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A HILBERT-TYPE INEQUALITY IN THE WHOLE PLANE WITH THE
CONSTANT FACTOR RELATED TO SOME SPECIAL CONSTANTS

MINGHUI YOU, FEI DONG AND ZHENHUA HE*

(Communicated by M. Krni¢)

Abstract. In this work, a new kernel function defined in the whole plane, including both the ho-
mogeneous and the non-homogeneous cases, and involving multiple parameters is constructed.
By the method of weight coefficient and using some techniques of real analysis, a new Hilbert-
type inequality with the newly constructed kernel function, as well as its equivalent Hardy-type
inequality are established. The constant factors of the obtained inequalities are proved to be
the best possible. Furthermore, assuming special values to the parameters, some interesting and
special Hilbert-type inequalities with the constant factors involving some special constants, such
as the Euler number, Bernoulli number and the Catalan constant are presented at the end of the

paper.

1. Introduction

In 1908, German mathematician D. Hilbert put forward the famous Hilbert’s dou-
ble series inequality:

oo oo

amby,
> < ntl|all2]|b]l2, (1.1)

n=1m=1 m+n

where a = {an,}_| € 2, b= {bp}7 | € 12, and the constant factor 7 is the best
possible. In 1911, Schur proved the integral analogy of (1.1):

= = fx)gy)
/0 /0 ﬁdXdy<”||fH2H8H27 (1.2)

where f,g are two nonnegative real-valued functions, and f,g € L?>(R*). By introduc-
ing a pair of conjugate parameters p and ¢ satisfying p > 1 and %4—5 =1, inequalities
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(1.1) and (1.2) can be extended to more general forms:

T
T b 1.3
lemﬂ al bl 1)
n m 17
axd 1.4
J R < sl (14

where the constant factor smig is the best possible. (1.1)—(1.3) can be referred to the
14

classical book [4] by Hardy et al. In addition, Some analogical forms of (1.3) are also
presented in [4], such as

log 2

2
) £ 11118 llg- (1.5)

g(y)dxdy < (

sinZ
P

Inequalities (1.1) and (1.2) are usually called Hilbert inequality while Such in-
equalities as (1.3)—(1.5) are usually named as Hilbert-type inequalities. Although (1.1)—
(1.5) have been put forward for more than 100 years, their parameter extensions, coeffi-
cient refinements and high-dimension generalizations have attracted considerable atten-
tion, especially in the last 20 years (see [2, 3, 8,9, 10, 11,21,22,23, 24,25, 26, 29, 30]).
Meanwhile, by continuous construction of new kernel functions, considering the dis-
crete, half-discrete and integral cases, and studying various forms of parameter exten-
sions, researchers have already established a large number of new Hilbert-type inequal-
ities [1, 5, 6, 12, 13, 14, 15, 16, 17, 18, 19, 27, 31].

It should be mentioned that the integral Hilbert-type inequalities are usually con-
structed in the first quadrant. However, considering the particularity of some newly
constructed kernel functions, researchers sometimes extend the integral interval to the
whole plane (see [7, 15, 16, 18, 20, 28]). The idea of this paper is mainly inspired by
the above literature, and we will establish the following three inequalities in the whole
plane with u(x) =|x|P~! and v(y) =|y |77 !:

(1 )21
/ / ([Hog | xy ™ min{1, | xy |}2f(x)g(y)dxdy < k(2777)2k||fH17H||g“'1"7

T [1xxy|
(1.6)
= [ 1+xy|([log|xy [)* . £
[ P i et < o
(1.7)
/ /°° |1ixy|10§|XY||mm{1 |xy [} (x)g(y) A%
(1.8)

where By (k€ NT), Ej (k€ N) and L are the Bernoulli number, Euler number and the
Catalan constant, respectively. More generally, we will construct a new kernel function
which includes both the homogeneous and the non-homogeneous cases, and involves
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multiple parameters. By the method of weight coefficient and using some techniques
of real analysis, we will establish a more general Hilbert-type inequality in the whole
plane. Detailed lemmas will be presented in the second section.

2. Some Lemmas

LEMMA 2.1. Let 11,7 € {—1,1} and 6 € {0,1}. Ler o, B be such that B <
o <2m—2n+1, where mn € N, and n#0 for § =0, 1, = —1. Suppose that y >0
for 6=0, m,=—lord=1, 1y =1, and y> 0 for 6,11,T, taking other values.
Define

| L4+ 220 | (| log | 2 [|)”

Ks(z) := ) O’il’ 2.1
5(2) | 1+ 7 2m 148 | (min{l,\zl})l3 7 -
1 2
C 3 Tty ’ ? _2
(m,n,0,B,7,71, %) jz { (m+2)j 0Bl [(dm+2)j+20+a—BJ
+ =
[(4m+2)j+2m— o4 1771
1
, 2.2
+[(4m—i—2)j—|—2m—2n—oc—i— 1]Y+1} -
and
(—n)/
C s Vs _2
(mn, 0. B,7,71, %) z{[(2m+2)1+0c I
(-n)
. 2.3
[(2m+2)j+2m—2n—a+1}7/+1} -
Then

/ Ks(z) |2|* " dz=T(y+1)Cs(m.n, e, B, 71, 72), (2.4)

where T(s) = [ u*"te "du(s > 0) is the T-function [32], and T(s) = (s —1)! for
seNT.

Proof. We first consider the case of & = 0, then it can be obtained that

| &b |z|°‘”dz=/0 [Ko(2) + Ko(—2)] | 2| dz
By NIESTINIES TR a1
[T+ 02 [1T=02" | (min{1,2})P

1 70— B- 1+T2Z2"+a B- 1)‘10gz|y
:2/ [ Ami2 dz
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2m+o 2m+2n+o
(T logz |Y
+2/ 227 +z ) | logz | dz

4m+2 —1

aﬁ 1+Tz2n+aﬁ l-i-Tsz a-i-sz 2n— O‘)\logzP’
:2/ 1_Z4m+2 dz
=: 2(.]1 + ToJr + 1S3 —|—J4). (2.5)

In view that ; 4m = =270 Z4m+2)J for 0 < z < 1, it follows from Lebesgue term-by-
term 1ntegrat10n ' theorem that

o 1 )
= 2/0 Am2)ita=B=1 160 2 |7 dz. (2.6)

I
Set z = e@n+2i+oe-B in (2.6), then we get

h Celtvdr & r 1
Ji = b - 1 )y ()/-i- ) 1 @.7)
S [(4m+2)j+a—BJY =0 l(dm+2)j+oa-p)”
In the same way, we have
i T 1
b= Cy+1) - 2.8)
=0 [(4m+2)j+2n+o—B]”
i T 1
Js = r+1) - 2.9)
S0l4m+2)j+2m—o+1]7
& T 1
=y VAR, . (2.10)
=0 [(4m+2)j+2m—2n—a+1]"
Applying (2.7)-(2.10) to (2.5), and in view of (2.2), we get
| Ko@ |21 dz=T(y+ DColm,m, 0. B.7. 71, ). 2.11)
Similarly, for § = 1, we obtain
| K@z e = [ K K2 |2
_/ [ |1+ 02| | 1= 2! I] 2% logz "
[T+ 2 | [ 1+ 0222 || (minf{1,z})P
10— B—1 1 y oo 2n+a 1 Y
_2/ [logz [T\ 5 "% [logz |7
1+ le2m+2 1 T+ Z2m+2
10— B— 1+Z2m 2n—a
=2 I 7d
/ 1 + 1y z2m+2 [logz |7 dz
Y (—n)/'T(y+1) n (—n)/T(y+1)
[(2m+2)j+a—B)"  [2m+2)j+2m—2n—a+1]"
=I'(y+ 1)Ci(m,n,0,B,v,71,7). (2.12)

Combining (2.11) and (2.12), we have (2.3). Lemma 2.1 is proved. [J
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LEMMA 2.2. Let 71,7 € {—1,1} and 6 € {0,1}. Ler o, B be such that B <
o <2m—2n+1, where mn € N, and n# 0 for § =0, 1, = —1. Suppose that
Yy=0for 6=0, m=—1lord=1, 1y=1, and y> 0 for 8,1, taking other
values. Let A, € {j:I,:I:3,:I:%,:I:5,:I:%,~~~}, p>1 and %—Fé = 1. Suppose that

w(x) =] x |[PA-te)=1 1y () =| y |90 =1 For an arbitrary natural number s which
is large enough, set

1o
PP (EICl
0 XER\EI

ha—1+22
)= AP yeR,
0 yER\EQ

where Ey = {x:| x senti> 1} and E» = {y:|y REPS 1}. Then

//Ks (1) F02()dvay

2
N |7Ll7tz| [/[—11] s@ 2 R\[-1 1]K5 (@) 2|" " dz| . @13)

Proof. Let

Ef ={x:x€E,x>0}, E; ={x:x€E,x<0};

E;:{y:yeEg,y>0}, E; ={y:y€Ey<O0}.

Then
[ [ K5< A M)f( V8(y)dxdy := Ly 4+ Ly + Ly + Ly, (2.14)

where
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We first consider the case 41,4, < 0. Thatis A;,A; € {—1,—37—%7—5,—%,---}. Set-
ting M y’L2 = z, and using Fubini’s theorem, we have

0 22 -1 2%
Ly :/ \xlll"“l‘x_vl/ Ks (xMy%2) |y 27150 dydx

24 —M

2
W‘/ x|[7 Ks(2)|z|% " dzdx

22
=7 Kg Jlzl* iz [ " k@ 2 | a
Mz\o

K /1K()| |a71+%d
= Z Z § Z
2 M| Jo ?

1
A1

1 ind .2 (7 2
b [ K@z [ R s
|2 | 1 0

1 oo
S a—1+2 / a—1-2
- K sq d K sedz) 2.15
st | K@l e (@l e e
and
_ llaflfz_ﬁ “ ll lz Aro— 1+
L= \x| 1 Ks |y s dydx
2 0 2
Mz\/ T‘/ Ks(2) | 2|% "% dzdx

2
:—/x = /K5 ) z|* 1+v‘idz-i-/ Ks(2) |z|* 145 dz| dx
| A2 [ Jo

e N TCIEGr"
2| M| S '
1
k' 24

1 -1 p2 [7F
+—/ Ks(2) |z ”w/ 1% dedz
| A2 | J e 0
0 —1
s a—1+2 / a-1-2
= — Ks(z) |z sq dz + Ks5(z) |z sedz| . 2.16
st | LK@ BT L AT
Similarly, it can also be obtained that
N 0 a—1+2 ! o—1-2
Ly= - / Ks(2) | 2| sqdz+/ Ks(2)|z|* " Fdz|;  @17)
2| MAz | [ J1 o

1 2 had 2
u:é[/ Ks ()2 dazt [ K5<z>|z|“‘1‘ﬁdz] (2.18)
2| Mz | o 1

Plugging (2.15)—(2.18) back into (2.14), we obtain (2.13) for A;,4; < 0. Similarly,
(2.13) can also be obtained for A;A4; <0 or A;,4; > 0. Lemma 2.2 is proved. [J
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LEMMA 2.3. Let | z|< 1, y(t) = tant. Then

Ut gy | |
(n) (27 _ 27 (2K)!
4 < 2 ) r2k+1 2 (2]+ 1 _Z)2k+1 (2]+ 1 +Z)2k+l ,keN, (2.19)

| oo

2k
hn) (2T 2 (2k—1). I 1 s
v (F) 2 | TR i ke @20

Proof. y(t) = tant can be expressed as a rational fraction [32]:

w(t>=2§0[(. Lo ] 2.21)

2j+ =2t (2j+1)w+2t
Find the (2k)th derivative of (2.21), then we obtain

1 1
w20 (1) = 2251 (24)1 Z{[(2]+l)7t T [(2j+1)7t+2t}2’<+1}' (2.22)

Setting ¢t = @ in (2.22), we get (2.19). Finding the first derivative of (2.22), letting
t =4 and replacmg k+1 with k, we can arrive at (2.20). Lemma 2.3 is proved. [J

LEMMA 2.4. Let | z|< 1, ¢(¢) =sect. Then

o (2N 222K & 1)/ (—=1)/
6 )<7> m2k+l Z 2]+1—z)2k+1+(2j+1+z)2’<+1 REN 22

Proof. Taking the (2k)th derivative of the following equality

0-v(38) v(3-5)
we get
221§ (2H) (1) — 20 (g n %) 4y (g _ %) ' (2.25)

n

Setting 7 = <- in (2.25), and using (2.19), we can get
el (g) 222k i 1 B 1
2 ) 2ktl ) (4j+1 _Z)2k+1 (4j+3 +Z)2k+1

+2 !
4]_|_ 1 +Z)2k+1 (4j+3 _Z)2k+1

_22k+1<2k>! S B G D LA G O .
- r2k+1 ~ (2j+1—z)2k+1 (2j+1+z)2k+1 '

Lemma 2.4 is proved. [
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3. Main results

THEOREM 3.1. Let 71,7 € {—1,1} and 6 € {0,1}. Let o, B be such that
B<oa<2m—2n+1, where mn €N, and n # 0 for 6 =0, 1, = —1. Suppose that
Yy=0for 6=0, m=—1loré=1, 1y=1, and y> 0 for 6,1,7, taking other
values. Let A, € {j:I,:I:3,:I:%,:I:5,:I:%,~~~}, p>1 and I%—Fé = 1. Suppose that

p(x) =] x (PR y (y) =]y (1072071 and f(x), g(y) =0 with f(x) € LL(R),
gy) € LL(R). Kj(z) and Cs(m,n,a, B,7,71,T2) are defined via Lemma 2.1. Then

|k (2 rwgs)anay A

_1 _1
<| A‘l | q| ;1'2 | P r(y+I)Cé(m7n7aaBaY7Tl7T2)Hf||P7IJ||g||q7Va

1 1
where the constant factor | Ay |" 4| Ay |77 T(y+ 1)Cs(m,n, o0, B,7,71,T2) is the best
possible.

Proof. By Holder’s inequality, we obtain
/ / Ka Al AZ ()g(y)dxdy
[l ‘2)}%|y”?|x|‘i‘“ﬂx>}
x{[K,s(xMyM)} 35 1 1 60 f vy
[/ / K5 l‘ M \y

q(l=ha) q
| s () ey i)

z[/ww(xﬂx(l‘flla } [/ a0 |y’ all-ipm) () F’ a2

where

==

f” (x )dxdy}

o) = [ Ks (1) [y ay,

and
ﬁ(y):[ Ké(ll lz)‘x|lla 1dx

For x <0, A; <0, namely, A, € {—1,—3,—%,—5,—%,---}, setting x* y? = z, and
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using (2.4), we can get

0
o) = [ K (¥152) |y 25 ay K5 (152 |y 2t ay

S AE \_MO‘ [/0 Ks(z) | 2|7 ! dz+[ Ks(z) |z |*7! dz}
=X |7 T(y+ 1)Cs(m,n, 0, B, 7,71, %) | x | 7M. (3.3)

Similarly, it can be proved that (3.3) holds true for other cases: x >0, A, > 0; x >0,
A2 <0 and x <0, A, > 0. In addition, we can also prove that

a0) =2y 172 [ Koz dz

= A [T T+ 1)Cs(mn, 0, B, 7,1, ) [y |2 (v#£0).  (34)

Applying (3.3) and (3.4) to (3.2), it follows that

/:, /:, K5 (x,y)f(x)g(y)dxdy

<M 71| |77 T(y+ 1)Cs(m,n, 0, B,7,71, %)

gv- (3.5)

Next, we will prove that the equality in (3.5) doesn’t hold. In fact, suppose that
(3.5) takes the form of equality, then it can be deduced that

q(l-a)

My |y |2 l\x (@) =My | x|y | gi(y) (3.6)

a. e. in R x R, where the constants M| and M, are not both equal to zero. Simplify
(3.6), then we get

My | x [PUHD) 1P (x) = My |y [407229) g4(y).

Hence, there exists a constant C such that M, | x|P(1=411®) £7(x) = C and M, | y |7(1-%2%)

g9(y) =C a. e. in R. Assume that M; # 0, then we have | x [PU~4)=1 £P(x) = M1C|x|

a.e. in R, which contradicts the condition f(x) € Ljj(R). Therefore, (3.5) doesn’t take
the form of equality, and we get (3.1).

1
In order to complete the proof of Theorem 3.1, it suffices to prove that | A; |4
1
[ A2 | P T(y+1)Cs(m,n, o, B,7,71,T2) is the best possible. Assuming that there exists
1 1
a constant k(k > 0) such that k <| A; |7 4| A2 |77 T'(y+1)Cs(m,n,a,B,7,71,T2), and

1 1
(3.1) still holds true if | Ay |" 4| Ay | "7 T(y+ 1)Cs(m,n, o, B,7,71,T) is replaced with
k. Thatis

[ K (#12) r)giady < Kl pallglao- 37
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Let f(x) = f(x) and g(y) = &(v), where f(x) and g(y) are defined in Lemma 2.2.

/HJ]KS (2) |2 |a71+é dZ+/R\[ ]K 52z |a717% dz

A (] o) ([ )’
s E

1 1
=k|A |7 A2 |7 . (3.8)
By the use of Fatou’s lemma, it follows that

T(y+1)Cs(m,n, ., B, 7,71, 72)
- [ K@ |z ez

2
—/ limK (z) [z |* " dz+/ limKs (z) |z |*7' 7% dz

1,1] s—o0 [—1,1] s—00

<u_m[/ K@ et [ K@l
5o [J[-1,1] R\[-1,1]
<k| AT A7 (3.9)

Obviously, (3.9) contradicts the assumption, and therefore the constant factor in (3.1)
is the best possible. Theorem 3.1 is proved. [

THEOREM 3.2. Let 11,7 € {—1,1} and & € {0,1}. Let o, B be such that
B<o<2m—2n+1, where mn € N, and n # 0 for 6 = 0,7, = —1. Suppose that
Yy=0for 6=0, m=—-1lord=1, 1y=1, and y> 0 for 8,1, taking other
values. Let A, € {j:I,:I:3,:I:%,:I:5,:I:%,~~~}, p>1 and I%—Fé = 1. Suppose that

p(x) =[x [PURO= v (y) =y [107R2D7L and f(x) > 0 with f(x) € Li(R). Ks(2)
and Cg(m,n, o, B,7,71,T2) are defined via Lemma 2.1. Then

[ [ ks () ]

1 _1 p
<[4 812 |7 T+ )Colmma B v, 2 f ] (3:10)

1
where | A \75\ AL 7P T(y+ 1)Cs(m,n,a,B,y,71,T2) is the best possible, and (3.10)
is equivalent to (3.1).

Proof. Consider G(y) :=|y [Ph22~1 [[=.Ks (xhyAZ)f(x)dx]p_l, then it follows
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from Theorem 3.1 that
)= [ |y Gogy)ay

p
= [Ty | [ Kot e o
= [ [ Ksthy)r60)duay

<A I‘ﬁl A I’F L(y+1)Cs(m,n, o, B,7, 71, 0)|| fllpullGllgv-  (3.11)

(I6

Observing that f(x) € Ly (R), we can deduce from (3.11) that

p
o< [Tyt | [ ksl o
= (I614:)* = (Il615:)”
_1 _1 P
<[ 1787 T+ )G 0By 1 )|l | <= (B12)

It can be obtained from (3.12) that G(y) € L!(R), and f(x), G(y) meet the conditions
of Theorem 3.1. Therefore both (3.11) and (3.12) are strict inequalities and (3.10) is
proved.

Alternatively, suppose that (3.10) holds true, it follows from Holder’s inequality
that

|| Ka (#572) r(0lg)asay
_/ [ (1-220-1) /_.X,K‘S (x’lly’b)f( ) } “y‘lflzaf%g(y)} &
<{/_: |y [PRe! [/_ Ka( M AZ)f(x)dx]pdy}% I

Substituting (3.10) into (3.13), we get (3.1). Therefore, (3.1) and (3.10) are equivalent,
and the constant factor in the right hand side of (3.10) is obviously the best possible
from the equivalence of (3.1) and (3.10). Theorem 3.2 is proved. [

- (3.13)

4. Some Corollaries

We first present the following two equations [32]:

& By

E ]—|—1 =30001 S(2m)*, (4.1)
S 1 By 2k 2k
2 G e T 4-2)
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where By, is a Bernoulli number, B| = % B, = 30, B3 = 42

Setting 6 =a=n=0, L1i=h=n=1, f= (4m+2) (meN) and y=
2k —1 (k€ N™) in Theorem 3.1, and using (4.1) and (4.2), we can obtain the following
corollary.

COROLLARY 4.1. Let 1y € {—1,1}, meN, ke N*, p>1 and 1 +—

—1.
Suppose that p(x) =[x [P~', v(y) =|y """, and f(x), g(y) > OWlfhf() Ly (R),
g(y) € LL(R). Then

2k1

lo X
/ / e y||2m+1 (min{1, |xy [})*"* £ (x)g(y)dxdy
o[ 141 ( |
(27)%*B,
2k(2m+1)% : 4.
<2k(2m_|_1)2k”fH177IJHg q,v (4.3)

Let m = 0 in (4.3), then we obtain (1.6). Let k =1 in (1.6), then it follows that

=3 1 ’
S ing1, Ly 12 sty < 5l

‘ 1y qv- (4.4)

Setting § =oo=n=0, i=n=1, L =—1, B =—(4m+2) (meN) and
y=2k—1 (k € N*) in Theorem 3.1, and replacing g(y) | y |~®"t1) with g(y), we
have Corollary 4.2.

COROLLARY 4.2. Let 7y € {~1,1}, me N, ke N*, p>1and £+ 1 =1.

Suppose that p(x) =| x [P~1, v(y) =|y [290D=1 and f(x), g(y) >0 with f(x) €
LL(R), £(y) € LL(R). Then

. - 1 X [12k—1
./ o (mindl x|, |y )™ £(x)g(v)cay

o) | x2m+l + 1 y2m+1 |

(2m)*B

< Zam 1 lulglay. ws)

Setting  =n=0, 41 =L =n=1,B=—2m+1) (meN) and y=2k—1 (ke
N*) in Theorem 3.1, by the use of (2.20), we can obtain Corollary 4.3.

COROLLARY 4.3. Let 7y € {~1,1}, meN, keNT, p>1land ;+;=1. Let o

be such that —(2m+1) < o < 2m+ 1. Suppose that y(t) = tanz, u(x) =|x |P(1-0-1
v(y) =[y [0 and f(x), g(y) > 0 with f(x) € Li(R), g(y) € LY(R). Then

IOg xy 2k—1
[ e min( o ) 0y

2mk _ on
< (4m+2)2k‘l/(2k ! <4m+2> 1A lpallgllg.y- (4.6)
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Letting o = 0 in (4.6), and using (2.20) and (4.2), we have

bl 2k—1
/ /m|ioj|xy|2|m+l(mln{l |xy|})2m+l ( )g(y)dxdy

(2% — 1)k
< T Bl lalle

4. 4.7)

where u(x) =[x [P~ v(y) =y 97"
Lettingm=0, k=1, o = 1, p=g =2 in (4.6), we obtain

< |log|xy||l .
/ / || lgi| U inin{1, | [ @g)dndy < 2 flLlgllze @8)

Setting (X:(s:()’ Al :2,2:1’ 7:2:_1’ ﬁ:_(2m+1) (mEN) and y=
2k (k € N) in Theorem 3.1, by the use of (2.19), we can obtain another corollary.

COROLLARY 4.4. Let 1y € {—1,1}, mn,ke N and m>n>0. Let p > 1 and
+4 = 1. Suppose that (1) = tant, pu(x) =[x [P~ v(y) =|y |, and f(x),

L
¢() > 0 with f(x) € (), g(y) € LY(R). Then

1— (xy log | xy ||?*
/ / | 2mJ‘r1 ‘ ( | | H 2m+1)f(x)g(}’)dXdy

= Lz ()™ | (min{ 1, |y [})
o p2k+1 i
AT ¢ 9] 4
< (4m+2)2k+1‘/’ <2m+1) 1 lpacligllg.v- (4.9)

Let k =0 in (4.9), then it follows that

= 2m+1|<mm{1|xy|}>2'"“ F0g0)dxdy

°°| 1—|—”L'1

<= ) 1 £l
mr17 \2m+1 pull8

Let m =n=1 in (4.10), then we obtain

av- (4.10)

[ e lllffxff’ 'y (min{1, o [})” f(0g(0)dxdy < anu,wug

q.v
(4.11)

Setting 0 =11=A4 =l =1, =-2n+1) (neN) and y=2k (k€ N) in
Theorem 3.1, in view of (2.23), we can obtain Corollary 4.5.

COROLLARY 4.5. Let 1y € {—1,1}, and m,n,k € N. Letp>1and +—:1
Let o be such that —(2n+1) < o0 < 2m—2n+ 1. Suppose that ¢(t) = sect ,u( ) =
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|x [PU==1 v (y) =| y [107971 and f(x), g(y) =0 with f(x) € Lj(R), g(y) €
LI (R). Then

°°\1+Tz ()" |log |y |
f(x)g(y)dxdy
/ / 2m+2 (mln{l |xy|}) 2n+l) ( ) ( )

2n2k+1 " — O
_ T oy (m—n—a
< gm0 (“gg ) Wlhuls

Let k=0, then (4.12) reduces to

av- (4.12)

2n+1 ‘

[ R i 2 ot

T m—2n—o
< m+1¢< 2m—+2 n) ||pr.,qu

Letting m=n=0, a:%,andp:qzlwehave

- (4.13)

[ DL min1, | [ 0g0)ddy < Vanlflblgle. @14)

Observing that [32]
2kl

Z 2]+1 2k+1 22k+2(2k)!Ek

where Ej is the Euler number, Eg =1, E; =1, E; =5, ---, it follows from (2.23) that
¢ (0) = E . Therefore, Letting m = n = o = 0 in (4.12), we obtain (1.7).

Setting =11=M =L =1, a=m—2n,B=—2n+1)(mneN) and y=1
in Theorem 3.1, in view of the representation of the Catalan constant:

Ly= Z 5> =0.91596 -

we can obtain Corollary 4.6.

COROLLARY 4.6. Let 1o € {—1,1} and m,n € N. Let p > 1 and 11—7—|—L11 =1.

Suppose that p1(x) =[x [PUF21=m) =Ly (y) = y (408207 =1 and f(x), g(y) >0 with
f(x) e LE(R), g(y) € LY(R). Then

= 1+1 ()" | | log | xy ||
Sf(x)g(y)dxdy
/ / L+ (xy)™"** (min{1, | xy [})~ @+ #)e0)
4L,
o +1)2||prqu v (4.15)

Let m=n =0 in (4.15), we get (1.8).
Setting 6 =4 =L =1,11=—1,B=—2n+1)(neN) and y=2k—1 (k€
N+) in Theorem 3.1, and using (2.20), we obtain the last corollary.
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COROLLARY 4.7. Let 7 € {~1,1}, mn €N, ke N*, p>1and S+, =1.

Let o be such that —(2n+1) < o0 <2m —2n+ 1. Suppose that y(t) = tant, [,L( )=
|x POy (y) =[ y [107970 and f(x), g(y) > 0 with f(x) € Li(R), g(y) €
LI(R). Then

=1+ )™ | [log xy P!
/ / )2m+2 | (mln{l |)Cy |}) (2n+1) f(x)g(y)dXdy

2772k n(m—=2n—o
< W"’(zk Y (Tw”) 1A lpallglg.y- (4.16)

Let m =2n, (4.16) reduces to (4.6). Let m=0,n=1, » = —1,then -3 < o <
—1, and (4.15) is transfomed to the following inequality:

= = |log |xy|*! ( x2y? )
14 X dxd
/,m/,m min{l |xy|})_3 1+ xy f(x)g(y)dxdy
mk an
<5tV (55) I lpullgly- 4.17)
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