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ON THE GENERALIZED QUADRATIC GAUSS

SUMS AND ITS UPPER BOUND ESTIMATE

JIAFAN ZHANG AND XINGXING LV ∗

(Communicated by M. Krnić)

Abstract. The main purpose of this paper is to study generalized quadratic Gauss sums, then use
the analytic methods, the properties of the classical Gauss sums and character sums to give a
sharp upper bound estimate for it. In addition, we also give several interesting fourth and sixth
power mean formulae for the sums.

1. Introduction

The definition of the classical Gauss sums τ(χ ,m;q) and the quadratic Gauss
sums G(χ ,m;q) are as follows:

τ(χ ,m;q) =
q

∑
a=1

χ(a)e
(

ma
q

)

and

G(χ ,m;q) =
q

∑
a=1

χ(a)e
(

ma2

q

)
, (1)

where q is an integer with q > 1, χ denotes the Dirichlet character mod q , m is any
integer and e(y) = e2π iy . If χ is a primitive character mod q or (m,q) = 1, then we
have τ(χ ,m;q) = χ(m)τ (χ ,1;q) = χ(m) · τ (χ) .

These sums and related sums have many important applications in the analytic
number theory. Therefore, many scholars are devoted to studying the properties of
them. For example, W. P. Zhang [1] studied the properties of the quadratic Gauss sums
and proved the identities

∑
χ mod p

|G(χ ,n; p)|4 =

⎧⎨
⎩

(p−1)
(
3p2−6p−1

)
if p ≡ 3(mod 4),

(p−1)
(

3p2−6p−1+4

(
n
p

)√
p

)
if p ≡ 1(mod 4)

(2)
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and

1
p−1 ∑

χ mod p

|G(χ ,n; p)|6 = 10p3−25p2−4p−1, if p ≡ 3(mod 4), (3)

where p is an odd prime, ∑
χ mod p

denotes the summation over all character mod p ,

and
(

∗
p

)
denotes the Legendre’s symbol mod p .

Furthermore, many interesting identities related to the classical Gauss sums are
also obtained in references [2]–[13]. For instance, L. Chen [2] considered the sixth-
order character mod p , and proved that for any prime p with p ≡ 1(mod 6) and any
sixth-order character λ mod p , one has the identity

τ3(λ )+ τ3
(

λ
)

=

{
p

1
2
(
d2−2p

)
if p = 12h+1,

−i · p 1
2
(
d2−2p

)
if p = 12h+7,

where i2 = −1, d is uniquely determined by 4p = d2 +27b2 and d ≡ 1(mod 3) .
Recently, S. M. Shen and W. P. Zhang [3] introduced a generalized quadratic Gauss

sums as follows:

G(χ1,χ2, · · · ,χk,m;q)

=
q

∑
a1=1

q

∑
a2=1

· · ·
q

∑
ak=1

χ1(a1)χ2(a2) · · ·χk(ak)e

(
m(a1 +a2 + · · ·+ak)

2

q

)
, (4)

where k and m are integers with k � 1 and (m,q) = 1, and χi mod q , 1 � i � k .
In fact, if one take k = 1, then (4) becomes (1). So (4) is a generalized quadratic

Gauss sums, and (1) is a special case of (4). Therefore, G(χ1,χ2, · · · ,χk,m;q) is a
further promotion and extension of G(χ ,m;q) .

For the special cases q = p , an odd prime, and k = 2, m = 1, S. M. Shen and W.
P. Zhang [3] studied the fourth power mean of (4), and obtained an exact calculating
formula for it. That is, they proved the following conclusion.

Let p be an odd prime with p ≡ 3(mod 4) . Then for any character ψ mod p ,
one has the identity

1
p−1 ∑

χ mod p

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e
(

(a+b)2

p

)∣∣∣∣∣
4

=

⎧⎨
⎩

p5 −7p4 +17p3−10p2−12p−1 if ψ = χ0,
3p4−6p3− p2 if ψ(−1) = −1,
3p4 +E(ψ , p) if ψ(−1) = 1 and ψ �= χ0,

where χ0 denotes the principal character mod p , and |E(ψ , p)| � 23p3 .
In this paper, we will study the upper bound estimate problem of (4). If q = p is

an odd prime and k = 1, then from A. Weil’s classical work [4] or simple elementary
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method we can deduce the estimate∣∣∣∣∣
p−1

∑
a=1

χ(a)e
(

ma2

p

)∣∣∣∣∣� 2
√

p.

Naturally, we ask the following two problems:
1. For k � 2, whether there exists a sharp upper bound estimate for (4)?
2. Whether there exist two similar formulae as in (2) and (3)?
The main purpose of this paper is to study these problems. We will use the analytic

method and the properties of the Gauss sums to prove the following results.

THEOREM 1. Let p be an odd prime, k and m are integers with k � 1 , χi

(1 � i � k) denotes any Dirichlet character mod p. If one of χi is not the princi-
pal character mod p, then we have the estimate∣∣∣∣∣

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ1(a1) · · ·χk(ak) e

(
m(a1 + · · ·+ak)

2

p

)∣∣∣∣∣� 2 · p k
2 .

THEOREM 2. Let p be an odd prime with p ≡ 3(mod 4) , k and m are two inte-
gers with k � 1 and (m, p) = 1 , χi (1 � i � k) denotes any non-principal characters
mod p. If χ1χ2 · · ·χk = χ0 is the principal character mod p, then we have the iden-
tities

1
p−1 ∑

χ mod p

|G(χ ,χ1, · · · ,χk,m; p)|4 = p2k−2 · (3p4−7p3−4p2−3p−1
)

and

1
p−1 ∑

χ mod p

|G(χ ,χ1, · · · ,χk,m; p)|6

= p3k−3 ·
(
10p6−26p5−8p4−8p3−7p2−4p−1

)
.

If χ1χ2 · · ·χk = ψ �= χ0 , then we have the identities

1
p−1 ∑

χ mod p

|G(χ ,χ1,χ2, · · · ,χk,m; p)|4

= p2k · (3p2−6p−1
)− (p+1) · p2k−2 ·

∣∣∣∣∣
p−1

∑
a=1

ψ(a)e
(

ma2

p

)∣∣∣∣∣
4

and

1
p−1 ∑

χ mod p

|G(χ ,χ1,χ2, · · · ,χk,m; p)|6

= p3k · (10p3−25p2−4p−1
)− p3k−3 (p2 + p+1

)∣∣∣∣∣
p−1

∑
a=1

ψ(a)e
(

ma2

p

)∣∣∣∣∣
6

.

From Theorem 2 we can deduce the following two corollaries.
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COROLLARY 1. Let p be an odd prime with p ≡ 3(mod 4) , k and m are two
integers with k � 1 and (m, p) = 1 , χi (1 � i � k) is any non-principal character
mod p such that χ1χ2 · · ·χk is an odd character mod p, then we have

∑
χ mod p

|G(χ ,χ1,χ2, · · · ,χk,m; p)|4 = (p−1) · p2k · (3p2−6p−1
)

and

∑
χ mod p

|G(χ ,χ1,χ2, · · · ,χk,m; p)|6 = (p−1) · p3k · (10p3−25p2−4p−1
)
.

COROLLARY 2. Let p be an odd prime with p ≡ 3(mod 4) , k and m are two
integers with k � 1 and (m, p) = 1 , χi (1 � i � k) is any non-principal character
mod p such that χ1χ2 · · ·χk is an even character, then we have the asymptotic formulae

∑
χ mod p

|G(χ ,χ1,χ2, · · · ,χk,m; p)|4 = 3 · p2k+3 +E(m, p)

and

∑
χ mod p

|G(χ ,χ1,χ2, · · · ,χk,m; p)|6 = 10 · p3k+4 +H(m, p),

where the error terms E(m, p) and H(m, p) satisfies the estimates |E(m, p)| � 25 ·
p2k+2 and |H(m, p)| � 99 · p3k+3 .

SOME NOTES. If p ≡ 1(mod 4) in Theorem 2, then we can also deduce some
corresponding results. But at this time, the results are not so perfect and beautiful.

For general integer q > 1, whether there exist some similar estimates or identities
as in Theorem 1 and Theorem 2 are two open problems.

Obviously, whether the constant 2 in Theorem 1 is the best one is also an interest-
ing problem, but we guess it is the best.

2. Several simple lemmas

To prove our theorems, we need two simple lemmas. In the process of proving our
lemmas, we need to use some basic properties of the classical Gaussian sums, Jacobi
sums and character sums, all of these can be found in references [14] and [15], so there
is no need to repeat. First we have the following.

LEMMA 1. Let p be an odd prime, k and m are integers with (m, p) = 1 and
k � 1 . For any character χi mod p with 1 � i � k , if one of χi is not the principal
character mod p and χ1χ2 · · ·χk = χ0 , then we have the identity

p−1

∑
a1=1

p−1

∑
a2=1

· · ·
p−1

∑
ak=1

χ1(a1)χ2(a2) · · ·χk(ak)e

(
m(a1 +a2 + · · ·+ak)

2

p

)

=

(
1− 1

p

p−1

∑
b=0

e

(
mb2

p

))
· τ (χ1) · τ (χ2) · · ·τ (χk−1) · τ (χ1χ2 · · ·χk−1) .
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If χ1χ2 · · ·χk �= χ0 , then we have

p−1

∑
a1=1

p−1

∑
a2=1

· · ·
p−1

∑
ak=1

χ1(a1)χ2(a2) · · ·χk(ak)e

(
m(a1 +a2 + · · ·+ak)

2

p

)

=
τ(χ1) · τ(χ2) · · ·τ(χk)

τ (χ1χ2 · · ·χk)
·
(

p−1

∑
b=1

χ1(b)χ2(b) · · ·χk(b)e
(

mb2

p

))
.

Proof. Let χ = χ1χ2 · · ·χk , then we have

G(χ1,χ2, · · · ,χk,m; p) = ∑
n∈Fp

e

(
mn2

p

)
∑

a1,a2,···,ak∈F∗
p

a1+a2+···+ak=n

χ1(a1)χ2(a2) · · ·χk(ak)

= ∑
n∈F∗

p

e

(
mn2

p

)
∑

a1,a2,···,ak∈F∗
p

a1+a2+···+ak=1

χ1(na1)χ2(na2) · · ·χk(nak)

+ ∑
a1,a2,···,ak∈F∗

p

a1+a2+···+ak=0

χ1(a1)χ2(a2) · · ·χk(ak)

= ∑
n∈F∗

p

χ(n)e
(

mn2

p

)
∑

a1,a2,···,ak∈F∗
p

a1+a2+···+ak=1

χ1(a1)χ2(a2) · · ·χk(ak)

+ ∑
a1,a2,···,ak∈F∗

p

a1+a2+···+ak=0

χ1(a1)χ2(a2) · · ·χk(ak)

≡ ∑
n∈F∗

p

χ(n)e
(

mn2

p

)
J (χ1,χ2, · · · ,χk)+ J0 (χ1,χ2, · · · ,χk) , (5)

where J (χ1,χ2, · · · ,χk) and J0 (χ1,χ2, · · · ,χk) are the Jacobi sums (see [15]).
From the definition and properties of the classical Gauss sums we can easily de-

duce (see [15] for details)

J (χ1,χ2, · · · ,χk) =
χ(−1)

p
· τ(χ1) · τ(χ2) · · ·τ(χk) · τ (χ) (6)

and

J0 (χ1,χ2, · · · ,χk) =
1
p
· τ(χ1) · τ(χ2) · · ·τ(χk) ·

p−1

∑
b=1

χ(b). (7)

It is clear that if χ(−1) = −1, then we have the identity

∑
n∈Fp

χ(n)e
(

mn2

p

)
= 0. (8)
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Therefore, from (5), (7) and the properties of character sums we have

G(χ1,χ2, · · · ,χk,m; p) = 0. (9)

Now if χ = χ1χ2 · · ·χk = χ0 , then note that χ1χ2 · · ·χk−1 = χk and

p−1

∑
b=1

χ(b) =
p−1

∑
b=1

χ0(b) = p−1,

from (5), (6) and (7) we have

G(χ1,χ2, · · · ,χk,m; p)

=

(
1− 1

p

p−1

∑
b=0

e

(
mb2

p

))
· τ (χ1) · τ (χ2) · · ·τ (χk−1) · τ (χ1χ2 · · ·χk−1) . (10)

If χ1χ2 · · ·χk �= χ0 and χ(−1) = 1, then note that τ(χ) · τ (χ) = χ(−1) · p = p , from
(5), (6) and (7) we have

G(χ1,χ2, · · · ,χk,m; p)

=
τ(χ1) · τ(χ2) · · ·τ(χk)

τ (χ1χ2 · · ·χk)
·
(

p−1

∑
b=1

χ1(b)χ2(b) · · ·χk(b)e
(

mb2

p

))
. (11)

Combining (9), (10) and (11) we may immediately deduce Lemma 1. �

LEMMA 2. Let p be an odd prime, m be any integer with (m, p) = 1 . Then for
any Dirichlet character χ mod p, we have the estimate∣∣∣∣∣

p−1

∑
a=1

χ(a)e
(

ma2

p

)∣∣∣∣∣� 2
√

p.

Proof. It is clear that if χ(−1) = −1, then we have

p−1

∑
a=1

χ(a)e
(

ma2

p

)
= 0. (12)

If χ(−1) = 1, then there exists a character λ mod p such that λ 2 = χ . In this case,
let χ2 denote the Legendre’s symbol mod p . Then from the properties of the classical
Gauss sums we have∣∣∣∣∣

p−1

∑
a=1

χ(a)e
(

ma2

p

)∣∣∣∣∣=
∣∣∣∣∣
p−1

∑
a=1

λ 2(a)e
(

ma2

p

)∣∣∣∣∣=
∣∣∣∣∣
p−1

∑
a=1

λ (a)(1+ χ2(a))e

(
ma
p

)∣∣∣∣∣
=

∣∣∣∣∣
p−1

∑
a=1

λ (a)e
(

ma
p

)
+

p−1

∑
a=1

λ (a)χ2(a)e
(

ma
p

)∣∣∣∣∣
= |τ(λ )+ χ2(m)τ(λ χ2)| � |τ(λ )|+ |χ2(m)τ(λ χ2)| � 2

√
p. (13)

From (12) and (13) we can deduce Lemma 2. �
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3. Proofs of the theorems

In this section, we shall complete the proofs of our theorems. First we prove
Theorem 1. Note that the estimate for classical Gauss sums is |τ(χ)| � √

p , and∣∣∣∣∣
p−1

∑
a=0

e

(
ma2

p

)∣∣∣∣∣=
∣∣∣∣∣
p−1

∑
a=1

(
a
p

)
e

(
ma
p

)∣∣∣∣∣= √
p,

from Lemma 1 and Lemma 2 we know that if χ1χ2 · · ·χk = χ0 , then we have∣∣∣∣∣
p−1

∑
a1=1

p−1

∑
a2=1

· · ·
p−1

∑
ak=1

χ1(a1)χ2(a2) · · ·χk(ak)e

(
m(a1 +a2 + · · ·+ak)

2

p

)∣∣∣∣∣
=

∣∣∣∣∣
(

1− 1
p

p−1

∑
b=0

e

(
mb2

p

))
· τ (χ1) · τ (χ2) · · ·τ (χk−1) · τ (χ1χ2 · · ·χk−1)

∣∣∣∣∣
�
(

1+
√

p

p

)
· p k

2 � 2p
k
2 . (14)

If χ1χ2 · · ·χk �= χ0 , then from Lemma 1 and Lemma 2 we have the estimate∣∣∣∣∣
p−1

∑
a1=1

p−1

∑
a2=1

· · ·
p−1

∑
ak=1

χ1(a1)χ2(a2) · · ·χk(ak)e

(
m(a1 +a2 + · · ·+ak)

2

p

)∣∣∣∣∣
=

∣∣∣∣∣τ(χ1) · τ(χ2) · · ·τ(χk)
τ (χ1χ2 · · ·χk)

·
(

p−1

∑
b=1

χ1(b)χ2(b) · · ·χk(b)e
(

mb2

p

))∣∣∣∣∣
� p

k−1
2 ·2√p = 2p

k
2 . (15)

It is clear that Theorem 1 follows from the estimations (14) and (15).

Now we prove Theorem 2. If p ≡ 3(mod 4) , let
(

∗
p

)
= λ denote the Legendre’s

symbol mod p , then τ(λ ) = i ·√p (where i2 =−1). So if χ1χ2 · · ·χk = χ0 , then from
Lemma 1 and its proving method we have∣∣∣∣∣

p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ0(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
4

=
(p+1)2

p2 · p2k = (p+1)2 · p2(k−1). (16)

In this time, from (2), (16), Lemma 1 and Lemma 2 we have

∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
4

= ∑
χ mod p

χ �=χ0

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
4



1338 J. ZHANG AND X. LV

+

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ0(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
4

= p2k · ∑
χ mod p

χ �=χ0

∣∣∣∣∣
p−1

∑
a=1

χ(a)χ1(a) · · ·χk(a)e
(

ma2

p

)∣∣∣∣∣
4

+(p+1)2 · p2(k−1)

= p2k · ∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

χ(a)χ1(a) · · ·χk(a)e
(

ma2

p

)∣∣∣∣∣
4

+(p+1)2 · p2(k−1)− p2k

∣∣∣∣∣
p−1

∑
a=1

e

(
ma2

p

)∣∣∣∣∣
4

= p2k · ∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

χ(a)e
(

ma2

p

)∣∣∣∣∣
4

+(p+1)2 · p2(k−1)− p2k(p+1)2

= (p−1) · p2k · (3p2−6p−1
)− (p+1)3 · p2k−2 · (p−1)

= (p−1) · p2k−2 · (3p4−7p3−4p2−3p−1
)
. (17)

Similarly, from (3) and the method of proving (17) we can also deduce the identity

∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
6

= p3k · ∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

χ(a)χ1(a) · · ·χk(a)e
(

ma2

p

)∣∣∣∣∣
6

+(p+1)3 · p3(k−1)− p3k

∣∣∣∣∣
p−1

∑
a=1

e

(
ma2

p

)∣∣∣∣∣
6

= p3k · ∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

χ(a)e
(

ma2

p

)∣∣∣∣∣
6

+(p+1)3 · p3(k−1)− p3k(p+1)3

= (p−1) · p3k · (10p3−25p2−4p−1
)− (p+1)3 · p3k−3 · (p3−1)

= (p−1) · p3k−3 ·
(
10p6−26p5−8p4−8p3−7p2−4p−1

)
. (18)

If χ1χ2 · · ·χk = ψ �= χ0 , then from Lemma 1, Lemma 2 and the method of proving
(17) we have

∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
4

= ∑
χ mod p

χ �=χ0

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
4
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+

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ0(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
4

= p2k · ∑
χ mod p

χ �=χ0

∣∣∣∣∣
p−1

∑
a=1

χ(a)χ1(a) · · ·χk(a)e
(

ma2

p

)∣∣∣∣∣
4

+p2(k−1)

∣∣∣∣∣
p−1

∑
a=1

χ1(a) · · ·χk(a)e
(

ma2

p

)∣∣∣∣∣
4

= p2k · ∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

χ(a)χ1(a) · · ·χk(a)e
(

ma2

p

)∣∣∣∣∣
4

−
(

p2k − p2k−2
)∣∣∣∣∣

p−1

∑
a=1

χ1(a) · · ·χk(a)e
(

ma2

p

)∣∣∣∣∣
4

= p2k · ∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

χ(a)e
(

ma2

p

)∣∣∣∣∣
4

−
(
p2k − p2k−2

)∣∣∣∣∣
p−1

∑
a=1

ψ(a)e
(

ma2

p

)∣∣∣∣∣
4

= (p−1) · p2k · (3p2−6p−1
)−(p2k − p2k−2

)∣∣∣∣∣
p−1

∑
a=1

ψ(a)e
(

ma2

p

)∣∣∣∣∣
4

. (19)

Similarly, we also have the identity

∑
χ mod p

∣∣∣∣∣
p−1

∑
a=1

p−1

∑
a1=1

· · ·
p−1

∑
ak=1

χ(a)χ1(a1) · · ·χk(ak) e

(
m(a+a1 + · · ·+ak)

2

p

)∣∣∣∣∣
6

= (p−1) · p3k · (10p3−25p2−4p−1
)−(p3k − p3k−3

)∣∣∣∣∣
p−1

∑
a=1

ψ(a)e
(

ma2

p

)∣∣∣∣∣
6

, (20)

where ψ = χ1χ2 · · ·χk .
Now Theorem 2 follows from (17), (18), (19) and (20).

4. Conclusion

The main results of this paper are Theorem 1 and Theorem 2. Theorem 1 obtained
a sharper upper bound estimate for (4) with q = p , an odd prime. Theorem 2 proved
several identities for the fourth power mean and the sixth power mean of (4) with q = p .
Especially Corollary 1, the result is very simple and beautiful. These works have a
good reference for further research on generalized multivariate quadratic Gauss sums.
In addition, these theorems also profoundly reveal the law of the value distribution of
this kind new Gauss sums.

For the general integer q > 1 (or q = p and k � 4), whether there exits a mean
value formula or asymptotic formula for (4) is an open problem. These will contribute
to the further study of these contents.
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