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Abstract. This paper considers a risk model, where the price process of the investment portfolio
is described by a geometric Lévy process. When the claim sizes are UTAI, the paper obtains the
uniform asymptotics of the tail probability of the discounted aggregate claims and the finite-time
ruin probability for the claim sizes with dominated varying distributions. The obtained results
extend some existed results.

1. Introduction

In this paper, we consider a risk model, where the claim sizes {Xn,n � 1} are a
sequence of nonnegative and identically distributed, but not independent random vari-
ables (r.v.s) with common distribution F . The inter-arrival times {θn,n � 1} constitute
another sequence of independent and identically distributed (i.i.d) nonnegative r.v.s.
The claim arrival times τn = ∑n

k=1 θk , n � 1 and τ0 = 0 constitute a renewal counting
process

N(t) = sup{n � 0 : τn � t}, t � 0,

which represents the number of claims up to time t and it has a finite mean function
λ (t) = E[N(t)] → ∞ as t → ∞ . We assume that the price process of the investment
portfolio is a geometric Lévy process {eRt ,t � 0} with Lévy process {Rt ,t � 0} , which
begins with zero and owns independent and stationary increments. This assumption
about the price process has been extensively applied in mathematical finance. One can
see [8]–[19].

Suppose that {Xn,n � 1} , {θn,n � 1} and {Rt ,t � 0} are mutually independent.
We use

D(t) =
∞

∑
k=1

Xke
−Rτk 1{τk�t} (1.1)
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to present the discounted aggregate claims up to time t � 0, in which the indicator
function of event E is denoted by 1E . The discounted value of the surplus process with
stochastic return on investments of an insurance company is described as

U(t) = x+
∫ t

0−
c(s)e−Rsds−D(t), for any t � 0,

where x � 0 denotes the initial risk reserve of the insurance company and c(t) is the
density function of premium income at time t . Assume that the premium density func-
tion c(t) is bounded, i.e. there exists some positive constant H such that 0 � c(t) � H
for all t � 0. For this renewal risk model, the finite-time ruin probability up to time
t � 0 can be defined as

ψ(x,t) = P

(
inf

s∈[0,t]
U(s) < 0

∣∣U(0) = x

)
.

In this paper, we consider the asymptotics for the tail probability of the discounted
aggregate claims, which hold uniformly for each t , such that λ (t) is positive. For this,
as in [14], define Λ = {t : 0 < λ (t) � ∞} = {t : P(θ1 � t) > 0} . If let t = inf{t : λ (t) >
0} = inf{t : P(θ1 � t) > 0} then

Λ =

{
(t,∞] if P(θ1 = t) = 0,

[t,∞] if P(θ1 = t) > 0.

In order to simplify the investigation, we assume that t = 0. For any T ∈ Λ , set ΛT =
[0,T ] .

In this paper, all limit relationships hold as x tends to ∞ , unless noted otherwise.
For two positive functions m(x) and n(x) , we denote m(x) � n(x) or n(x) � m(x) if
limsupm(x)/n(x) � 1; if limm(x)/n(x) = 1, then write m(x)∼ n(x) ; if limm(x)/n(x)
= 0 then write m(x) = o(n(x)) . For a distribution V on (−∞,∞) , let V (x) = 1−V(x)
be its tail.

This paper mainly discusses the upper tail asymptotic independent claim sizes. A
sequence of {ξn,n � 1} is called to be upper tail asymptotic independent (UTAI) if for
any x ∈ (−∞,∞) and n � 1, P(ξn > x) > 0, and it holds for any i �= j � 1 that

lim
min{x,y}→∞

P(ξi > x|ξ j > y) = 0

(see [10]).
In the following, we introduce some subclasses of heavy-tailed distributions. A

distribution V on (−∞,∞) is called to be heavy-tailed distribution, if for any λ >
0,
∫ ∞
−∞ eλ yV (dy) = ∞ . A distribution V is said to belong to the dominated varying

distribution class, which is denoted by V ∈ D , if for any 0 < y < 1,

limsupV (xy)/V (x) < ∞.

A distribution V on (−∞,∞) is said to belong to the long-tailed distribution class,
which is denoted by V ∈ L , if for any y ∈ (−∞,∞) ,

limV (x+ y)/V(x) = 1.
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For a distribution V on (−∞,∞) , we denote its upper Matuszewska index by

J+
V = − lim

y→∞

logV∗(y)
logy

with V∗(y) := liminf
x→∞

V (xy)
V (x)

for y > 1,

and LV = lim
y↓1

V∗(y). By these definitions, we know that V ∈ D ⇔V∗(y) > 0 for some

y > 1 ⇔ J+
V < ∞ (see [1]).

Reviewing the history of research in the discounted aggregate claims, when Rt = rt
for some r � 0 and all t � 0, there are many researchers investigating ruin probabilities,
such as [2], [6], [11]–[14], [17], [18], [20], [21] and so on.

When {Rt , t � 0} is a Lévy process, [15] studied the risk model where the claim
sizes and the inter-arrival times are two sequences of i.i.d r.v.s and they are mutually
independent. [9] considered a dependent risk model, where the claim sizes and the
inter-arrival times are also two sequences of i.i.d r.v.s, but there exists a dependence
structure between the claim sizes and the inter-arrival times. [19] still considered the
case that the claim sizes and inter-arrival times are independent. When the claim sizes
are UTAI r.v.s with common distribution belonging to the class L ∩D , [19] gave the
uniform asymptotics of the tail probability of the discounted aggregate claims.

In this paper, we will still investigate the risk model, where the claim sizes and
the inter-arrival times are independent. We mainly consider the UTAI claim sizes and
extend the result of [19] from the distribution of the claim sizes F ∈ L ∩D to F ∈ D .
This will extend the scope of the applications of the main result.

This paper will suppose that the Lévy process {Rt ,t � 0} is right continuous with
left limits. Let E[R1] > 0, then Rt drifts to ∞ almost surely as t → ∞ . We define the
Laplace exponent for the Lévy process {Rt ,t � 0} as

φ(z) = logE[e−zR1 ], z ∈ (−∞,∞).

If φ(z) is finite then for any t � 0,

E[e−zRt ] = etφ(z) < ∞

(see, e.g. Proposition 3.14 of [3]).
Now we present the main result of this paper.

THEOREM 1.1. For the discounted aggregate claims (1.1), suppose that the claim
sizes {Xn,n � 1} are UTAI r.v.s with common distribution F ∈ D . If Rt � 0 almost
surely for any t � 0 then, for each fixed T > 0

∫ t

0−
P(X1e

−Rs > x)λ (ds) � P
(
D(t) > x

)
� L−1

F

∫ t

0−
P(X1e

−Rs > x)λ (ds)

holds uniformly for all t ∈ ΛT .
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COROLLARY 1.1. Under the conditions of Theorem 1.1, if F ∈ D then, for each
fixed T > 0 ,

LF

∫ t

0−
P(X1e

−Rs > x)λ (ds) � ψ(x,t) � L−1
F

∫ t

0−
P(X1e

−Rs > x)λ (ds)

holds uniformly for all t ∈ ΛT .

REMARK 1.1. [19] also investigated the discounted aggregate claims (1.1) for
heavy-tailed claim sizes. When the distribution of the claim sizes F ∈L ∩D , Theorem
2.1 of [19] obtained the uniform asymptotics of the tail of the discounted aggregate
claims. It is well known that L ∩D � D , for example the Peter and Paul distribution

F(x) = ∑
k:2k�x

2−k, x � 0.

Then F ∈ D but F /∈ L ∩D . For the detailed analysis one can see Goldie [5] and
Example 1.4.2 of [4]. Thus Theorem 1.1 extends the scopes of the distributions of
claim sizes from the class L ∩D to the class D .

2. Proofs of main results

Before giving the proof of Theorem 1.1 and Corollary 1.1, we firstly present some
lemmas. The first lemma can be obtained from Proposition 2.2.1 of [1] and Lemma 3.5
of [16].

LEMMA 2.1. For a distribution V on (−∞,∞) , if V ∈ D then for each p > J+
V ,

(1) there exist positive constants C1 and D1 such that the inequality V (y)
V (x) �C1

( y
x

)−p

holds for all x � y � D1 ;
(2) x−p = o

(
V (x)

)
.

The following lemma is attributed to [14].

LEMMA 2.2. For the renewal counting process {N(t),t � 0} , any v > 0 , and
each fixed T > 0 , it holds that

lim
x→∞

sup
t∈ΛT

λ−1(t)E
[
Nv(t)1{N(t)>x}

]
= 0.

The following lemma can be obtained from Theorem1 of [22].

LEMMA 2.3. Suppose that {ξk,k � 1} are UTAI and nonnegative r.v.s with distri-
butions Vk ∈ D , k � 1 , respectively. The random weights {Θk,k � 1} are a sequence
of nonnegative r.v.s and are independent of {ξk,k � 1} . For some fixed integer n � 1 ,
let EΘp

k < ∞ , 1 � k � n for some p > max{J+
Vk

,1 � k � n} . Then it holds that

n

∑
k=1

P(Θkξk > x) � P

(
n

∑
k=1

Θkξk > x

)
� L−1

n

n

∑
k=1

P(Θkξk > x) ,

where Ln = min
{
LVk ,1 � k � n

}
.
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Proof of Theorem 1.1. By (3.1) of the proof of Theorem 2.1 of [19], we get that
there exists some positive constant C2 , such that for sufficiently large x and all t ∈ ΛT ,∫ t

0−
P(X1e

−Rs > x)λ (ds) � C2F(x)λ (t). (2.2)

For each integer m � 1, all t ∈ ΛT and x > 0,

P(D(t) > x) = P

(
∞

∑
k=1

Xke
−Rτk 1{τk�t} > x

)

=
∞

∑
n=1

P

(
n

∑
k=1

Xke
−Rτk 1{τk�t} > x,N(t) = n

)

=

(
m

∑
n=1

+
∞

∑
n=m+1

)
P

(
n

∑
k=1

Xke
−Rτk > x,N(t) = n

)

=: I1 + I2.

For I2 , by Lemma 2.1 and (3.3) of the proof of Theorem 2.1 of [19], for any
p > J+

F , it holds uniformly for all t ∈ ΛT that

I2 � C1F(x)E
[
(N(t))p+11{N(t)>m}

]
,

which combining with (2.2) and Lemma 2.2 yields that

lim
m→∞

limsup
x→∞

sup
t∈ΛT

I2∫ t
0−P(X1e−Rs > x)λ (ds)

� lim
m→∞

limsup
x→∞

sup
t∈ΛT

I2
C2F(x)λ (t)

� C1

C2
lim
m→∞

sup
t∈ΛT

λ−1(t)E
[
(N(t))p+11{N(t)>m}

]
= 0. (2.3)

Next we estimate I1 . Let H(y1, . . . ,yn+1) be the joint distribution of random vector
(τ1, . . . , τn+1) , n � 1. Obviously, for all 1 � n � m , t ∈ ΛT and x > 0,

P

(
n

∑
k=1

Xke
−Rτk > x,N(t) = n

)

=
∫
{0�s1�...�sn�t,sn+1>t}

P

(
n

∑
k=1

Xke
−Rsk > x

)
H(ds1, . . . ,dsn+1). (2.4)

By Lemma 2.3 and (2.3), we get that

n

∑
k=1

P
(
Xke

−Rτk > x,N(t) = n
)
� P

(
n

∑
k=1

Xke
−Rτk > x,N(t) = n

)

� L−1
F

n

∑
k=1

P
(
Xke

−Rτk > x,N(t) = n
)
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holds uniformly for all 1 � n � m , t ∈ ΛT and sufficiently large x .
For all t ∈ ΛT and x > 0,

I3 :=
m

∑
n=1

n

∑
k=1

P
(
Xke

−Rτk > x,N(t) = n
)

=

(
∞

∑
n=1

−
∞

∑
n=m+1

)
n

∑
k=1

P
(
Xke

−Rτk > x,N(t) = n
)

=: I4− I5.

Therefore, it holds uniformly for all t ∈ ΛT and sufficiently large x that

I3 � I1 � L−1
F I3. (2.5)

For I4 , it holds for all t ∈ ΛT and x > 0 that

I4 =
∞

∑
k=1

∞

∑
n=k

P
(
Xke

−Rτk > x,N(t) = n
)

=
∞

∑
k=1

P
(
Xke

−Rτk > x,N(t) � k
)

=
∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds) (2.6)

and

I5 �
∞

∑
n=m+1

n

∑
k=1

P
(
Xk > x

)
P
(
N(t) = n

)

= F(x)
∞

∑
n=m+1

nP(N(t) = n)

= F(x)E
[
N(t)1{N(t)>m}

]
. (2.7)

By (2.2), (2.7) and Lemma 2.2, we have that

lim
m→∞

limsup
x→∞

sup
t∈ΛT

I5∫ t
0−P(X1e−Rs > x)λ (ds)

� lim
m→∞

limsup
x→∞

sup
t∈ΛT

F(x)E
[
N(t)1{N(t)>m}

]
∫ t
0−P(X1e−Rs > x)λ (ds)

� lim
m→∞

limsup
x→∞

sup
t∈ΛT

F(x)E
[
N(t)1{N(t)>m}

]
C2F(x)λ (t)

= 0. (2.8)

By (2.6) and (2.8), it holds uniformly for all t ∈ ΛT that

I3 ∼
∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds). (2.9)
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Thus, by (2.5) and (2.9) it holds uniformly for all t ∈ ΛT that∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds) � I1 � L−1
F

∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds),

which combining with (2.3) gives that∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds) � P(D(t) > x) � L−1
F

∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds)

holds uniformly for all t ∈ ΛT . This completes the proof of Theorem 1.1. �

Proof of Corollary 1.1. Next, we follow the line of the proof of Corollary 2.1 of
[19] to prove Corollary1.1.

For the upper bound of ψ(x,t) , by Theorem 1.1 we know that

ψ(x, t) � P(D(t) > x) � L−1
F

∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds) (2.10)

holds uniformly for all t ∈ ΛT . Then we will deal with the lower bound of ψ(x,t) . For
any 0 < ε < 1 and sufficiently x ,

ψ(x, t) = P

(
inf

s∈[0,t]

{
D(s)−

∫ s

0−
c(h)e−Rhdh

}
> x

)
� P(D(t) > x+HT)
� P(D(t) > (1+ ε)x)

�
∫ t

0−

∫ 1

0
P(X1u > (1+ ε)x)P(e−Rs ∈ du)λ (ds)

=
∫ t

0−

∫ 1

0

F((1+ ε)x/u)
F(x/u)

F(x/u)P(e−Rs ∈ du)λ (ds)

� inf
u∈(0,1]

F((1+ ε)x/u)
F(x/u)

∫ t

0−

∫ 1

0
F(x/u)P(e−Rs ∈ du)λ (ds)

� F∗(1+ ε)
∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds)

holds uniformly for all t ∈ ΛT . Note that the facts that the positive Lévy process
{Rt ,t � 0} has nondecreasing paths and 0 � c(t) � H are used in the second step,
and Theorem 1.1 is used in the fifth step. Let ε → 0, we have

ψ(x,t) � LF

∫ t

0−
P
(
X1e

−Rs > x
)

λ (ds) (2.11)

holds uniformly for all t ∈ ΛT . Combining (2.10) and (2.11), we finish the proof of
Corollary1.1. �
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