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SOME INEQUALITIES ON THE INVERSE SUM INDEG COINDEX
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(Communicated by M. Krnić)

Abstract. Topological indices and coindices play an important role in mathematical chemistry.
In this paper we establish some lower and upper bounds for the inverse sum indeg coindex in
terms of different graph parameters associated with the structure of the graph. We also obtain
relations between the inverse sum indeg coindex and some other indices and coindices.

1. Introduction

In this paper we are concerned with simple graphs, that is graphs without directed,
weighted or multiple edges, and without self loops. Let G = (V,E) be such a graph,
where V = {v1,v2, . . . ,vn} is its vertex set and E is its edge set. The order of G is
the number n = |V | , and size of G is the number m = |E| . The degree of vertex vi ,
denoted by d(vi) (or di if it is clear from the context) is the number of first neighbors
of vi . Denote by (d1,d2, . . . ,dn) the sequence of vertex degrees satisfying Δ = d1 �
d2 � · · · � dn = δ > 0. The complement of G , denoted as G , has the same vertex set
V (G) , and two vertices are adjacent in G if and only if they are not adjacent in G , that

is G = (V,E) , where m = |E| = n(n−1)
2 −m . If vertices vi and v j of G are adjacent,

we write i ∼ j . On the other hand, if vi and v j are adjacent in G , we write i � j . In

addition, we will use the following notation: Δe = max
i� j

{di +d j} , δ e = min
i� j

{di +d j} ,

Δ = max{di |vi ∈ V,di �= n− 1} , and δ = min{di |vi ∈ V,di �= n− 1} . Note that the

following relations are valid for these quantities: 2 = δ e � Δe � 2(n−2) and 1 � δ �
Δ � n−2.

In graph theory, an invariant is a numerical quantity of graphs that depends only
on their abstract structure, not on labeling of vertices or edges, or on the drawings of
the graphs. In chemical graph theory such quantities are also referred to as topological
indices. Hundreds of various topological indices have been introduced in mathematical
chemistry literature in order to describe physical and chemical properties of molecules,
especially for studying quantitative structure–activity relationships (QSAR) and quan-
titative structure–property relationships (QSPR) for predicting different properties of
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chemical compounds (see for example [33, 34]). Many of them are defined as sim-
ple functions of the degrees of the vertices of (molecular) graph and can commonly be
represented as [17, 19]

TI(G) = ∑
i∼ j

F(di,d j) , (1)

where F(x,y) a is a real non-negative function with the property F(x,y) = F(y,x) .
In [7] a concept of topological coindices was introduced. In this case the sum runs

over the edges of the complement of G . In a view of (1) the corresponding coindex of
G can be defined as

TI(G) = ∑
i� j

F(di,d j) .

Note that if G is a complete graph, G∼= Kn , then its complement G = Kn has no edges,
and hence TI(Kn) = TI(Kn) = 0.

The first and second Zagreb indices are vertex-degree-based graph invariants de-
fined as

M1(G) =
n

∑
i=1

d2
i and M2(G) = ∑

i∼ j
did j .

The quantity M1 was first time considered in 1972 [15], whereas M2 in 1975 [16].
These terms were recognized to be a measure of the extent of branching of the carbon–
atom skeleton of the underlying molecule. The first Zagreb index became one of the
most popular and most extensively studied graph-based molecular structure descriptors.
In [29] it was shown that M1 can also be represented as

M1(G) = ∑
i∼ j

(di +d j) .

The corresponding coindices were conceived in [7] as

M1(G) = ∑
i� j

(di +d j) and M2(G) = ∑
i� j

did j .

Multiplicative versions of the first and second Zagreb coindices were introduced in [38],
and defined as

Π1(G) = ∏
i� j

(di +d j) and Π2(G) = ∏
i� j

did j .

In [15], another quantity, the sum of cubes of vertex degrees

F(G) =
n

∑
i=1

d3
i = ∑

i∼ j

(d2
i +d2

j ) ,

was encountered, as well. This quantity is also a measure of branching and it was
found that its predictive ability is quite similar to that of M1(G) . However, for the
unknown reasons, it did not attracted any attention until 2015 when it was reinvented in
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[12] and named the forgotten topological index. The forgotten topological coindex, or
F -coindex, is defined as [13] (see also [6])

F(G) = ∑
i� j

(d2
i +d2

j ) .

In [9] the inverse degree index was introduced. It is conceived to be

ID(G) =
n

∑
i=1

1
di

= ∑
i∼ j

(
1

d2
i

+
1

d2
j

)
.

Accordingly, the corresponding coindex is

ID(G) = ∑
i� j

(
1

d2
i

+
1

d2
j

)

=
n

∑
i=1

(n−1−di)
1

d2
i

.

In [1] Albertson introduced the quantity called the imbalance of an edge e as
imb(e) = |di−d j| , and used it to define the irregularity measure of a graph as

Alb(G) = ∑
i∼ j

|di −d j| ,

which is sometimes referred to as Albertson index [22, 23] or the third Zagreb index
[11]. The Albertson coindex, Alb(G) was defined in [35].

A family of 148 discrete Adriatic indices was introduced and analyzed in [37] (see
also [36]). An especially interesting subclass of these indices consists of 20 indices
which are useful for predicting certain physicochemical properties of chemical com-
pounds. The so called inverse sum indeg index, ISI(G) , is one of them. It is defined
as

ISI(G) = ∑
i∼ j

did j

di +d j
.

The ISI(G) is a significant predictor of total surface area for octane isomers [37]. More
on its applications and mathematical properties can be found in [2, 10, 18, 21, 26, 32].
The corresponding coindex could be defined as

ISI(G) = ∑
i� j

did j

di +d j
.

In this paper we determine lower and upper bounds on ISI(G) as well as relationships
between ISI(G) and the above mentioned indices and coindices.
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2. Preliminaries

In this section we recall a few discrete inequalities for real number sequences
which will be often used in proofs of theorems.

Let p = (pi) and a = (ai) , i = 1,2, . . . ,n , be two positive real number sequences
such that p1 + p2 + · · ·+ pn = 1 and 0 < r � ai � R < +∞ , where r and R are positive
real numbers. In [31] (see also [28]) the following inequality was proved

n

∑
i=1

piai + rR
n

∑
i=1

pi

ai
� r+R . (2)

Equality holds if and only if ai ∈ {r,R} , for i = 1,2, . . . ,n .
Let p = (pi) , i = 1,2, . . . ,n , be a sequence of nonnegative real numbers, and

a = (ai) , i = 1,2, . . . ,n a sequence of positive real numbers. Then, for any real r ,
r � 0 or r � 1, holds [28]

(
n

∑
i=1

pi

)r−1 n

∑
i=1

pia
r
i �
(

n

∑
i=1

piai

)r

. (3)

When 0 � r � 1, the opposite inequality is valid. Equality is attained if and only if
either r = 0, or r = 1, or a1 = a2 = · · ·= an , or p1 = · · ·= pt and at+1 = · · · = an , for
some t , 1 � t � n−1.

Let x = (xi) , i = 1,2, . . . ,n be a sequence of nonnegative real numbers and a =
(ai) , i = 1,2, . . . ,n a sequence of positive real numbers. In [30] it was proved that for
any real r � 0 holds

n

∑
i=1

xr+1
i

ar
i

� (∑n
i=1 xi)

r+1

(∑n
i=1 ai)

r . (4)

Equality holds if and only if r = 0 or x1
a1

= x2
a2

= · · · = xn
an

.

3. Main results

In the next theorem we determine a lower bound for ISI(G) that depends on n , m
and ID(G) and an upper bound in terms of n , m and M1(G) .

THEOREM 1. Let G, G � Kn , be a simple connected graph with n � 3 vertices
and m edges. Then, we have

(n(n−1)−2m)2

4((n−1)ID(G)−n)
� ISI(G) � 1

4
(2m(n−1)−M1(G)) . (5)

Equality in the left-hand part of (5) holds if and only if 1
di

+ 1
d j

is a constant for every

non-adjacent pair of vertices vi and v j in G. Equality in the right-hand side of (5)
holds if di = d j for every non-adjacent pair of vertices vi and v j in G.
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Proof. Having in mind the inequality between arithmetic and harmonic means for
real numbers, that is AM-HM inequality (see e.g. [28]), we have that

∑
i� j

di +d j

did j
∑
i� j

did j

di +d j
� m2 ,

that is

ISI(G)∑
i� j

di +d j

did j
� 1

4
(n(n−1)−2m)2 . (6)

On the other hand, we have that

∑
i� j

di +d j

did j
= ∑

i� j

(
1
di

+
1
d j

)
=

n

∑
i=1

(n−1−di)
1
di

= (n−1)ID(G)−n . (7)

Combining (6) and (7) we obtain

((n−1)ID(G)−n)ISI(G) � 1
4
(n(n−1)−2m)2 .

Since G � Kn , we have that (n−1)ID(G)−n �= 0, from which left-hand side of (5) is
obtained.

Equality in (6), and consequently in the left-hand side of (5), holds if and only if
1
di

+ 1
d j

is a constant for every pair of non-adjacent vertices vi and v j in G , G � Kn .

From the inequality between the arithmetic and geometric means for real numbers,
the AM-GM inequality (see [28]), we have that

did j � 1
4

(di +d j)2 ,

that is
did j

di +d j
� di +d j

4
.

After summation of the above inequality over all edges of G we get

ISI(G) = ∑
i� j

did j

di +d j
� 1

4 ∑
i� j

(di +d j) =
M1(G)

4
. (8)

From the above and identity

M1(G) = 2m(n−1)−M1(G) , (9)

which was proved in [4] (see also [7, 13, 25]), we obtain the right-hand side of the
inequality (5).

Equality in (8), and thus in the right-hand side of (5), holds if and only if di = d j

for every pair of non-adjacent vertices vi and v j in G . �
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REMARK 1. As far as the right-hand side of (5) is concerned, the condition G �

Kn is surplus. However, since TI(Kn) = 0, for any vertex–degree-based topological
index, the condition G � Kn does not deteriorate the generality.

COROLLARY 1. Let G be a simple connected graph with n � 2 vertices and m
edges. Then

ISI(G) � m
2n

(n(n−1)−2m) . (10)

Equality holds if and only if G is regular.

Proof. In [8] (see also [24, 39]) it was proved that

M1(G) � 4m2

n
,

with equality if and only if G is regular. According to the above and right-hand side of
(5) we obtain (10). �

COROLLARY 2. Let U be a simple connected unicyclic graph with n� 3 vertices.
Then

ISI(U) � n(n−3)
2

,

with equality if and only if U ∼= Cn .

COROLLARY 3. Let G be a simple connected graph with n � 2 vertices and m
edgse. Then

ISI(G)+ ISI(G) � m(n−1)
2

.

Equality holds if and only if G is regular.

Proof. The required result is obtained from the right-hand side of (5) and the in-
equality

ISI(G) � M1(G)
4

,

which was proved in [10]. �

COROLLARY 4. Let U be a simple connected unicyclic graph with n� 3 vertices.
Then

ISI(U)+ ISI(U) � n(n−1)
2

,

with equality if and only if U ∼= Cn .

In the next theorem we establish an upper bound for ISI(G) in terms of n , m ,
M1(G) , M2(G) and F(G) .
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THEOREM 2. Let G be a simple connected graph with n � 2 vertices and m
edges. Then, we have

ISI(G) � 1
4

√
(n(n−1)−2m)(4m2+(n−2)M1(G)−F(G)−2M2(G))

2
. (11)

Equality holds if and only if di = d j for every pair of non-adjacent vertices vi and v j

in G.

Proof. Since [3, 13, 20]

M2(G) = 2m2− 1
2
M1(G)−M2(G) (12)

and
F(G) = (n−1)M1(G)−F(G) (13)

we have that

4m2 +(n−2)M1(G)−F(G)−2M2(G) = F(G)+2M2(G) = 4∑
i� j

(
di +d j

2

)2

. (14)

According to AM-HM inequality we have that

∑
i� j

(
di +d j

2

)2

� ∑
i� j

(
2

1
di

+ 1
d j

)2

= 4∑
i� j

(
did j

di +d j

)2

. (15)

On the other hand , for r := 2, pi := 1, ai := did j
di+d j

, where summation is performed

over all edges of G , the inequality (3) transforms into

∑
i� j

1∑
i� j

(
did j

di +d j

)2

�
(

∑
i� j

did j

di +d j

)2

,

that is, under assumption that G � Kn ,

∑
i� j

(
did j

di +d j

)2

� ISI(G)2

m
=

2ISI(G)2

n(n−1)−2m
. (16)

Now, the inequality (11) is obtained from (14), (15) and (16).

Equality in (15) holds if and only if
di+d j

2 = 2did j
di+d j

, that is if and only if di =
d j for every non-adjacent pair of vertices vi and v j in G . The equality in (16), and
consequently in (11), holds under the same condition. �

The following theorem relates ISI(G) with M1(G) and Alb(G) .
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THEOREM 3. Let G, G � Kn , be a simple connected graph with n � 3 vertices
and m edges. Then

ISI(G) � 1
4

(
2m(n−1)−M1(G)− Alb(G)2

2m(n−1)−M1(G)

)
. (17)

Equality holds if and only if
|di−d j |
di+d j

is constant for any pair of non-adjacent vertices vi

and v j in G.

Proof. We have that

M1(G)−4ISI(G) = ∑
i� j

(
(di +d j)− 4did j

di +d j

)
= ∑

i� j

(di−d j)2

di +d j
. (18)

On the other hand, for r := 1, xi := |di − d j| , ai := di + d j , where summation is per-
formed over all edges of G , the inequality (4) becomes

∑
i� j

|di −d j|2
di +d j

�

(
∑
i� j

|di−d j|
)2

∑
i� j

(di +d j)
=

Alb(G)2

M1(G)
=

Alb(G)2

2m(n−1)−M1(G)
. (19)

From the above and equality (18) we obtain

2m(n−1)−M1(G)−4ISI(G) � Alb(G)2

2m(n−1)−M1(G)
,

from which we arrive at (17).

Equality in (19), and hence in (17), holds if and only if
|di−d j |
di+d j

is constant for any

pair of non-adjacent vertices vi and v j in G , G � Kn . �

REMARK 2. Since

ISI(G) � 1
4

(
2m(n−1)−M1(G)− Alb(G)2

2m(n−1)−M1(G)

)
� 2m(n−1)−M1(G)

4
,

the inequality (17) is stronger than the right-hand side of (5).

THEOREM 4. Let G, G � Kn , be a simple connected graph with n � 3 vertices
and m edges. Then

ISI(G) � Δe + δ e

2Δeδ e

(
4m2−M1(G)−2M2(G)

)− (2m(n−1)−M1(G))2

Δeδ e((n−1)ID(G)−n)
. (20)

Equality holds if and only if di = d j for any pair of non-adjacent vertices vi and v j in
G.
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Proof. For pi := did j

M2(G) , ai := di + d j , r := δ e , R := Δe , where summation is

performed over all edges of G , G � Kn , the inequality (2) becomes

∑i� j did j(di +d j)
M2(G)

+ Δeδ e

∑i� j
did j

di+d j

M2(G)
� Δe + δ e ,

that is

∑
i� j

did j(di +d j)+ Δeδ eISI(G) � (Δe + δ e)M2(G) . (21)

On the other hand, for r := 1, xi := di + d j , ai := 1
di

+ 1
d j

, where summation is per-

formed over all edges of G , G � Kn , the inequality (4) transforms into

∑
i� j

did j(di +d j) = ∑
i� j

(di +d j)2

1
di

+ 1
d j

�
(
∑i� j(di +d j)

)2
∑i� j

(
1
di

+ 1
d j

) ,

that is

∑
i� j

did j(di +d j) � M1(G)2

∑i� j

(
1
di

+ 1
d j

) . (22)

The inequality (20) is obtained from inequalities (21) and (22), and identities (7), (9)
and (12).

Equality in (21) holds if and only if di +d j ∈ {Δe,δ e} for any pair of non-adjacent
vertices vi and v j in G . Equality in (22) holds if and only if did j is constant for any
pair of non-adjacent vertices vi and v j in G . This implies that equality in (20) holds if
and only if di = d j for any pair of non-adjacent vertices vi and v j in G . �

THEOREM 5. Let G, G � Kn , be a simple connected graph with n � 3 vertices
and m edges. Then

ISI(G) � Δδ (2m(n−1)−M1(G))

(Δ + δ)2
. (23)

Equality holds if and only if di = d j for any pair of non-adjacent vertices vi and v j in
G.

Proof. We have that

ISI(G) = ∑
i� j

did j

di +d j
= ∑

i� j

di +d j(√
di
d j

+
√

d j
di

)2 . (24)

On the other hand, for any pair of non-adjacent vertices vi and v j in G holds

√
di

d j
+

√
d j

di
�

√
Δ
δ

+

√
δ
Δ

. (25)
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From the above and equality (24) we obtain (23).
Equality in (25), and consequently in (23), holds if and only if di = d j for any pair

of non-adjacent vertices vi and v j in G . �

COROLLARY 5. Let G, G � Kn , be a simple connected graph with n � 3 vertices
and m edges. Then

ISI(G) � mΔδ (n(n−1)−2m)

(n−1)(Δ+ δ )2
.

Equality holds if and only if G ∼= K1,n−1 .

Proof. In [8] it was proved that

M1(G) � m

(
2m

n−1
+n−2

)
,

with equality if and only if G ∼= Kn or G ∼= K1,n−1 [5]. From the above and inequality
(23) we obtain the required result. �

In the next theorem we determine a lower bound for ISI(G) that depends on n , m
and multiplicative coindices Π1(G) and Π2(G) .

THEOREM 6. Let G, G � Kn , be a simple connected graph with n � 3 vertices
and m edges. Then

ISI(G) � n(n−1)−2m
2

(
Π2(G)
Π1(G)

) 2
n(n−1)−2m

. (26)

Equality holds if and only if 1
di

+ 1
d j

is constant for any pair of vertices vi and v j in G.

Proof. Based on the AM–GM inequality we have that

ISI(G) = ∑
i� j

did j

di +d j
� m

(
∏
i� j

did j

di +d j

)1/m

= m

(
∏i� j did j

∏i� j(di +d j)

)1/m

, (27)

wherefrom (26) is obtained.
Equality in (27), and hence in (26), holds if and only if

did j
di+d j

, that is 1
di

+ 1
d j

, is

constant for any pair of non-adjacent vertices vi and v j in G , G � Kn . �

REMARK 3. Since

(n−1)ID(G)−n =
n

∑
i=1

(n−1−di)
1
di

= ∑
i� j

(
1
di

+
1
d j

)
= ∑

i� j

di +d j

did j
� m

(
Π1(G)
Π2(G)

)1/m

,
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we have that (
Π2(G)
Π1(G)

) 2
n(n−1)−2m

� n(n−1)−2m
2((n−1)ID(G)−n)

.

From the above inequality we have that

ISI(G) � n(n−1)−2m
2

(
Π2(G)
Π1(G)

) 2
n(n−1)−2m

� (n(n−1)−2m)2

4((n−1)ID(G)−n)
,

which means that inequality (26) is stronger than (5).

THEOREM 7. Let G be a simple connected graph with n � 2 vertices and m
edges. Then

(n−1)M1(G)−F(G)

2Δe
� 2m(n−1)−M1(G)

2
− ISI(G) � (n−1)M1(G)−F(G)

2δ e

.

(28)
Equality holds if and only if di +d j is constant for any pair of non-adjacent vertices vi

and v j in G.

Proof. We have that

1
2
M1(G)− ISI(G) = ∑

i� j

(
di +d j

2
− did j

di +d j

)
= ∑

i� j

d2
i +d2

j

2(di +d j)
. (29)

On the other hand, we have that

1

2Δe
∑
i� j

(d2
i +d2

j ) � ∑
i� j

d2
i +d2

j

2(di +d j)
� 1

2δ e
∑
i� j

(d2
i +d2

j ) ,

that is
F(G)

2Δe
� ∑

i� j

d2
i +d2

j

2(di +d j)
� F(G)

2δ e

. (30)

Combining (29) and (30) we get

F(G)

2Δe
� 1

2
M1(G)− ISI(G) � F(G)

2δ e

.

From the above inequalities and identities (9) and (13) we arrive at (28).
Equalities in (30), and hence in (28), hold if and only if di +d j is constant for any

pair of non-adjacent vertices vi and v j in G . �
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[23] P. HANSEN, H. MÉLOT, Variable neighborhood search for extremal graphs 9. Bounding the irreg-
ularity of a graph, in: S. Fajtlowicz, P. W. Fowler, P. Hansen, M. F. Janowitz, F. S. Roberts (Eds.),
Graphs and Discovery, Am. Math. Soc., Providence, 2005, pp. 253–264.
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