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PARTIAL DETERMINANT INEQUALITIES FOR

POSITIVE SEMIDEFINITE BLOCK MATRICES

YONGTAO LI, XIQIN LIN AND LIHUA FENG ∗

Abstract. We present some inequalities related to partial determinants for positive semidefinite
block matrices. Firstly, we introduce the definition of partial matrix functions corresponding to
partial traces and partial determinants, and then we provide a unified extension of a recent result
of Lin [10], Chang-Paksoy-Zhang [4] and Lin-Sra [12]. Secondly, we give a new generalization
of a result of Paksoy-Turkmen-Zhang [15]. Finally, we conclude with an interesting conjecture
involving partial determinants.
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