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ON THE BOUNDS OF SCALING FACTORS OF

AFFINE FRACTAL INTERPOLATION FUNCTIONS
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(Communicated by M. Krnić)

Abstract. In this paper we obtain an upper bound and a lower bound for each vertical scaling
factor sk of an iterated function system so that the obtained affine fractal interpolation function
fΔ has the property that R(x)− d � fΔ(x) � R(x)+D for all x ∈ I , where D and d are given
positive constants and R(x) = mx+c is a given linear function on I . As an example, we consider
the case that the graph of R is the regression line that fits the given data points by least square
method.

1. Introduction

Interpolation methods are important techniques to reconstruct a continuous func-
tion from a given data set. Fractal interpolation is a modern technique and has been
applied to construct irregular and non-smooth approximants. The concept of fractal in-
terpolation functions was first introduced by Barnsley ([1], [2]) and has been developed
by many researchers. Interested readers are referred to the survey article [3].

Parameter identification is one of the problems in the theory of fractal interpola-
tions. In [4] Dalla and Drakopoulos gave ranges of vertical scaling factors to ensure that
the graphs of affine fractal interpolation functions are contained in a given rectangle. In
[5] and [6] the authors investigated methods for determining the vertical scaling factors
such that the resulting fractal function provides a good fit to the given data set. In [7],
[8], and [9] the authors discussed sufficient conditions on the scaling factors and shape
parameters for preserving positivity, monotonicity, and convexity (concavity) through
rational cubic fractal interpolation functions. Similar results with bounds on the scaling
factors were obtained in [10] for α -fractal functions.

Here is a brief introduction to the construction of affine fractal interpolation func-
tions, see [2] and [4] for more details. Consider the set of points Δ = {(xk,yk) ∈R×R :
k = 0,1, · · · ,N} , where N � 2 is a positive integer and x0 < x1 < x2 < · · · < xN . De-
note I = [x0,xN ] and Ik = [xk−1,xk] for each k = 1, · · · ,N . Let Lk(x) = akx+ bk such
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that Lk(x0) = xk−1 , Lk(xN) = xk . Define a function Mk : I ×R → R with Mk(x,y) =
ckx+ sky+ ek such that Mk(x0,y0) = yk−1 , Mk(xN ,yN) = yk . By [2] we see that

Lk(x) =
(

xk − xk−1

xN − x0

)
x+

(
xNxk−1 − x0xk

xN − x0

)
, (1.1)

Mk(x,y) =
(

yk − yk−1

xN − x0
− sk(yN − y0)

xN − x0

)
x+ sky

+
(

xNyk−1 − x0yk

xN − x0
− sk

xNy0− x0yN

xN − x0

)
. (1.2)

If −1 < sk < 1 for k = 1, · · · ,N , the iterated function system {I×R;W1, · · · ,WN} ad-
mits a unique attractor G ⊆ I ×R , where Wk(x,y) = (Lk(x),Mk(x,y)) , and G is the
graph of a continuous function fΔ : I → R which satisfies fΔ(xk) = yk for k = 0, · · · ,N .
The function fΔ is called an affine fractal interpolation function [4] corresponding to
the system and the set of points Δ . Note that fΔ satisfies the functional equation

fΔ(x) =
(

yk − yk−1

xN − x0
− sk(yN − y0)

xN − x0

)
L−1

k (x)+ sk fΔ(L−1
k (x)) (1.3)

+
(

xNyk−1− x0yk

xN − x0
− sk

xNy0 − x0yN

xN − x0

)
, x ∈ Ik.

Here L−1
k , the inverse function of Lk , is given by

L−1
k (x) =

(
xN − x0

xk − xk−1

)
x−

(
xNxk−1− x0xk

xk − xk−1

)
. (1.4)

It is known that the values of vertical scaling factors sk , k = 1, · · · ,N have main ef-
fect on the graph of an affine fractal interpolation function. In [4], Dalla and Drakopou-
los obtained a range for each sk so that the graph of the obtained affine fractal inter-
polation function remains within a given rectangle I× [a,b] . Similar ideas have been
extended and applied to problems of shape preservation through fractal interpolation
functions. See [7], [8], [9], and [10].

In this paper we apply the idea given in [4, Theorem 3] and [10, Theorem 3.1]
to obtain an upper bound and a lower bound for each sk so that the obtained affine
fractal interpolation function fΔ satisfies the condition R(x)− d � fΔ(x) � R(x)+D
for all x ∈ I , where D and d are given positive constants and R(x) = mx+ c is a linear
function on I . We also consider three particular cases as examples: the graph of R
is a horizontal line, the straight line that passes through (x0,y0) and (xN ,yN) , and the
regression line that fits the data points in Δ by least square method.

Throughout this paper, N is an integer greater or equal to 2 and Δ = {(xi,yi) ∈
R×R : i = 0,1, · · · ,N} is a given set of points, where x0 < x1 < x2 < · · · < xN . We
also suppose that all the data points in Δ are non-collinear. Let I = [x0,xN ] and Ik =
[xk−1,xk] for k = 1, · · · ,N . Suppose that fΔ is an affine fractal interpolation function
that satisfies (1.3) and R(x) = mx+ c is the given linear function on I . Define εk =
yk−R(xk) for k = 0, · · · ,N and let D and d be positive constants such that −d � εk � D
for k = 0, · · · ,N .
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2. Bounds on the scaling factors

In this section we establish an upper bound and a lower bound for each sk so that
R(x)−d � fΔ(x) � R(x)+D for all x ∈ I .

Let � be the function of the straight line that passes through (x0,y0) and (xN ,yN)
and let �k be the function of the straight line that passes through (xk−1,yk−1) and
(xk,yk) . Then

�(x) = y0 +
(

yN − y0

xN − x0

)
(x− x0), x ∈ I,

�k(x) = yk−1 +
(

yk − yk−1

xk − xk−1

)
(x− xk−1), x ∈ Ik.

By (1.3) we rewrite fΔ(x) in the form

fΔ(Lk(x)) =
(

x− x0

xN − x0

)
yk +

(
xN − x
xN − x0

)
yk−1 + sk fΔ(x) (2.1)

−sk

{(
x− x0

xN − x0

)
yN +

(
xN − x
xN − x0

)
y0

}
, x ∈ I.

For x ∈ I , equation (2.1) implies

fΔ(Lk(x))− �k(Lk(x)) = sk( fΔ(x)− �(x)), (2.2)

and we have

fΔ(Lk(x))−R(Lk(x))
= sk( fΔ(x)−R(x))+ �k(Lk(x))−R(Lk(x))+ sk(R(x)− �(x)). (2.3)

Consider the following condition:

x ∈ I and −d � y−R(x) � D (2.4)

⇒ −d � sk(y−R(x))+ �k(Lk(x))−R(Lk(x))+ sk(R(x)− �(x)) � D.

It is easy to verify that if condition (2.4) is satisfied, we have

−d � fΔ(x)−R(x) � D, x ∈ I. (2.5)

For k = 1, · · · ,N , define

αk = min{εk−1 − skε0,εk − skεN} and βk = max{εk−1 − skε0,εk − skεN}.
In the following we investigate bounds on each sk so that condition (2.4) is satisfied.
Suppose that x ∈ I and −d � y−R(x) � D . Since �k(Lk(x))−R(Lk(x))+ sk(R(x)−
�(x)) is a linear function,

αk � �k(Lk(x))−R(Lk(x))+ sk(R(x)− �(x)) � βk. (2.6)
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We first consider the case 0 � sk < 1. Since −skd � sk(y−R(x)) � skD , by (2.6) ,

αk − skd � sk(y−R(x))+ �k(Lk(x))−R(Lk(x))+ sk(R(x)− �(x)) � βk + skD. (2.7)

If βk + skD � D and −d � αk − skd , then condition (2.4) holds. The condition βk +
skD � D is equivalent to

εk−1− skε0 + skD � D and εk − skεN + skD � D (2.8)

and (2.8) holds under one of the following cases.

(a) ε0 = εN = D .

(b) ε0 = D , εN < D , 0 � sk � D−εk
D−εN

,

(c) ε0 < D , εN = D , 0 � sk � D−εk−1
D−ε0

,

(d) ε0 < D , εN < D , 0 � sk � min

{
D− εk−1

D− ε0
,

D− εk

D− εN

}
.

Similarly, the condition −d � αk − skd is equivalent to

−d � εk−1 − skε0 − skd and −d � εk − skεN − skd (2.9)

and (2.9) holds under one of the following cases.

(e) ε0 = εN = −d .

(f) ε0 = −d , εN > −d , 0 � sk � d+εk
d+εN

,

(g) ε0 > −d , εN = −d , 0 � sk � d+εk−1
d+ε0

,

(h) ε0 > −d , εN > −d , 0 � sk � min

{
d + εk−1

d + ε0
,

d + εk

d + εN

}
.

Therefore if

0 � sk � min

{
D− εk−1

D− ε0
,

D− εk

D− εN
,
d + εk−1

d + ε0
,

d + εk

d + εN

}
, (2.10)

the condition (2.4) holds. Here we take a/0 = ∞ for any a � 0. Now consider the
case −1 < sk � 0. Since skD � sk(y−R(x)) � −skd , we have

αk + skD � sk(y−R(x))+ �k(Lk(x))−R(Lk(x))+ sk(R(x)− �(x)) � βk − skd. (2.11)

Therefore if βk − skd � D and −d � αk + skD , then condition (2.4) holds. The condi-
tion βk − skd � D is equivalent to

εk−1 − skε0 − skd � D and εk − skεN − skd � D (2.12)

and (2.12) holds under one of the following cases.
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(i) ε0 = εN = −d .

(j) ε0 = −d , εN > −d , −(D−εk)
d+εN

� sk � 0,

(k) ε0 > −d , εN = −d , −(D−εk−1)
d+ε0

� sk � 0,

(l) ε0 > −d , εN > −d , max

{−(D− εk)
d + εN

,
−(D− εk−1)

d + ε0

}
� sk � 0.

Similarly, the condition −d � αk + skD is equivalent to

−d � εk−1 − skε0 + skD and −d � εk − skεN + skD (2.13)

and (2.13) holds under one of the following cases.

(m) ε0 = εN = D .

(n) ε0 = D , εN < D , −(d+εk)
D−εN

� sk � 0,

(o) ε0 < D , εN = D , −(d+εk−1)
D−ε0

� sk � 0,

(p) ε0 < D , εN < D , max

{−(d + εk)
D− εN

,
−(d + εk−1)

D− ε0

}
� sk � 0.

Therefore if

max

{−(D− εk−1)
d + ε0

,
−(D− εk)

d + εN
,
−(d + εk−1)

D− ε0
,
−(d + εk)
D− εN

}
� sk � 0, (2.14)

the condition (2.4) holds. Here we take −a/0 = −∞ for any a � 0. Let

supp
k = min

{
D− εk−1

D− ε0
,

D− εk

D− εN
,
d + εk−1

d + ε0
,

d + εk

d + εN

}
, (2.15)

slow
k = max

{−(D− εk−1)
d + ε0

,
−(D− εk)

d + εN
,
−(d + εk−1)

D− ε0
,
−(d + εk)
D− εN

}
. (2.16)

Combine (2.10) and (2.14) , we have the following theorem.

THEOREM 2.1. If −1 < sk < 1 and slow
k � sk � supp

k for each k = 1, · · · ,N , where
supp
k and slow

k are given by (2.15) and (2.16) , respectively, then

R(x)−d � fΔ(x) � R(x)+D, x ∈ I. (2.17)
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3. Some examples

COROLLARY 3.1. Let c be a constant such that c− d � yk � c + D for k =
0, · · · ,N . If slow

k � sk � supp
k and −1 < sk < 1 for each k = 1, · · · ,N , where

supp
k = min

{
D− yk−1 + c
D− y0 + c

,
D− yk + c
D− yN + c

,
d + yk−1− c
d + y0− c

,
d + yk− c
d + yN − c

}
,

slow
k = max

{−(D− yk−1 + c)
d + y0− c

,
−(D− yk + c)

d + yN − c
,
−(d + yk−1− c)

D− y0 + c
,
−(d + yk − c)
D− yN + c

}
,

then the graph of fΔ lies within the rectangle I× [c−d,c+D] .

Corollary 3.1 can be obtained by Theorem 2.1 if R(x) = c . By setting a = c− d
and b = c+D , Corollary 3.1 can be reduced to [4, Theorem 3].

EXAMPLE 3.1. Let Δ = {(0,1.4),(1,3.5),(2,2.1),(3,3.1),(4,3.8),(5,3.4)} . Then
I = [0,5] and xk = k for k = 0, · · · ,5. We choose R(x) = 3. Then ε0 =−1.6, ε1 = 0.5,
ε2 = −0.9, ε3 = 0.1, ε4 = 0.8, ε5 = 0.4. Let d = D = 2. By Corollary 3.1 we see that
if

−0.11111 � s1 � 0.93750, −0.68750 � s2 � 0.41667,

−0.30556 � s3 � 0.80556, −0.50000 � s4 � 0.52778,

−0.66667 � s5 � 0.33333,

then the graph of fΔ lies within the rectangle [0,5]× [1,5] . The graph of fΔ with
s1 = 0.937, s2 = 0.416, s3 = 0.805, s4 = 0.527, s5 = 0.333 is plotted in Fig 3.1, and
the graph in Fig 3.2 is based on the factors s1 = 0.937, s2 = −0.687, s3 = −0.305,
s4 = −0.5, s5 = 0.333.

Figure 3.1: R(x) = 3 , s1 = 0.937 , s2 = 0.416 , s3 = 0.805 , s4 = 0.527 , s5 = 0.333

Let R be the function of the straight line passing through (x0,y0) and (xN ,yN) .
Then

R(x) = y0 +
(

yN − y0

xN − x0

)
(x− x0), x ∈ I. (3.1)
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Figure 3.2: R(x) = 3 , s1 = 0.937 , s2 = −0.687 , s3 = −0.305 , s4 = −0.5 , s5 = 0.333

In this case, ε0 = εN = 0. For k = 2, · · · ,N−1,

supp
k = min

{
D− εk−1

D
,
D− εk

D
,
d + εk−1

d
,
d + εk

d

}
,

slow
k = max

{−(D− εk−1)
d

,
−(D− εk)

d
,
−(d + εk−1)

D
,
−(d + εk)

D

}
.

For k = 1,

supp
1 = min

{
1,

D− ε1

D
,
d + ε1

d

}
,

slow
1 = max

{−D
d

,
−(D− ε1)

d
,
−d
D

,
−(d + ε1)

D

}
,

and for k = N ,

supp
N = min

{
1,

D− εN−1

D
,
d + εN−1

d

}
,

slow
N = max

{−(D− εN−1)
d

,
−D
d

,
−(d + εN−1)

D
,
−d
D

}
.

COROLLARY 3.2. Let R be given by (3.1) . If slow
k � sk � supp

k and −1 < sk < 1
for each k = 1, · · · ,N , then the graph of fΔ lies within the parallelogram with vertices
(x0,y0−d) , (x0,y0 +D) , (xN ,yN −d) , and (xN ,yN +D) .

EXAMPLE 3.2. Let Δ be given in Example 3.1. Then R(x) = 0.4x+1.4. We have
ε0 = 0, ε1 = 1.7, ε2 = −0.1, ε3 = 0.5, ε4 = 0.8, ε5 = 0. Let d = 1 and D = 2. By
Corollary 3.2 we see that if

−0.30000 � s1 � 0.15000, −0.30000 � s2 � 0.15000,

−0.45000 � s3 � 0.75000, −0.75000 � s4 � 0.60000,

−0.50000 � s5 � 0.60000,
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then the graph of fΔ lies within the parallelogram with vertices (0,0.4) , (0,3.4) ,
(5,2.4) , (5,5.4) . The graph of fΔ with s1 = 0.15, s2 = 0.15, s3 = 0.75, s4 = 0.60,
s5 = 0.60 is plotted in Fig 3.3, and the graph in Fig 3.4 is based on the factors s1 =
−0.30, s2 = 0.15, s3 = 0.75, s4 = 0.60, s5 = −0.50.

Figure 3.3: R(x) = 0.4x+1.4 , s1 = 0.15 , s2 = 0.15 , s3 = 0.75 , s4 = 0.60 , s5 = 0.60

Figure 3.4: R(x) = 0.4x+1.4 , s1 = −0.30 , s2 = 0.15 , s3 = 0.75 , s4 = 0.60 , s5 = −0.50

In the following case, we consider that R is the regression line that fits the data
points in Δ by the method of least squares. We choose the coefficients m and c of R
to minimize the sum of squared errors SSE = ∑N

i=0 ε2
i . This problem can be solved by

taking ∂SSE/∂m = 0 and ∂SSE/∂c = 0. We have

m =
∑N

i=0(xi − x)(yi − y)
∑N

i=0(xi − x)2
, c = y −mx, (3.2)

where x = 1
N+1 ∑N

i=0 xi and y = 1
N+1 ∑N

i=0 yi . By Theorem 2.1, if −1 < sk < 1 and
slow
k � sk � supp

k for each k = 1, · · · ,N , where supp
k and slow

k are given by (2.15) and
(2.16) , respectively, the graph of fΔ lies within the parallelogramwith vertices (x0,mx0+
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c− d) , (x0,mx0 + c+D) , (xN ,mxN + c− d) , (xN ,mxN + c+D) , where m and c are
given by (3.2) .

EXAMPLE 3.3. Let Δ be given in Example 3.1. Then m ≈ 0.34 and c ≈ 2.
We choose R(x) = 0.34x+ 2. Then ε0 = −0.6, ε1 = 1.16, ε2 = −0.58, ε3 = 0.08,
ε4 = 0.44, ε5 = −0.3. Let d = 1 and D = 2. If

−0.15385 � s1 � 0.36522, −0.18261 � s2 � 0.32308,

−0.16154 � s3 � 0.83478, −0.41538 � s4 � 0.67826,

−0.30435 � s5 � 0.60000,

then the graph of fΔ lies within the parallelogram with vertices (0,1) , (0,4) , (5,2.7) ,
(5,5.7) . The graph of fΔ with s1 = 0.365, s2 = 0.323, s3 = 0.834, s4 = 0.678, s5 =
0.60 is plotted in Fig 3.5, and the graph in Fig 3.6 is based on the factors s1 = 0.365,
s2 = 0.323, s3 = −0.161, s4 = 0.678, s5 = 0.60.

Figure 3.5: R(x) = 0.34x+2 , s1 = 0.365 , s2 = 0.323 , s3 = 0.834 , s4 = 0.678 , s5 = 0.60

Figure 3.6: R(x) = 0.34x+2 , s1 = 0.365 , s2 = 0.323 , s3 = −0.161 , s4 = 0.678 , s5 = 0.60
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