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GENERALIZATION AND REFINEMENTS OF THE

JENSEN–MERCER INEQUALITY WITH APPLICATIONS

ASIF R. KHAN, INAM ULLAH KHAN AND SHAHID SULTAN ALI RAMJI

(Communicated by M. Niezgoda)

Abstract. We give a generalization followed by refinements of Jensen-Mercer inequality in va-
riety of ways. We also highlight its importance by stating plenty of applications. In this way
our main results generalize many established results including Ky Fan’s Inequality, Popoviciu’s
inequalities and Rado’s inequalities etc.

1. Introduction and preliminaries

The core of mathematics is to generalize the concepts and results. Therefore, we
would like to further generalize a variant of the Jensen’s inequality which was first in-
troduced by Mercer and then it was generalized by Niezgoda. The Jensen inequality for
convex functions is one of the most celebrated inequalities in mathematics and statis-
tics. It plays a paramount role in various branches of sciences. Many other renowned in-
equalities can be obtained from it. E. g. , the important Arithmetic-Geometric inequal-
ity or some general inequalities between means of order p and q , such as Minkowski’s
inequality and Hölder’s inequality, are all consequences of Jensen’s inequality for con-
vex functions. There are given numerous variants, generalizations and refinements of
Jensen’s inequalities for reference see [2, 3, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 28, 35, 36,
37, 38]. We also refer [5] and [31] for detailed discussion on Jensen’s inequality and
for some remarks on literature and history of the topic.

Throughout the article we assume that J is an interval in R and for real weights
w1, . . . ,wn we define the notation

Wi =
i

∑
j=1

wj, i ∈ {1, . . . ,n} and clearly Wn =
n

∑
j=1

wj.

Here we state some results from [31] (see also [24, 25, 34]). Let us start with Jensen’s
inequality.
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PROPOSITION 1. Let x be a n-tuple such that xi ∈ J , i ∈ {1, . . . ,n} and let w be
a nonnegative n-tuple with Wn > 0 . If f is convex function on J , then the following
inequality is valid

f

(
1

Wn

n

∑
i=1

wixi

)
� 1

Wn

n

∑
i=1

wi f (xi). (1)

Steffensen in 1919 [31, p. 57] presented a more general form of Jensen’s inequality
which we usually refer to as Jensen-Steffensen’s inequality, which may be stated as:

PROPOSITION 2. Let x be a real monotonic n-tuple such that xi ∈ J , i∈{1, . . . ,n}
and let w be a real n-tuple such that

0 � Wi � Wn, Wn > 0 for i ∈ {1, . . . ,n}. (2)

If f is convex function on J , then (1) is valid.

The following inequality is usually known in literature as reverse-Jensen’s inequal-
ity [31, p. 83].

PROPOSITION 3. Let x be a n-tuple such that xi ∈ J , i ∈ {1, . . . ,n} and let w
be a real n-tuple with 1

Wn
∑n

i=1 wixi ∈ J , where w1 > 0 , wi � 0 for i ∈ {2, . . . ,n} and
Wn > 0 . If f is convex function on J , then reverse inequality in (1) is valid.

In article [23], A. Mercer proved the following variant of Jensen’s inequality,
which we wouldrefer to as the Jensen-Mercer’s inequality (see also [22]).

PROPOSITION 4. Let the assumptions of Proposition 1 be valid. Then following
inequality is valid

f

(
L+M− 1

Wn

n

∑
i=1

wixi

)
� f (L)+ f (M)− 1

Wn

n

∑
i=1

wi f (xi), (3)

where
L = min

xi∈J
{xi} and M = max

xi∈J
{xi}.

In [1] we can find the following variant of Jensen-Mercer’s inequality.

PROPOSITION 5. Let x be a monotonic nondecreasing n-tuple such that xi ∈ J ,
i ∈ {1, . . . ,n} and let w be a real n-tuple such that conditions on weights given in (2)
be valid. If f is convex function on J , then inequality (3) is valid.

In [22] the following result has been proved:

PROPOSITION 6. Under the assumptions of Proposition 3 the inequality (3) is
valid.

Now, let us state definition of majorization from [21] as follows. Let x = (x1, . . . ,xm)
and y = (y1, . . . ,ym) denote two m-tuples and x[1] � · · · � x[m], y[1] � · · · � y[m] be
their ordered components.
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DEFINITION 1. For x, y ∈ R
m ,

x ≺ y if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k

∑
i=1

x[i] �
k

∑
i=1

y[i] , k ∈ {1, . . . ,m−1},
m

∑
i=1

x[i] =
m

∑
i=1

y[i] ,

when x ≺ y , x is said to be majorized by y or y majorizes x .

This notion and notation of majorization was first introduced by Hardy et al. in
[10]. We can find the well-known majorization theorem in the same book [10].

Now we are ready to state the following extension of (3) that was given by M.
Niezgoda in [27] which we would refer to as Niezgoda’s inequality (see [19, 20, 29, 30]
for recent extensions of (3)).

PROPOSITION 7. Suppose that a be an m-tuple such that ai ∈ J and X = (x j) =
(xi j) is a n×m matrix such that xi j ∈ J ∀i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m} . Let f be
continuous convex function on J.

If a majorizes each row of X , that is,

xi. = (xi1, . . . ,xim) ≺ (a1, . . . ,am) = a for each i ∈ {1, . . . ,n},
then we have the inequality

f

(
m

∑
j=1

a j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
�

m

∑
j=1

f (a j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j), (4)

where ∑n
i=1 wi = 1 with wi � 0 .

The main theme of this work is to generalize the Jensen-Mercer inequality. Vari-
ous refinements of generalized result is also discussed. The article is organized in the
following manner. The first section is devoted to preliminaries and introduction. In
second section we generalize the Jensen-Mercer inequality by considering real weights
satisfying the assumptions of the Jensen-steffensen’s inequality as stated in (2). In third
section we use index set functions to give various refinements of result proved in the
second section. The forth section is completely based on applications of our generalized
results and some of its refinements.

Our article generalizes various results stated in [1, 13, 18, 22, 23, 25, 26, 27, 31,
32, 33].

2. Generalization of Jensen-Mercer inequality

THEOREM 1. Suppose that a be an m-tuple such that a j ∈ J for j ∈ {1, . . . ,m}
and X = (x j) = (xi j) is a n×m matrix such that xi j ∈ J ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}
and each sequence xi1,xi2, . . . ,xim is nondecreasing. Let w be a n-tuple such that
conditions on weights given in (2) are valid. Let f be continuous convex function on
J. If

m

∑
j=1

xi j =
m

∑
j=1

a j ∀i ∈ {1, . . . ,n} (5)
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and
1

Wn

n

∑
i=1

wi f (xi j) � f (a j) ∀ j ∈ {1, . . . ,m}, (6)

then we have the inequality

f

(
m

∑
j=1

a j − 1
Wn

k−1

∑
j=1

n

∑
i=1

wixi j − 1
Wn

m

∑
j=k+1

n

∑
i=1

wixi j

)

�
m

∑
j=1

f (a j)− 1
Wn

k−1

∑
j=1

n

∑
i=1

wi f (xi j)− 1
Wn

m

∑
j=k+1

n

∑
i=1

wi f (xi j), (7)

where k ∈ {1, . . . ,m} .

Proof. Fix k ∈ {1, . . . ,m} , using first Jensen-Steffensen’s inequality and then us-
ing (6) we get,

f

(
m

∑
j=1

a j − 1
Wn

k−1

∑
j=1

n

∑
i=1

wixi j − 1
Wn

m

∑
j=k+1

n

∑
i=1

wixi j

)

= f

(
1

Wn

n

∑
i=1

wi

(
m

∑
j=1

a j −
k−1

∑
j=1

xi j −
m

∑
j=k+1

xi j

))

� 1
Wn

n

∑
i=1

wi f

(
m

∑
j=1

a j −
k−1

∑
j=1

xi j −
m

∑
j=k+1

xi j

)

=
1

Wn

n

∑
i=1

wi f (xik)

� 1
Wn

n

∑
i=1

wi

(
m

∑
j=1

f (a j)−
k−1

∑
j=1

f (xi j)−
m

∑
j=k+1

f (xi j)

)

=
m

∑
j=1

f (a j)− 1
Wn

k−1

∑
j=1

n

∑
i=1

wi f (xi j)− 1
Wn

m

∑
j=k+1

n

∑
i=1

wi f (xi j). �

Here we give a couple of remarks related to our first main result.

REMARK 1. (a) It worth mentioning that Theorem 1 is stated for real weights
wi ’s satisfying conditions of Jensen-Steffensen (2) and we relaxed the condition
of majorization (as given in the statement of Proposition 7) at the expense of
conditions (5) and (6).

(b) Our main inequality (7) has close connection with the inequality (3) of [18] (see
Theorem 4 there) which was proved for positive weights and we assumed weights
to be real and not necessarily all positive.

(b) If Wn = 1 and k = m in the inequality (7), then the sum ∑m
j=k+1 becomes zero;

in this case the inequality coincides with the inequality (4) for real weights. Here
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we do not claim that this is true generalization of Neizgoda’s inequality (4) but it
captures the inequality with slightly different assumptions involving real weights
instead of nonnegative weights.

(c) If in the inequality (7) we set k = m = 2, a1 = L , a2 = M and xi1 = xi for
i ∈ {1, . . . ,n} , then this inequality reduces to the inequality (3) for real weights
as stated in Proposition 5 and hence the part of results of Theorem 2 of [1] is a
special case of Theorem 1. Further by imposing different conditions on weights
we easily obtain Propositions 4 and 6.

(d) For further remarks see [18].

3. Index set functions and refinements of generalized Niezgoda’s inequality

In start of this section we give some construction which we would use throughout
this section: Let I be a finite nonempty set of positive integers. Let w = (wi), i ∈ I be
a real sequence and let (x j) = (xi j) be a sequence of vectors such that xi j ∈ J ∀i ∈ I ,
j ∈ {1, . . . ,m} . Moreover we define AI(x j,w) = 1

WI
∑i∈I wixi j where WI = ∑i∈I wi . For

the generalized Jensen-Mercer inequality (7), we define the index set function F as

F(I) = WI

[
m

∑
j=1

f (a j)− 1
WI

k−1

∑
j=1

∑
i∈I

wi f (xi j)− 1
WI

m

∑
j=k+1

∑
i∈I

wi f (xi j)

− f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)]
(8)

where a is an m-tuple such that a j ∈ J for j ∈ {1, . . . ,m} and k ∈ {1, . . . ,m} .
Now, by using techniques of article [22] we proof some results here. Throughout

this section In = {1, . . . ,n} .

THEOREM 2. Let a be an m-tuple such that a j ∈ J for j ∈ {1, . . . ,m} , I and I′
be nonempty sets such that I

⋃
I′ = In and I ∩ I′ = /0 . Let (x j) = (xi j) be a sequence

of vectors such that xi j ∈ J ∀i ∈ I , j ∈ {1, . . . ,m} and w = (wi), i ∈ I∪ I′ such that
WI∪I′ > 0 . Let AS(x j,w) ∈ J (S ∈ {I, I′, I∪ I′}) . If WI > 0 and WI′ > 0 , then under the
assumptions of Theorem 1

F(I∪ I′) � F(I)+F(I′). (9)
If WI ·WI′ < 0 , then the inequality (9) is reversed.

Proof. Fix k ∈ {1 . . .m} . Since f is continuous convex and composition with an
affine function, we get convex function g which we may define as:

g(tα) = f
( m

∑
j=1

a j −
k−1

∑
j=1

t(α)
j −

m

∑
j=k+1

t(α)
j

)
where tα = (t(α)

1 , . . . ,t(α)
m )∈ Jm . Using the definition of convex function, for all t1, t2 ∈

Jm and λ1,λ2 > 0, we have

g

(
λ1t1 + λ2t2

λ1 + λ2

)
� λ1g(t1)+ λ2g(t2)

λ1 + λ2
, (10)
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which gives

(λ1 + λ2) f

⎛
⎝ m

∑
j=1

a j −
k−1

∑
j=1

λ1t
(1)
j + λ2t

(2)
j

λ1 + λ2
−

m

∑
j=k+1

λ1t
(1)
j + λ2t

(2)
j

λ1 + λ2

⎞
⎠

� λ1 f
( m

∑
j=1

a j −
k−1

∑
j=1

t(1)
j −

m

∑
j=k+1

t(1)
j

)
+ λ2 f

( m

∑
j=1

a j −
k−1

∑
j=1

t(2)
j −

m

∑
j=k+1

t(2)
j

)
. (11)

Now, by putting λ1 = WI , λ2 = WI′ , t(1)
j = AI(x j,w) and t(2)

j = AI′(x j,w) we have

WI∪I′ f

(
m

∑
j=1

a j−
k−1

∑
j=1

WIAI(x j,w)+WI′AI′(x j,w)
WI∪I′

−
m

∑
j=k+1

WIAI(x j,w)+WI′AI′(x j,w)
WI∪I′

)

� WI f

(
m

∑
j=1

a j −
k−1

∑
j=1

AI(x j,w)−
m

∑
j=k+1

AI(x j,w)

)

+WI′ f

(
m

∑
j=1

a j −
k−1

∑
j=1

AI′(x j,w)−
m

∑
j=k+1

AI′(x j,w)

)
.

Now,

WI∪I′ f

(
m

∑
j=1

a j −
k−1

∑
j=1

AI∪I′(x j,w)−
m

∑
j=k+1

AI∪I′(x j,w)

)

� WI f
( m

∑
j=1

a j −
k−1

∑
j=1

AI(x j,w)−
m

∑
j=k+1

AI(x j,w)
)

+WI′ f
( m

∑
j=1

a j −
k−1

∑
j=1

AI′(x j,w)−
m

∑
j=k+1

AI′(x j,w)
)
.

Multiplying both sides of the last inequality by (−1) , putting values of AS and adding
the following term on the both sides

WI∪I′

[
m

∑
j=1

f (a j)− 1
WI∪I′

k−1

∑
j=1

∑
i∈I∪I′

wi f (xi j)− 1
WI∪I′

m

∑
j=k+1

∑
i∈I∪I′

wi f (xi j)

]

we get

WI∪I′

[
m

∑
j=1

f (a j)− 1
WI∪I′

k−1

∑
j=1

∑
i∈I∪I′

wi f (xi j)− 1
WI∪I′

m

∑
j=k+1

∑
i∈I∪I′

wi f (xi j)

− f

(
m

∑
j=1

a j − 1
WI∪I′

k−1

∑
j=1

∑
i∈I∪I′

wixi j − 1
WI∪I′

m

∑
j=k+1

∑
i∈I∪I′

wixi j

)]

� WI

[
m

∑
j=1

f (a j)− 1
WI

k−1

∑
j=1

∑
i∈I

wi f (xi j)− 1
WI

m

∑
j=k+1

∑
i∈I

wi f (xi j)

− f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)]
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+WI′

[
m

∑
j=1

f (a j)− 1
WI′

k−1

∑
j=1

∑
i∈J

wi f (xi j)− 1
WI′

m

∑
j=k+1

∑
i∈J

wi f (xi j)

− f

(
m

∑
j=1

a j − 1
WI′

k−1

∑
j=1

∑
i∈J

wixi j − 1
WI′

m

∑
j=k+1

∑
i∈J

wixi j

)]
.

In index set function notation we finally get

F(I∪ I′) � F(I)+F(I′).
In case when WI .WI′ < 0, for instance WI > 0 and WI′ < 0, we again let λ1 =WI, λ2 =
WI′ , t(1)

j = AI(x j,w) and t(2)
j = AI′(x j,w) and reversed inequality in (9) follows by

using reverse Jensen’s inequality for two variable case. �

COROLLARY 1. Let a be an m-tuple such that a j ∈ J for j ∈ {1, . . . ,m} . Let
It , t ∈ {1, . . . , l} be finite nonempty sets of positive integers such that Is∩ It = /0 for all
s �= t ∈ {1, . . . , l} . We further suppose that (x j) = (xi j) be a real sequence of vectors
such that xi j ∈ J ∀ i ∈ ⋃l

t=1 It , j ∈ {1, . . . ,m} and let w = (wi), i ∈⋃l
t=1 It such that

Wi∈⋃l
t=1 It

> 0 and AS(x j,w) ∈ J (S ∈ {I1, . . . , It ,⋃r
t=1 It}) (r ∈ {2, . . . , l}) . Then under

the assumptions of Theorem 1 we have

(a) If WIt > 0 for t ∈ {1, . . . , l} ,

F

(
l⋃

t=1

It

)
�

l

∑
t=1

F(It). (12)

(b) If WI1 > 0 and WIt < 0 for t ∈ {2, . . . , l}, then the inequality (12) is reversed.

Proof. Proof follows from Theorem 2 by using induction. �
Following results give us refinements of Niezgoda’s Inequality. For the rest of this

section we assume xi j ∈ [a,b] ⊆ J ∀i and j .

COROLLARY 2. Let a be an m-tuple such that a j ∈ J for j ∈ {1, . . . ,m} . Let
Ik = {1, . . . ,k}, k ∈ {1, . . . ,n} . We further suppose that (x j) = (xi j) be a real sequence
of vectors such that xi j ∈ J ∀ i ∈ In, j ∈ {1, . . . ,m} and if w1 > 0 and wi � 0 for
i ∈ {2, . . . ,n} , then under the assumptions of Theorem 1 we have

F(In) � F(In−1) � · · · � F(I2) � F(I1) � 0. (13)

If wi � 0 for i ∈ {2, . . . ,n} , WIn > 0 and AIn(x j,w) ∈ [a,b] ⊆ J , then

0 � F(In) � F(In−1) � · · · � F(I2) � F(I1). (14)

Proof. Fix k ∈ {1, . . . ,m} . Suppose that wi � 0 for i ∈ {2, . . . ,n} . From general-
ized Niezgoda’s inequality (7) it follows that

F({t}) = wt

[
m

∑
j=1

f (a j)−
k−1

∑
j=1

f (xt j)−
m

∑
j=k+1

f (xt j)− f

(
m

∑
j=1

a j −
k−1

∑
j=1

xt j −
m

∑
j=k+1

xt j

)]

� 0
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for t ∈ In . Now, by Theorem 2 we have

F(It) = F(It−1 ∪{t}) � F(It−1)+F({t}) � F(It−1)

for all t ∈ {2, . . . ,n} .
For second part, we suppose that wi � 0 for i ∈ {2, . . . ,n} with WIn > 0 and

AIn(x j,w) ∈ [a,b] . Now we show that AIn−1(x j,w) ∈ [a,b] as follows.
Given that

a � AIn(x j,w) � b

multiplying both sides by WIn > 0 and adding −wnxn j we obtain

WIna−wnxn j � ∑
i∈In

wixi j −wnxn j � WInb−wnxn j

or we may write

WIna−wnxn j � ∑
i∈In−1

wixi j � WInb−wnxn j

Now multiplying both sides by 1
WIn−1

> 0 we get

1
WIn−1

(WIna−wnxn j) � AIn−1(x j,w) � 1
WIn−1

(WInb−wnxn j),

or we may write

a+
wn

WIn−1

(a− xn j) � AIn−1(x j,w) � b+
wn

WIn−1

(b− xn j),

clearly
wn

WIn−1

(a− xn j) � 0 and
wn

WIn−1

(b− xn j) � 0,

and hence we conclude that
a � AIn−1(x j,w) � b.

By iteration we obtain AIt (x j,w) ∈ [a,b] for all t ∈ {2, . . . ,n} . Similarly as before we
have F({t}) � 0 for all t ∈ {2, . . . ,n} . Now, by reversed (9) we have

F(It) = F(It−1 ∪{t}) � F(It−1)+F({t}) � F(It−1)

for all t ∈ {2, . . . ,n} and finally by Theorem 1 F(In) � 0. �

COROLLARY 3. Let all the assumptions of Corollary 2 be valid. If wi > 0 for
i ∈ {1, . . . ,n} , then

F(In) � max
1�s�t�n

[
(ws +wt)

[
m

∑
j=1

f (a j)−
k−1

∑
j=1

ws f (xs j)+wt f (xt j)
ws +wt

−
m

∑
j=k+1

ws f (xs j)+wt f (xt j)
ws +wt

− f

(
m

∑
j=1

a j −
k−1

∑
j=1

wsxs j +wtxt j

ws +wt
−

m

∑
j=k+1

wsxs j +wtxt j

ws +wt

)]]
(15)
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and

F(In) � max
1�t�n

[
wt

[
m

∑
j=1

f (a j)−
k−1

∑
j=1

f (xt j)−
m

∑
j=k+1

f (xt j)

− f

(
m

∑
j=1

a j −
k−1

∑
j=1

xt j −
m

∑
j=k+1

xt j

)]]
. (16)

If wi � 0 for i ∈ {2, . . . ,n} with WIn > 0 and AIn(x j,w) ∈ [a,b] , then

F(In) � min
2�t�n

[
(w1 +wt)

[
m

∑
j=1

f (a j)−
k−1

∑
j=1

w1 f (x1 j)+WTF(XTJ)
W1 +WT

−
m

∑
j=k+1

w1 f (x1 j)+wt f (xt j)
w1 +wt

− f

(
m

∑
j=1

a j −
k−1

∑
j=1

w1x1 j +wtxt j

w1 +wt
−

m

∑
j=k+1

w1x1 j +wtxt j

w1 +wt

)]]
. (17)

Proof. Suppose that wi > 0 for i∈ In . As F(In) � F(I2) in (13), we may conclude
that

F(In) � F({s,t}) (18)

for all s �= t ∈ In , so the inequality (15) immediately follows. From (18) we have that
F(In) � F({t}) for all t ∈ In , so the inequality (16) is also proved. Inequality (17) can
be proved in the similar way. �

REMARK 2. If in Theorem 2 we set k = m = 2, a1 = L , a2 = M and xi1 = xi for
i ∈ {1, . . . ,n} and in its corollaries, then we obtain Theorem 2.1 and Corollaries 2.4,
2.5 and 2.6 of [22] as special case of our results.

Throughout this section we assume that I ⊆ In unless stated otherwise. Now we
give refinement of (7) as follows.

THEOREM 3. Let all the assumptions of Theorem 1 be valid. Then the following
refinement hold:

f

(
m

∑
j=1

a j − 1
Wn

k−1

∑
j=1

n

∑
i=1

wixi j − 1
Wn

m

∑
j=k+1

n

∑
i=1

wixi j

)

� D(w,X, f ; I) �
m

∑
j=1

f (a j)− 1
Wn

k−1

∑
j=1

n

∑
i=1

wi f (xi j)− 1
Wn

m

∑
j=k+1

n

∑
i=1

wi f (xi j), (19)

where WI = ∑
i∈I

wi, WI = ∑
i∈I

wi , I = In\I and k ∈ {1, . . . ,m}, and

D(w,X, f ; I) =
WI

Wn
f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)

+
WI

Wn
f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)
.
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Proof. Fixing k ∈ {1, . . . ,m} , and supposing that w∗
i = wi

Wn
where ∑n

i=1 w∗
i = 1.

Also W ∗
I = ∑

i∈I

w∗
i By convexity of function f we have

f

(
m

∑
j=1

a j − 1
Wn

k−1

∑
j=1

n

∑
i=1

wixi j − 1
Wn

m

∑
j=k+1

n

∑
i=1

wixi j

)

= f

(
m

∑
j=1

a j −
k−1

∑
j=1

n

∑
i=1

w∗
i xi j −

m

∑
j=k+1

n

∑
i=1

w∗
i xi j

)

= f

(
n

∑
i=1

w∗
i

(
m

∑
j=1

a j −
k−1

∑
j=1

xi j −
m

∑
j=k+1

xi j

))

= f

(
W ∗

I

(
1

W ∗
I

∑
i∈I

w∗
i

(
m

∑
j=1

a j −
k−1

∑
j=1

xi j −
m

∑
j=k+1

xi j

))

+ W ∗
I

(
1

W ∗
I

∑
i∈I

w∗
i

(
m

∑
j=1

a j −
k−1

∑
j=1

xi j −
m

∑
j=k+1

xi j

)))

� W ∗
I f

(
m

∑
j=1

a j − 1
W ∗

I

k−1

∑
j=1

∑
i∈I

w∗
i xi j − 1

W ∗
I

m

∑
j=k+1

∑
i∈I

w∗
i xi j

)

+W ∗
I f

(
m

∑
j=1

a j − 1
W ∗

I

k−1

∑
j=1

∑
i∈I

w∗
i xi j − 1

W ∗
I

m

∑
j=k+1

∑
i∈I

w∗
i xi j

)

� WI

Wn
f

(
m

∑
j=1

a j − 1
WI
Wn

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI
Wn

m

∑
j=k+1

∑
i∈I

wixi j

)

+
WI

Wn
f

(
m

∑
j=1

a j − 1
WI
Wn

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI
Wn

m

∑
j=k+1

∑
i∈I

wixi j

)

=
WI

Wn
f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)

+
WI

Wn
f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)
= D(w,X, f ; I)

for any I , which proves the first inequality in (19).
By the inequality (7) we also have

D(w,X, f ; I) =
WI

Wn
f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)

+
WI

Wn
f

(
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

)

� WI

Wn

(
1

Wn

m

∑
j=1

f (a j)− 1
Wn

1
WI

k−1

∑
j=1

n

∑
i=1

wi f (xi j)− 1
Wn

1
WI

m

∑
j=k+1

n

∑
i=1

wi f (xi j)

)
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+
WI

Wn

(
m

∑
j=1

f (a j)− 1
WI

k−1

∑
j=1

n

∑
i=1

wi f (xi j)− 1
WI

m

∑
j=k+1

n

∑
i=1

wi f (xi j)

)

=
m

∑
j=1

f (a j)− 1
Wn

k−1

∑
j=1

n

∑
i=1

wi f (xi j)− 1
Wn

m

∑
j=k+1

n

∑
i=1

wi f (xi j)

for any I , which proves the second inequality in (19). �

REMARK 3.

f

(
m

∑
j=1

a j − 1
Wn

k−1

∑
j=1

n

∑
i=1

wixi j − 1
Wn

m

∑
j=k+1

n

∑
i=1

wixi j

)
� min

I
D(w,X, f ; I)

max
I

D(w,X, f ; I) �
m

∑
j=1

f (a j)− 1
Wn

k−1

∑
j=1

n

∑
i=1

wi f (xi j)− 1
Wn

m

∑
j=k+1

n

∑
i=1

wi f (xi j).

REMARK 4. Similar remarks as given in Remark 1 hold for Theorem 3 as well.
Also some special cases of Theorem 3 can be found in [13].

For our next corollary we need the following definition.

DEFINITION 2. [21, p. 10] An m×m matrix A = (a jk) is said to be doubly
stochastic, if a jk � 0 and ∑m

j=1 a jk = ∑m
k=1 a jk = 1 for all j, k ∈ {1, . . . ,m} .

It is well known [21, p. 31] that if A is an m×m doubly stochastic matrix, then

aA ≺ a for each real m-tuple a = (a1, . . . ,am). (20)

By applying Theorem 3 and (20), one obtains:

COROLLARY 4. Let f be continuous convex function on J . Suppose that a =
(a1, . . . ,am) ∈ Jm for j ∈ {1, . . . ,m} and A1, . . . ,An are m×m doubly stochastic ma-
trices. Set

X = (xi j) =

⎛
⎜⎝

aA1
...

aAn

⎞
⎟⎠ .

Then the inequality (19) is valid.

REMARK 5. Special cases of Corollary 4 can be found in [6] and [14].

REMARK 6. Analagous assertion can be formulated for concave functions using
the fact that f is concave iff − f is convex.
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4. Applications

H : Let all the assumptions of Theorem 1 be valid. Further we let, for /0 �= I ⊆ In =
{1, . . . ,n} , xi j ∈ [a,b]⊆ J for j ∈ {1, . . . ,m} and i ∈ I , where 0 < a < b , formed with
weights wi , i ∈ I satisfies conditions stated in (2) we define the arithmetic, geometric,

harmonic means and power mean of order r ∈ R as AI,GI ,HI and M[r]
I respectively.

While For I = In we denote the arithmetic, geometric, harmonic and power means by

An,Gn,Hn and M[r]
n respectively. For the various properties of these means and relations

among them we refer the reader to [5] and [15].
E. g. , it is well known that

An � Gn � Hn, (21)(
An

Gn

)Wn

�
(

An−1

Gn−1

)Wn−1

� · · · �
(

A1

G1

)W1

� 1. (22)

Wn(An−Gn) � Wn−1(An−1−Gn−1) � · · · � W1(A1 −G1) � 0. (23)

Also we have renowned Ky Fan Inequality [4, p. 5] given by

An(x)
An(1−x)

� Gn(x)
Gn(1−x)

, 0 < xi j � 1
2
∀ i, j. (24)

If we define

ÃI : =
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

=
m

∑
j=1

a j −
k−1

∑
j=1

AI(x j,w)−
m

∑
j=k+1

AI(x j,w)

G̃I : =

m
∏
j=1

a j

(
k−1
∏
j=1

∏
i∈I

xwi
i j

) 1
WI
(

m
∏

j=k+1
∏
i∈I

xwi
i j

) 1
WI

H̃I : =

(
m

∑
j=1

a j
−1− 1

WI

k−1

∑
j=1

∑
i∈I

wix
−1
i j − 1

WI

m

∑
j=k+1

∑
i∈I

wix
−1
i j

)−1

M̃[r]
I : =

⎧⎪⎪⎨
⎪⎪⎩
(

∑m
j=1 a j

r − 1
WI

∑k−1
j=1 ∑i∈I wixr

i j − 1
WI

∑m
j=k+1 ∑i∈I wixr

i j

) 1
r

r �= 0,

G̃I r = 0,

THEOREM 4. Under the assumptions given in H , the following inequalities hold:

Ãn(x) � G̃n(x) (25)

Ãn(x)
Ãn(1−x)

� G̃n(x)
G̃n(1−x)

provided that 0 < xi j � 1
2

∀i, j . (26)



GENERALIZATION AND REFINEMENTS OF THE JENSEN-MERCER INEQUALITY 1353

Proof. Applying (7) to convex function f (x) = − lnx , we obtain (25).
Applying (7) to convex function f (x) = ln

( 1−x
x

)
for 0 < x � 1

2 , we obtain re-
quired inequality (26). �

THEOREM 5. Under the assumptions given in H , the following inequalities hold:(
Ãn

G̃n

)Wn

�
(

Ãn−1

G̃n−1

)Wn−1

� · · · �
(

Ã1

G̃1

)W1

� 1. (27)

Wn(Ãn− G̃n) � Wn−1(Ãn−1− G̃n−1) � · · · � W1(Ã1 − G̃1) � 0. (28)

Proof. Applying (13) to convex function f (x) = − lnx , we obtain

ln

(
Ãn

G̃n

)Wn

� ln

(
Ãn−1

G̃n−1

)Wn−1

� · · · � ln

(
Ã1

G̃1

)W1

� 0. (29)

from which (27) follows. Applying (13) to convex function f (x) = expx and replacing
a j and xi j with ln(a j) and ln(xi j) respectively, we obtain

Wn(Ãn− G̃n) � Wn−1(Ãn−1− G̃n−1) � · · · � W1(Ã1 − G̃1) � 0,

since in this case

F(It) = Wt

[
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

−exp

(
m

∑
j=1

ln(a j)− 1
WI

k−1

∑
j=1

∑
i∈I

wi ln(xi j)− 1
WI

m

∑
j=k+1

∑
i∈I

wi ln(xi j)

)]

= Wt(Ãt − G̃t). �

REMARK 7. If in Theorem 5 we simply put wi = 1 ∀i ∈ In , then we get the fol-
lowing results which are of Popoviciu- [32] and Rado- [33] types, respectively, (see
also [26, p. 13] and [34, p. 194]).

COROLLARY 5. Under the assumptions of Theorem 5, we have(
Ãn

G̃n

)n

�
(

Ãn−1

G̃n−1

)n−1

� · · · �
(

Ã1

G̃1

)1

� 1.

n(Ãn− G̃n) � (n−1)(Ãn−1− G̃n−1) � · · · � 1 · (Ã1− G̃1 � 0

COROLLARY 6. Under the assumptions of Theorem 5, we have(
G̃n

H̃n

)Wn

�
(

G̃n−1

H̃n−1

)Wn−1

� · · · �
(

G̃1

H̃1

)W1

� 1.

Wn

(
1

H̃n
− 1

G̃n

)
� Wn−1

(
1

H̃n−1
− 1

G̃n−1

)
� · · · � W1

(
1

H̃1
− 1

G̃1

)
� 0.

Proof. Follows from Theorem 5 by the substitutions a j → 1
a j

and xi j → 1
xi j

. �
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THEOREM 6. For r � 1 and under the assumptions given in H , the following
series of inequalities hold:

Wn(Ãn− M̃[r]
n ) � Wn−1(Ãn−1− M̃[r]

n−1) � · · · � W1(Ã1 − M̃[r]
1 ) � 0 (30)

For r � 1 , inequalities in (30) are reversed.

Proof. For r � 1, use (13) for convex function f (x) = x
1
r and replacing a j and

xi j with ar
j and xr

i j respectively we obtain (30), since in this case

F(It) = Wt

[
m

∑
j=1

a j − 1
WI

k−1

∑
j=1

∑
i∈I

wixi j − 1
WI

m

∑
j=k+1

∑
i∈I

wixi j

−
(

m

∑
j=1

ar
j −

1
WI

k−1

∑
j=1

∑
i∈I

wix
r
i j −

1
WI

m

∑
j=k+1

∑
i∈I

wix
r
i j

)1/r
⎤
⎦= Wt(Ãt − M̃[r]

t ).

If r � 1, then function f (x) = x
1
r is concave, so inequalities in (30) are reversed. �

By simply taking r = −1 we get the following corollary.

COROLLARY 7. Under the assumptions of Theorem 6, we have

Wn(Ãn− H̃n) � Wn−1(Ãn−1− H̃n−1) � · · · � W1(Ã1 − H̃1) � 0.

REMARK 8. It is easy to see that, (28) is also direct consequences of Theorem 6.

THEOREM 7. Under the assumptions given in H , let r,s ∈ R , r � s. If s > 0 ,
then

Wn

((
M̃[s]

n

)s −
(
M̃[r]

n

)s)
� Wn−1

((
M̃[s]

n−1

)s −
(
M̃[r]

n−1

)s)
� · · · � W1

((
M̃[s]

1

)s −
(
M̃[r]

1

)s)
� 0. (31)

If s < 0 , then inequalities in (31) are reversed.

Proof. For s > 0, use (13) for convex function f (x) = x
s
r and replacing a j and

xi j with ar
j and xr

i j respectively we obtain (31), since in this case

F(It) = Wt

[
m

∑
j=1

as
j −

1
WI

k−1

∑
j=1

∑
i∈I

wix
s
i j −

1
WI

m

∑
j=k+1

∑
i∈I

wix
s
i j

−
(

m

∑
j=1

ar
j −

1
WI

k−1

∑
j=1

∑
i∈I

wix
r
i j −

1
WI

m

∑
j=k+1

∑
i∈I

wix
r
i j

)s/r
⎤
⎦

= Wt

((
M̃[s]

t

)s −
(
M̃[r]

t

)s)
.

If s < 0, then function f (x) = x
s
r is concave, so inequalities in (31) are reversed. �
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THEOREM 8. Under the assumptions given in H , the following inequalities hold:

(i) G̃n � Ã
WI
Wn
I Ã

WI
Wn
I

� Ãn (32)

(ii) G̃n � WI

Wn
G̃I +

WI

Wn
G̃I � Ãn (33)

Proof. (i) Applying Theorem 3 to convex function f (x) = − lnx , we obtain

− ln Ãn � −WI

Wn
ln ÃI − WI

Wn
ln ÃI � − ln G̃n.

After some simplifications we obtain our required result.
(ii) Applying Theorem 3 to convex function f (x) = expx and replacing a j and xi j

with lna j and lnxi j respectively we get what we wanted. �

COROLLARY 8. Under the assumptions of Theorem 8, we have

(i) G̃n � min
I

Ã
WI
Wn
I Ã

WI
Wn
I

and Ãn � max
I

Ã
WI
Wn
I Ã

WI
Wn
I

. (34)

(ii) G̃n � min
I

[
WI

Wn
G̃I +

WI

Wn
G̃I

]
and Ãn � max

I

[
WI

Wn
G̃I +

WI

Wn
G̃I

]
. (35)

Proof. Inequalities (34) and (35) follow from (32) and (33) respectively by using
Remark 3. �

Following particular cases of Theorem 8 are of interest which follows from Theo-
rem 8 and Corollary 8 respectively by the substitutions a j → 1

a j
and xi j → 1

xi j
.

COROLLARY 9. Under the assumptions of Theorem 8, we have

(i)
1

G̃n
� 1

H̃
WI
Wn
I H̃I

WI
Wn

� 1

H̃n
.

(ii)
1

G̃n
�
[

WI

WnG̃I
+

WI

WnG̃I

]
� 1

H̃n

COROLLARY 10. Under the assumptions of Theorem 8, we have

(i)
1

G̃n
� min

I

1

H̃
WI
Wn
I H̃I

WI
Wn

and
1

H̃n
� max

I

1

H̃
WI
Wn
I H̃I

WI
Wn

.

(ii)
1

G̃n
� min

I

[
WI

WnG̃I
+

WI

WnG̃I

]
and

1

H̃n
� max

I

[
WI

WnG̃I
+

WI

WnG̃I

]
.

Here we have another important result with some corollaries.

THEOREM 9. Under the assumptions given in H and for r � 1 , we have the fol-
lowing inequalities

M̃[r]
n � WI

Wn
M̃[r]

I +
WI

Wn
M̃[r]

I
� Ãn (36)

For r � 1 , inequalities in (36) are reversed.
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Proof. For r � 1, r �= 0, use Theorem 3 for convex function f (x) = x
1
r and re-

placing a j and xi j with ar
j and xr

i j respectively and for r = 0 use Theorem 3 for convex
function f (x) = expx , replacing a j and xi j with lna j and lnxi j respectively, we obtain
(36).

If r � 1, then function f (x) = x
1
r is concave, so inequalities in (36) are re-

versed. �
By using previous result and Remark 3 we obtain the following result.

COROLLARY 11. Let all the assumptions of Theorem 9 be valid. Then for r � 1 ,
we have following inequalities

M̃[r]
n � min

I

[
WI

Wn
M̃[r]

I +
WI

Wn
M̃[r]

I

]
, Ãn � max

I

[
WI

Wn
M̃[r]

I +
WI

Wn
M̃[r]

I

]
. (37)

For r � 1 , inequalities in (37) are reversed.

Here we have some consequences of last two results.

COROLLARY 12. Under the assumptions of Theorem 9, we have

H̃n � WI

Wn
H̃I +

WI

Wn
H̃I � Ãn.

COROLLARY 13. Under the assumptions of Theorem 9, we have

H̃n � min
I

[
WI

Wn
H̃I +

WI

Wn
H̃I

]
, Ãn � max

I

[
WI

Wn
H̃I +

WI

Wn
H̃I

]
.

REMARK 9. It is easy to see that, (33) is also direct consequence of Theorem 9.

THEOREM 10. Under the assumptions given in H let r,s ∈ R , r � s.
(i) If s � 0, then(

M̃[r]
n

)s
� WI

Wn

(
M̃[r]

I

)s
+

WI

Wn

(
M̃[r]

I

)s
�
(
M̃[s]

n

)s
. (38)

(ii) If s < 0 , then inequalities in (38) are reversed.

Proof. Let s � 0. Using Theorem 3 to convex function f (x) = x
s
r and replacing

a j and xi j with ar
j and xr

i j respectively, we obtain (38).

If s < 0, then function f (x)= x
s
r is concave so inequalities in (38) are reversed. �

Following result follows from previous theorem and Remark 3.

COROLLARY 14. Let all the assumptions of Theorem 10 be valid and let r,s ∈ R ,
r � s.

(i) If s � 0 , then(
M̃[r]

n

)s
� min

I

[
WI

Wn

(
M̃[r]

I

)s
+

WI

Wn

(
M̃[r]

I

)s
]
, (39)

(
M̃[s]

n

)s
� max

I

[
WI

Wn

(
M̃[r]

I

)s
+

WI

Wn

(
M̃[r]

I

)s
]
. (40)

(ii) If s < 0 , then inequalities in (39) and (40) are reversed.
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Let φ be continuous and strictly monotonic function on J . Then for a given n -
tuple x = (x1, . . . ,xn) ∈ Jn and real n -tuple w = (w1, . . . ,wn) with Wn �= 0, the value

M[n]
φ = φ−1

(
1

Wn

n

∑
i=1

wiφ(xi)

)

is well defined and is called quasi−arithmetic mean of x with weight w (see e. g. [5,
p. 215]). If we define, under the assumptions of Theorem 1,

M̃[n]
φ = φ−1

(
m

∑
j=1

φ(a j)− 1
Wn

k−1

∑
j=1

n

∑
i=1

wiφ(xi j)− 1
Wn

m

∑
j=k+1

n

∑
i=1

wiφ(xi j)

)
. (41)

then we have the following results.

THEOREM 11. Let φ and ψ be two continuous and strictly monotonic functions
on J . If ψ ◦φ−1 is convex on J , then under the assumptions given in H , the following
series of inequalities hold:

Wn

(
ψ
(
M̃[n]

ψ

)
−ψ

(
M̃[n]

φ

))
� Wn−1

(
ψ
(
M̃[n−1]

ψ

)
−ψ

(
M̃[n−1]

φ

))
� · · · � W1

(
ψ
(
M̃[1]

ψ

)
−ψ

(
M̃[1]

φ

))
� 0 (42)

If ψ ◦φ−1 is concave on J , then inequalities in (42) are reversed.

Proof. Applying (13) to convex function f = ψ ◦ φ−1 and replacing a j and xi j

with φ(a j) and φ(xi j) respectively we obtain (42), since in this case

F(It) = Wt

[
m

∑
j=1

ψ(a j)− 1
WIt

k−1

∑
j=1

∑
i∈It

wiψ(xi j)− 1
WIt

m

∑
j=k+1

∑
i∈It

wiψ(xi j)

]
.

−(ψ ◦φ−1)

[
m

∑
j=1

φ(a j)− 1
WIt

k−1

∑
j=1

∑
i∈It

wiφ(xi j)− 1
WIt

m

∑
j=k+1

∑
i∈It

wiφ(xi j)

]

= Wt

(
ψ
(
M̃[t]

ψ

)
−ψ

(
M̃[t]

φ

))
. �

REMARK 10. Theorem 5, 6 and 7 follow from Theorem 11, by choosing adequate
functions φ , ψ and appropriate substitutions.

COROLLARY 15. Under the assumptions of Theorem 11, we have

Wn

(
ψ
(
M̃[n]

ψ

)
−ψ

(
M̃[n]

φ

))

� max
1�s�t�n

[
(ws +wt)

[
m

∑
j=1

ψ(a j)−
k−1

∑
j=1

wsψ(xs j)+wtψ(xt j)
ws +wt

−
m

∑
j=k+1

wsψ(xs j)+wtψ(xt j)
ws +wt

−(ψ ◦φ−1)

(
m

∑
j=1

φ(a j)−
k−1

∑
j=1

wsφ(xs j)+wtφ(xt j)
ws +wt

−
m

∑
j=k+1

wsφ(xs j)+wtφ(xt j)
ws +wt

)]]

(43)
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and

Wn

(
ψ
(
M̃[n]

ψ

)
−ψ

(
M̃[n]

φ

))
� max

1�t�n

[
wt

[
m

∑
j=1

ψ(a j)−
k−1

∑
j=1

ψ(xt j)−
m

∑
j=k+1

ψ(xt j)

−(ψ ◦φ−1)

(
m

∑
j=1

φ(a j)−
k−1

∑
j=1

φ(xt j)−
m

∑
j=k+1

φ(xt j)

)]]
(44)

If ψ ◦φ−1 is concave on J , then inequalities in (43) and (44) with maximum replaced
with minimum, are reversed.

THEOREM 12. Let φ and ψ be two continuous and strictly monotonic functions
on J . If ψ ◦φ−1 is convex on J , then under the assumptions given in H , the following
series of inequalities hold:

ψ
(
M̃[n]

φ

)
� WI

Wn
ψ
(
M̃[I]

φ

)
+

WI

Wn
ψ
(
M̃[I]

φ

)
� ψ

(
M̃[n]

ψ

)
, (45)

where M̃[I]
φ = φ−1

(
m

∑
j=1

φ(a j)− 1
WI

k−1

∑
j=1

∑
i∈I

wiφ(xi j)− 1
WI

m

∑
j=k+1

∑
i∈I

wiφ(xi j)

)
.

Proof. Applying Theorem 3 to convex function f = ψ ◦φ−1 and replacing a j and
xi j with φ(a j) and φ(xi j) respectively, we obtain (45). �

Remark 3 gives us the following result as a special case of previous result.

COROLLARY 16. Under the assumptions of Theorem 12, we have

ψ
(
M̃[n]

φ

)
� min

I

[
WI

Wn
ψ
(
M̃[I]

φ

)
+

WI

Wn
ψ
(
M̃[I]

φ

)]
,

ψ
(
M̃[n]

ψ

)
� max

I

[
WI

Wn
ψ
(
M̃[I]

φ

)
+

WI

Wn
ψ
(
M̃[I]

φ

)]
.

REMARK 11. (a) Theorem 8, 9 and 10 follow from Theorem 12, by choosing
adequate functions φ , ψ and appropriate substitutions.

(b) In all theorems reverse inequalities hold for concave functions.
(c) By imposing different conditions on k and weights wi ’s we can obtain many

special cases of our results of this section in articles [13, 18, 22].
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[25] D. S. MITRINOVIĆ, J. E. PEČARIĆ AND A. M. FINK, Classical and new inequalities in analysis,

Kluwer Academic Publishers Group, Dordrecht, 1993.
[26] C. P. NICULESCU AND L. E. PERSSON, Convex Functions and Their Applications. A Contemporary

Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlage, New York, 2006.
[27] M. NIEZGODA, A generalization of Mercer’s result on convex functions, Nonlinear Anal. 71 (2009),

2771–2779.
[28] M. NIEZGODA, Choi-Davis-Jensen’s inequality and generalized inverses of linear operators, Elec-

tron. J. Linear Algebra 26 (2013), 406–416.
[29] M. NIEZGODA, A generalization of Mercer’s result on convex functions, II, Math. Inequal. Appl., 18

(3) (2015), 1013–1023.
[30] M. NIEZGODA, Majorization and refined Jensen-Mercer type inequalitiesn for self-adjoint operators,

Linear Algebra Appl., 457 (2015), 1–14.
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