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FEJER INEQUALITY FOR s-CONVEX
FUNCTIONS IN THE FOURTH SENSE

ZEYNEP EKEN

(Communicated by M. Krni¢)

Abstract. In this paper, Fejer inequality for s-convex functions in the fourth sense is established.
Some integral inequalities related to Fejer inequalities are presented through the functions whose
first derivative is s-convex in the fourth sense. Also some application examples of these inequal-
ities are presented. These applications of Fejer inequality and other obtained integrals result in
the bound functions for Gauss error function, incomplete gamma function and Fresnel integrals.

1. Introduction

Convexity is one of the desired properties for a function to have, which attracts
special interest in many branches of mathematics, e.g. geometry, analysis, optimization.
The convexity of a function f is stated as follows:

Let A be a convex set in a vector space and let f: A — R. f is said to be convex
on A if

FAx+py) <Af(x)+uf(y) (D

for x,y € A and A,u > 0 with A +u = 1. As its definition is based on an inequality,
some of their characteristics are also expressed by some inequalities such as Jensen
inequality and they give rise the emergence of many new inequalities such as Hermite-
Hadamard inequality. Hermite-Hadamard inequality for a convex function f defined
on [a,b] is given as follows:

r(22) <5 jf<x>dx<f(“>+f(”>.

2 b—a 2

This inequality has both geometrical and algebraical interpretation, which asserts
that average integral value of such a function interpolates between average of the images
of endpoints and the image of the average value of end points. Geometrical interpreta-
tion can be thought in terms of the area under f on the interval. About 23 years after
Hermite’s first introduction of this inequality in 1883 [11], Fejer in [10] gave the gen-
eralization of this inequality by multiplication with a symmetrical weight function as
follows:
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Let f : [a,b] — R be a integrable and convex function, w : [a,b] — R be a non-
negative, integrable, symmetric function with respect to x = “%” . Then

f (a—i—b) /hw(x)dx < La/bf(x)w(x)dx < M/w(x)dx.

2

While innovative ideas on the concepts of convexity result in the novel convexity
types , several extensions, generalizations for Hermite-Hadamard, Fejer inequalities
and the versions of them for novel convexity types have been established by many
researchers [1, 2, 3, 5, 6, 7, 8, 14, 15, 17, 18, 21, 22]. One of them is given for s-
convex functions. s-convex functions have various types. First and second sense s-
convex functions were defined by Orlicz and Breckner and used in modular spaces
[4, 16]. Then Hermite-Hadamard, Fejer inequalities and similar type inequalities are
obtained for s-convex functions in the second sense [19, 23]. Recently, the definitions
of s-convex functions in third and fourth sense have been given [9, 13] and Hermite-
Hadamard inequality for s-convex functions in the third sense has been intoduced [20].

In this paper, we establish Fejer inequality for s-convex functions in the fourth
sense. Then, we present some inequalities for the functions whose derivative is s-
convex in the fourth sense. Also, we exemplify an application of these inequalities,
which determines bound functions for Gauss error function, the difference between
two incomplete gamma functions and Fresnel integral.

2. Preliminaries

By changing the condition on the parameters A, 1 in (1), s-convex functions are
obtained in different types.

DEFINITION 1. [9] Let U CR" be aconvex setand let s € (0,1] and f: U — R.
f 1is said to be s-convex function in the fourth sense if

1 1
FAx+py) < A5 f(x)+ps f(y)
forall x,y € U and A,u €[0,1] suchthat A +u =1.

The class of s-convex functions in the fourth sense is denoted by K.

EXAMPLE 1. Let 0 < s < 1 and a,b,c € R with b <0 and a,c < 0. The function

) = a, ifx=0
¥ = bx%—|—c, ifx>0

is s-convex function in the fourth sense on (0,e). Adding extra condition a = ¢, we
can say f is s-convex function in the fourth sense on [0, o).
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Suppose x,y € (0,00). Then we have Ax+ py > 0 with A +u =1 and

F(Ax+By) = b(Ax+uy)* +c

[

— A5 <bx% +c> +,ul' (by% +c>
= 25 F () + 15 ().

For x,y € [0,0), we have to check only the cases y >x=0 and x=y =0.
Let y >x=0. Then

1 1
FO+py) = f(uy) =bpsys +e=busys +c(A+p)
<bu%y% +c<7t% +[.1%> :/l%c—f—u% <by% +c>
1 1 1 1 1
= Are i f() = Arat s f(y) = A0 f(0)+ po £(3).
Let y=x=0. Then
1 1 1 1
F0+p0) =a < a (A% +u¥ ) =23 £(0)+u £(0).

The following theorem states that one can obtain s-convex function in the fourth
sense on [0, 1] from an integrable s-convex function in fourth sense on [a,b]:

THEOREM 1. [13] Let f be an integrable and s-convex function in the fourth
sense on |a,b| and G be defined on [0,1] as follows

b
G(t)zﬁ/f(tx+(l—t)a—2i_b)dx. )

Then G is s-convex function in the fourth sense on [0,1].

One of the main properties of s-convex function in the fourth sense we use in this
paper is nonpositivity:

THEOREM 2. [9] Let f:R —R. If f is s-convex in the fourth sense, then [ <0.

From now on, when we say s-convex function even without indication of fourth
sense, it will be accepted as in the fourth sense throughout the rest of the paper.
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3. Main results

The following theorem gives Fejer inequality for s-convex function:

THEOREM 3. Let f,w:R — R be integrable functions and let f € K* and a,b €
R with a < b. Let w be nonnegative and symmetric with respect to x = “2ib ie.
w(x) =w(a+ b —x). Then the following inequality holds:

b

127_ <a+b)/w e < 5= a/f

< (b_i,)u; f(a)‘;f(b)/[(b—x)%+(x_a)% w(x)dx.

Proof. We can write from s-convexity of f the following inequality:

r(2R) L)

The substitutions x =ta+ (1 —7)b and y =tb+ (1 —1)a yield to

f<a—;b> <2

Using w(ta+ (1 —1)b) =w(tb+ (1 —t)a), we have

u\—

(fta+ (L—=1)b)+ f(tb+ (1 —1)a)).

f (a;b> w(ta+(1=1)b) <273 (f(ta+(1=1)b)+ f(tb+(1—1)0))w(ta+ (1 —1)b).

By integrating both sides, we obtain

1 1
f(a;b> 0/w(m+(1—r)b)<2%O/f(taJr(l—t)b)W(faHl—f)b)df
1

123 /f(tb (1= Da)w(thb+ (1 —1)a)dr




FEJER INEQUALITY FOR s-CONVEX FUNCTIONS IN THE FOURTH SENSE 23

Since 1 ,
f(a;b)/w(tcﬂ—(l—t)b) e ("”’)/W ..
0
as a result, we get
1 fa+b\ | 214 ]
b—af< 5 )/W(X)dx< m/f(x)w(x)dx. (3)

On the other hand, using s-convexity of f, we have
flta+(1=0)b) <15 fla) +(1=1)3 £(b),
Fltb+(1=1)a) <t £(0) + (1= 1)3 f(a).
Summing above inequalities side by side, we have
flta+(1=0)b)+ f(tb+(1—1)a) < (1 +(1=1)7 ) (f(a) + f(5).
Then multiplying each side by w(ta+ (1 —1)b), we have
flta+ (1 =t)b)yw(ta+ (1 —1)b)+ f(tb+ (1 —t)a)w(ta+ (1 —1)b)

< (¢ -0)}) (@) + £ ) wlea + (1~ 1)b),

Integration with respect to ¢ on [0, 1] gives the following inequality:

@l

13

1

1
/ Flta+ (1 —0)bywltat(1 —1)b)di + / Fltb+ (1 =ayw(tb+ (1 —t)a)dt

0
1
/té +(1=0)) (fl@)+ F(B) wlea+ (1= 1)b)dr.
0

The substitutions x =ta+ (1 —¢)b, x =tb+ (1 —t)a in each integrals in the inequality,
transform them into

b b
fla) +£(0) C
h—a a/f(x)w(x)dx < 27%/ [(b—x) + (x—a)s | w(x)dx. “4)

Combining (3) and (4), we obtain

= (5) / W< / F@e()d

a

—
ol

<(b_2)1+ / O+ —a)t wdx. O
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Let us consider the function G defined in Theorem 1. Accepting f = G in Theo-
rem 3, we get another Fejer inequality for s-convex functions on [0,1].

COROLLARY 1. Let f,w:R — R be integrable functions and let f € K*, a,b €
(0,1]. Let w be nonnegative and symmetric with respect to x = ”;r—b. Then the following

inequality holds:

(P3P (45t b 43P +3 (b—a)

1 - b
2+ wx)f ()
f(x) dx/w(x)dx </ dudx
(a+b) / X
(Fh2-(55 )2 “ ¢ % (b-a)
{ afb qbsa afb ypbsa
< - | a f(x)dx+b / f(x)dx
2(b—a)? N _ab_g_a atb_pb=a
b

Let us give Fejer type inequalities by using the functions whose first derivatives
are s-convex function. We need to prove some integral identities as lemmas.

LEMMA 1. Let f:R — R be differentiable and w : [a,b] — [0,0) be integrable
function on [a,b] with a <b. If f’ € Lla,b], i.e. f’ is integrable on [a,b], then the
following equality holds:

b b

1
Z(b_a) /W(x)dx— m/f(x)W(x)dx )

a a

1

1
_(b-a) [ | [wtas+ 1 =spyas | ea+ (1-npar
0

2

t

b
Proof. Let us apply partial integration to [ f(x)w(x)dx. Assume u(x) = f(x) and

w(x)dx =d(v(x)). Then

X

SO

/f(x)w(x)dx:f(b)/bw(z)dz—/b /w(z)dz f'(x)dx. (6)
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Putting (6) in the left side of (5), we have

b

b b
f(®) 1 1 )
2(b—a) / Wdx = 35— / Flepwx)dx = 2(b—a)/ / w(@)dz | f(x)dx.

a a a

The substitution z = as+ (1 — s)b gives that

X

/w(z)dz =(b—a)

a X—.
=

—

w(as+ (1 —s)b)ds.

>

Then the substitution x = ar + (1 — )b yields to the desired result:

X

2(bl—a>/b / w(z)dz | f'(x)dx

(b—a)
2

1 1
/ /w(as (1= s)b)ds | f'(ta+ (1 —1)b)dr. O
0 t

THEOREM 4. Let a,b € R with a<b, f: |a,b] — R be differentiable and w :
[a,b] — [0,00). Suppose that f’ € L|a,b], w € Cla,b], i.e. w is continuous on |a,b],
and f' € K;‘. Then the following inequality holds:

fb) P 1 b
2(b—a)/u w(x)dx—z(b_a)/a Sx)w(x)dx
2

b—a . 2 /
S m;;};%wﬁ) <s+1f (a)+sf (b)).

Proof. Using Lemma 1, Theorem 2, s-convexity of f’ and the continuity of w,
we have

fo) P 1 b
Z(b—a)/a W(x)dx_Z(b—a)/a Sx)w(x)dx
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xe[a b

1
/ (1= 1)e% (@) + (1 —0) ) £ (b))dr
0

b—a 2, /
<mxe[ab] w(x) <S+1f(a)+sf(b)), g

LEMMA 2. Let a,b € R with a<b, f:[a,b] CR — R be a differentiable map-
ping and w: [a,b] — [0,%). If f',w € Lla,b], then the following equality holds:
f(a) /b ! /b
dx— —— d
s [ st [ i
1

(/ (as+ ( 1—s)b)ds)f’(ta—i—(l—t)b)dt.

0

Proof. The same operations in the proof of Lemma 1 result in the desired equal-
ity, O

THEOREM 5. Let a,b € R with a <b, f:|a,b] — R be a differentiable function
and w : [a,b] — [0,c). Suppose that f' € L[a,b] and w € C[a,b], f' € K*. Then, the
following inequality holds:

fla) r? 1 b
_2(b—a)/a W(X)dx—km/u Fx)w(x)dx

(b—a)s , /
S 20t iy (f @+ 5/ (b)) :

s
s+1

Proof. By making use of Lemma 2, Theorem 2, s-convexity of f’ and continuity

of w, we get
[l /bw( i+t 5 /f

2(b—a)
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1
/za“ a)+1(1—1) f(b))dr
0

x€la,b]
_ (b—a)s , s
— S min o) (F@) + S ®) . O

By combining Theorem 4 and Theorem 5, we have the following result.

COROLLARY 2. Let a,b € R with a<b, f:[a,b] — R be differentiable and w :
[a,b] — (0,0). Suppose that w € Cla,b], f' € K*, f(a) # f(b). Then, the following
inequality holds:

b . (b—a)?® s(s*>+s+1) f'(a)—f(b)
[ v < min v =55 S S S

The following lemma presents the similar inequalities above in terms of midpoint
of interval.

LEMMA 3. Let f:[a,b] C R — R be a differentiable function and w : [a,b] —
[0,00) with a < b. If w,f’ € L|a,b], then the following equality holds:

b b
bia /f(x)w(x)dx— biaf (a—;b) /w(x)dx
1/2 / ¢
- (b—a)/ /w(as+(1 —9)b)ds | f'(ta+ (1 —1)b)dr. )
0 \0
Proof. Let us apply partial integration to f f(x)w(x)dx. Assume u(x) = f(x)
a+b
o

and w(x)dx = d(v(x)). Then we obtain

v(x) = / w(z)dz and d(u(x)) = f'(x)dx.

a+b
2

We have

/bf(x)w(x)dxzf(b)/hw(z)dz—/b /w(z)dz f'(x)dx. (8)
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By putting (8) in the left side of (7), we get

bia (f(b)_f<a;b)>a/b wlx)dx - bia /b

atb atb a+b
z 0\
1 b b . b N
— , B ,
b—a / /W(Z)dZ Fx)dx b—a / /W(Z)dz [ (x)dx
ob ath atb a+b
2 2 o
1 b b
“a | | [rue] e
a+b X

In the last integral, the substitutions z = as+ (1 —s)b and x = at + (1 —1)b, respectively,
give the right side of (7). [

THEOREM 6. Let a,b € R with a < b, f be a differentiable function on [a,b]
and w: [a,b] — [0,%0). Suppose that f' € L[a,b], w € Cla,b] and f' € K. Then the
following inequality holds:

1 1 AN

a
P Fx)w(x)dx — f( 7 ) /w(x)dx

a

\w

b—a

b a+tb
2

s 2255 35— 1
<(b—a)———— min wx) | f'(a)+ ————f'(b) | .
22+3 (25 + 1) xe[ 252 ) s+1

I\)‘+

Proof. Using Lemma 3, Theorem 2, s-convexity of f and continuity of w, we
have

b b
1 1 a+b
P /f(x)w(x)dx—be< 7 )/w(x)dx
ath ath
2 2
1/2 t
<(b—a) / min w(x)ds | f/(ta+(1—1)b)ds
) x€[45b b]
12
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12
<(b—a) min w(x)/t(t%f’(a)+(1—t)%f’(b)))dt
0

xe[4L p]

—a) min w(x . R "(a s((22+%—3)s—1) !
=0 )xe[%'cm ()<22+i-(2s+1)f( )+22+i(s+1)(2s+1)f(b)>

s 22435 —3s—1)
<h-a)——" min wi) | fl@+—""rp)). O
( 22%5 25+ 1) xe[442 ) ( s+1

LEMMA 4. Let f:[a,b] CR — R be differentiable function and w: [a,b] — [0, o)
with a < b. If w, f" € L|a, D], then the following equality holds:

1 7 1 a+b i
sms | foman= o (450 [ was

1 1

—(b—a)/ /w(as+(1—s)b)ds Fl(ta+(1—1)bdr.

12 \t

Proof. The same successive operations in the proof of Lemma 3 result in the de-
sired equality. [J

THEOREM 7. Let a,b € R with a<b and f : [a,b] — R be differentiable function
and w: [a,b] — [0,0). Suppose that f' € L[a,b], w € Cla,b] and f' € K. Then the
following inequality holds:

_bia /f(x)w(x)dx+b1af<a—2kb) /W(x)dx
s 2435 —3s—1 , ,
< (b—a)mxeﬁl{gblw(}f) (Tf (a)+f (b)> :

Proof. Using Lemma 4, Theorem 2, s-convexity of f’ and continuity of w, we
have

atb

7 dx—l—be (“;b) Zw(x)dx

1 1

g(b—a)/ /w(as+(1—s)b)ds Flta+(1—1)b)de

12\t
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1

<(b—a) min w(x)/(l—t)f’(ta+(1—t)b)dt

x€la, b
st

1

<(b—a) min w(x)/(l—t) (7 @+ (=0 ') ) e

x€[a, 4L
[a,%57] 7

Y ) (E i )L VP s
¢ )xeﬁ% ()<22+%(s+1)(2s+1)f( )+22+%(zs+1)f(b)>

2255 35— 1
s+1

N

=(b—a)———— min w(x)(

' ‘®)|. O
2243 (25 + 1) xela, 252] fla)+ 11 )>

Combining Theorem 6 and Theorem 7 with symmetry condition on w, we have
the following result:

COROLLARY 3. Let a,b € R with a <b, f:|a,b] — R be differentiable and
w: [a,b] — [0,00). Suppose that w € Cla,b], f' € K} and w is symmetric on [a,b].
Then the following inequality holds:

a+b

Flmw( dx——/f

S

| [ =
Q
—

a+b

N‘+

1

s2(1 =215 ) / /
¢ mgﬁ]w(ﬁc) (f'(a)+ f'(b)).

4. Applications

The inequalities obtained above can be used in getting bound for some integrals
which has not elemantary antiderivative. Depending on the choice of f and w, one can
likely obtain sharper results. The following proposition is given application of Theorem
3 which indicates Fejer inequality for s-convex functions.

PROPOSITION 1. Let x be positive real number. If 0 < x < %, then

2x
V(1 —2x2)e”

where erf is Gauss error function, i.e.

< erf(x),

erf(x / e dt, xeR.
‘\/_

If x> 7 the inequality is reversed.
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Proof. From Example 1, f(t) = —> is 1-convex function in the fourth sense.

. 232 e . . .
Consider w(t) = e~ =3)" for fixed positive number z. It is clear that w is symmetric

to t =5 on [0,z]. Let us apply the left side of the inequality in Theorem 3 for these

functions on [0,z]. We have
L merf <£> > e (x/ﬁ(zz +2) erf<5> - Zzez42> .
2 2 4z 2
Solving the inequality for erf(5), then replacement of x = 5 yields to
V(1 —2x%)erf(x) < 2xe .

This gives the desired inequality. [

Using Theorem 4 and Theorem 6, we present the following proposition which
allows us to bound the difference of two incomplete gamma functions in terms of ex-
ponential functions.

PROPOSITION 2. Let o >3, x > 0. Then

1 1 —a —a oa—1 —x ( x)
— | == — < — ) =
( ( 2 ) 2 )x e <I'la, I'(a,x)

where T'(¢,x) denotes the incomplete gamma function, i.e.

I(o,x) = /t“‘le"dt, a>0,x>0.

Proof. 1t is clear from Example 1 that the derivative of f(x) = —ﬁx“’% is s-
convex function. Let us apply Theorem 4 and 6 for f defined on [§,x] and w defined
by w(x) = e * onand [0,x].

Using Theorem 4, we have the following inequality

1 1 1)x2+s .
r(2+—,f)—r(2+—7x)<—(s+ L P it <e_7—e_x>.
) s 4e¥(2s+1) 235 (s+1)

Using Theorem 6, we obtain

(22+%s—3s— 1>x1+%e_"

2245 (25 +1)
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Taking 2 + % = o inequalities above and then combining them, we obtain

1 1 —o —o a—1 —x ( x)
— | = = — < — ) =
< ( 2 ) 2 )x e <I'la, I'a,x)

<xles (ﬁ —2+é (1 —22—“)> . O

The following proposition is given as an application example of Theorem 5 and
Theorem 7, which yields to some bound functions for Fresnel integral for sinus. In a
similar way, one can get some bound functions for Fresnel integral for cosinus.

PROPOSITION 3. Let x > 0. Then

and

and

Proof. Consider s =%, f(t) = —4,w(t) =sin(¢*) on [0,z] in Theorem 5. Using
—1 < min w(r) for all z, we have

1€[0,7]
_3sinz2 n Zcos?? n 3\/271:S . /g < é'
32 16 64z T 40

/2 8z (7 3sin?  Z2cos?
S — | < — — . 9
(z n) Wor (5 + i 5 )

Let us consider the same value s and functions f,w on [0,2z] in Theorem 7. Using

—1 < min w(z) for all z, we have
€0,z

3sinz2  ZZcosz?  3V2m 2 V2w 2 P
— — Slzyn/— | — Slzn/ =] < —.
32 16 64z T 16 T 10

Thus we have
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32z 2 3sing? A coszz) /2
4 —— | <S{zy/= |- 10
V2m(424 +3) ( 5 16 8 T (10)

Combining (9) and (10) and then making the replacement x = z\/% , we have

and

[1]
[2]
[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]
[11]

[12]
[13]

[14]

[15]

[16]
[17]

[18]

4y (x*mr 3 . m,\ W, T,
< (- 4sin(22) -2 z
S < 3 ( 20 +4sm<2x) 4" Cos(zx ))

4x ., 3 T\ T, T,
A 2 (TR)E r <Sk). O
7t2x4+3< =X +4s1n(2x) 7 cos(zx )) S(x)
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