

2

∥∥∥∥
[ ‖W1‖ ‖W3‖∥∥W ∗

3

∥∥ ‖W2‖
]∥∥∥∥

(by Lemma 2.4)

=
1
4

[
‖W1‖+‖W2‖+

√
(‖W1‖−‖W2‖)2 +4‖W3‖2

]
.

Thus we have proven our claim. �

REMARK 2.6. Inequality (1.3) will be obtained by letting X =Y = I in inequality
(2.1).

A generalization of inequality (1.9) will now be presented.

THEOREM 2.7. Let A,B,X ,Y ∈ Mn . Then

s j(AX −YB) � s j (K⊕L) (2.2)

for j = 1,2, . . . ,2n , where

K = K1 + |K2| ,

K1 =
1
2
A+

1
2
A1/2 |X∗|2 A1/2,

K2 =
1
2
B1/2Y ∗A1/2− 1

2
B1/2X∗A1/2,

L = L1 + |L2| ,

L1 =
1
2
B+

1
2
B1/2 |Y |2 B1/2

and

L2 =
1
2
A1/2YB1/2− 1

2
A1/2XB1/2.
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Proof. Let

S =
[

A1/2 YB1/2

0 0

]
,

R∗ =
[

A1/2X 0
−B1/2 0

]
,

M =
[

A A1/2YB1/2

B1/2Y ∗A1/2 B1/2 |Y |2 B1/2

]

and

N =
[

A1/2 |X∗|2 A1/2 −A1/2XB1/2

−B1/2X∗A1/2 B

]
.

Thus,

s j(AX −YB) = s j(SR∗)

� 1
2
s j(S∗S+R∗R) (by Lemma 2.1)

= s j

(
1
2
M +

1
2
N

)

= s j

([
K1 L2

K2 L1

])

= s j

([
K1 0
0 L1

]
+
[

0 L2

K2 0

])

� s j

(∣∣∣∣
[

K1 0
0 L1

]∣∣∣∣+
∣∣∣∣
[

0 L2

K2 0

]∣∣∣∣
)

= s j

([
K1 0
0 L1

]
+
[ |K2| 0

0 |L2|
])

= s j

([
K1 + |K2| 0

0 L1 + |L2|
])

= s j

([
K 0
0 L

])
= s j (K⊕L) .

Thus we have proven our claim. �

REMARK 2.8. Inequality (1.7) can be obtained by letting X =Y = I in inequality
(2.2).

REMARK 2.9. Inequality (1.9) can be given by letting Y = X in inequality (2.2).

As an application of Theorem 2.7, we present the following result which is a gen-
eralization of inequalities (1.4) and (1.8).
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COROLLARY 2.10. Let A,B,X ,Y ∈ Mn . Then

s j(AX +YB) � s j(C⊕D) (2.3)

for j = 1,2, . . . ,2n, where
C = C1 + |C2| ,

C1 =
1
2
A+

1
2
A1/2 |X∗|2 A1/2,

C2 =
1
2
B1/2X∗A1/2 +

1
2
B1/2Y ∗A1/2,

D = D1 + |D2| ,

D1 =
1
2
B+

1
2
B1/2 |Y |2 B1/2

and

D2 =
1
2
A1/2XB1/2 +

1
2
A1/2YB1/2.

Proof. Letting Y = −Y , K2 = −C2 and L2 = −D2 in Theorem 2.7, we give in-
equality (2.3). �

REMARK 2.11. Inequality (1.8) can be obtained by letting X = Y in inequality
(2.3).

REMARK 2.12. Inequality (1.4) can be given by letting X = Y = I in inequality
(2.3).

COROLLARY 2.13. Let A,B,X ,Y ∈ Mn . Then

‖AX +YB‖ � max{‖C‖ ,‖D‖} , (2.4)

where C and D are given in Corollary 2.10.

Proof. Inequality (2.4) is a direct consequence of inequality (2.3) by applying the
spectral norm. �

REMARK 2.14. Inequality (1.5) can be obtained by letting X =Y = I in inequal-
ity (2.4).

COROLLARY 2.15. Let A,B,X ,Y ∈ Mn . Then

‖AX +YB‖p �
(
‖C‖p

p +‖D‖p
p

)1/p
, (2.5)

where C and D are given in Corollary 2.10.
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Proof. Apply the Schatten p -norms on inequality (2.3), we give inequality (2.5).
�

REMARK 2.16. Inequality (1.6) can be obtained by letting X =Y = I in inequal-
ity (2.5) .

A generalization of the generalized anticommutator will now be given.

THEOREM 2.17. Let A,B,X ,Y ∈ Mn and let f be a nonnegative increasing con-
cave function on [0,∞) . Then

||| f (|(AX +YB)⊕0|)||| � |||Z⊕W ||| , (2.6)

where

Z = f (K1)+ f (|K2|) ,

K1 =
1
2
A+

1
2
A1/2 |X∗|2 A1/2,

K2 =
1
2
B1/2X∗A1/2 +

1
2
B1/2Y ∗A1/2,

W = f (L1)+ f (|L2|) ,

L1 =
1
2
B+

1
2
B1/2 |Y |2 B1/2

and

L2 =
1
2
A1/2XB1/2 +

1
2
A1/2YB1/2.

Proof. Let

S =
[

A1/2 YB1/2

0 0

]
,

T =
[

X∗A1/2 B1/2

0 0

]
,

E =
[

A A1/2YB1/2

B1/2Y ∗A1/2 B1/2 |Y |2 B1/2

]

and

F =
[

A1/2 |X∗|2 A1/2 A1/2XB1/2

B1/2X∗A1/2 B

]
.
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Then, we have

s j( f (|(AX +YB)⊕0|)) = s j( f (|ST∗|))
= f (s j(ST ∗))

� f

(
1
2
s j(S∗S+T ∗T )

)
(by Lemma 2.1)

= f

(
1
2
s j (E +F)

)

= s j

(
f

(∣∣∣∣12E +
1
2
F

∣∣∣∣
))

(by Lemma 2.2)

= s j

(
f

(∣∣∣∣
[

K1 L2

K2 L1

]∣∣∣∣
))

.

This implies that,

||| f (|(AX +YB)⊕0|)||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(∣∣∣∣
[

K1 L2

K2 L1

]∣∣∣∣
)∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(∣∣∣∣
[

K1 0
0 L1

]
+
[

0 L2

K2 0

]∣∣∣∣
)∣∣∣∣
∣∣∣∣
∣∣∣∣

�
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(∣∣∣∣
[

K1 0
0 L1

]∣∣∣∣
)

+ f

(∣∣∣∣
[

0 L2

K2 0

]∣∣∣∣
)∣∣∣∣
∣∣∣∣
∣∣∣∣ ,

(by Lemma 2.3),

�
∣∣∣∣
∣∣∣∣
∣∣∣∣ f
([

K1 0
0 L1

])
+ f

([ |K2| 0
0 |L2|

])∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[

f (K1) 0
0 f (L1)

]
+
[

f (|K2|) 0
0 f (|L2|)

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[

Z 0
0 W

]∣∣∣∣
∣∣∣∣
∣∣∣∣

= |||Z⊕W ||| ,
which is precisely inequality (2.6). �

COROLLARY 2.18. Let A,B,X ,Y ∈ Mn . Then

‖AX +YB‖ � max{‖K1 + |K2|‖ ,‖L1 + |L2|‖} , (2.7)

where K1,K2,L1 and L2 are given in Theorem 2.17.

Proof. Inequality (2.7) is a direct consequence of Theorem 2.17 by considering
‖.‖ and letting f (t) = t . �

REMARK 2.19. Inequality (1.5) can be obtained by letting X =Y = I in Corollary
2.18.
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COROLLARY 2.20. Let A,B,X ,Y ∈ Mn . Then for 1 � p � ∞ ,

‖AX +YB‖p �
(
‖K1 + |K2|‖p

p +‖L1 + |L2|‖p
p

)1/p
, (2.8)

where K1,K2,L1 and L2 are given in Theorem 2.17.

Proof. Inequality (2.8) is a direct consequence of Theorem 2.17 by considering
‖.‖p and letting f (t) = t . �

REMARK 2.21. Inequality (1.6) can be obtained by letting X =Y = I in Corollary
2.20.

Some applications of Theorem 2.17 will now be given.

COROLLARY 2.22. Let A,B,X ,Y ∈ Mn . Then

|||log(|(AX +YB)|+ I)||| � |||M⊕N||| , (2.9)

where
M = (log(K1 + I)+ log(|K2|+ I))

and
N = (log(L1 + I)+ log(|L2|+ I)) .

K1,K2,L1 and L2 are given in Theorem 2.17.

Proof. Inequality (2.9) is a direct consequence of Theorem 2.17 by letting f (t) =
log(t +1) . �

COROLLARY 2.23. Let A,B,X ,Y ∈ Mn . Then, for r ∈ (0,1] , we have

||||(AX +YB)|r||| � |||P⊕Q||| , (2.10)

where
P = (Kr

1 + |K2|r) and Q = (Lr
1 + |L2|r) .

K1,K2,L1 and L2 are given in Theorem 2.17.

Proof. Inequality (2.10) is a direct consequence of Theorem 2.17 by letting f (t) =
tr and r ∈ (0,1] . �
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