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Abstract. The main purpose of this paper is to demonstrate the moment inequality theorems of
the stochastic process. More specifically, we want to establish some stochastic moment inequal-
ities in the stochastic process by applying the Itô formula and the Gronwall-type inequalities
as well as introduce a new proofs of some parts of the Burkholder-Davis-Gundy inequality and
induce inverse inequality.

1. Introduction

The stochastic moment inequalities of stochastic integrals have been widely ap-
plied in the theory of stochastic differential equations and partial stochastic differential
equations to prove the results on existence, uniqueness, boundedness, comparison, con-
tinuous dependence, perturbation and stability etc (see [5]–[12]).

Among these moment inequalities, the well-known inequality is the Doob’s in-
equality introduced in the following theorem.

THEOREM 1. [6] (Doob’s martingale inequalities) Let {Mt}t�0 be an Rd -valued
martingale. Let [a,b] be a bounded interval in R+ .

(i) Let p � 1, and Mt ∈ Lp(Ω;Rd), then

P

{
ω : sup

a�t�b
|Mt | � c

}
� E|Mb|p

cp

holds for all c > 0.
(ii) Let p > 1, and Mt ∈ Lp(Ω;Rd), then

E

(
sup

a�t�b
|Mt |p

)
�

(
p

p−1

)p

E|Mb|p.

The Doob’s inequalities with martingale process play an important role in charac-
terizing stochastic process theory. If we apply these results to a stochastic process, we
obtain the following important moment inequality for stochastic integrals.
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THEOREM 2. [6] If p � 2 , g ∈ M 2([0,T ];Rd×m) such that

E

T∫
0

|g(s)|p ds < ∞,

then

E

∣∣∣∣ T∫
0

g(s)dB(s)
∣∣∣∣p

�
(

p(p−1)
2

) p
2

T
p−2
2 E

T∫
0

|g(s)|p ds.

In particular, for p = 2, there is equality.

If we also apply Doob’s inequalities to a stochastic process, we obtain the follow-
ing Burkholder-Davis-Gundy moment inequality for stochastic integrals.

THEOREM 3. [6] Let g ∈ L 2(R+;Rd×m). Define, for t � 0,

x(t) =
∫ t

0
g(s)dB(s) and A(t) =

∫ t

0
|g(s)|2 ds.

Then for every p > 0, there exist universal positive constants cp,Cp (depending only
on p) such that

cpE|A(t)|p/2 � E

(
sup

0�s�t
|x(s)|p

)
� CpE|A(t)|p/2

for all t � 0. In particular, one may take

cp = (p/2)p, Cp =(32/p)p/2 i f 0 < p < 2;

cp = 1, Cp =4 i f p = 2;

cp = (2p)−p/2, Cp =[pp+1/2(p−1)p−1]p/2 i f p > 2.

The moment inequality for stochastic process play an important role in characteriz-
ing stochastic process theory because of apply to various fields of stochastic differential
equations and stochastic functional differential equations theory (see [5]–[7], [9]–[12]).

Therefore, the moment inequalities for stochastic process have received much at-
tention and some authors studied generalization, sharpness, applicability, and similar
inequality of the moment inequality (see [1], [2], [4], [8]).

In particular, Cho [5], Mao [6], Kim [7]–[11] and Park et al. [12] used these
moment inequalities to prove the existence and uniqueness theorem of stochastic dif-
ferential equations and neutral stochastic functional differential equations solutions.

Motivated by [1, 3, 4, 8], in this paper, we investigated a new type moment in-
equality for stochastic integral will be introduced in Section 3, which includes the
m-dimensional Brownian motion on complete probability space. In particular, we
aimed to demonstrate the following key results: first, under the Itôs formula, we es-
timate the bounds of expectation of the stochastic integral for normal integration. Next,
we prove some martingale inequality of the stochastic integrals. Finally, we derive the
Burkholder-Davis-Gundy inequality type inequality.
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2. Preliminary

This section first introduces some terms and definitions for convenience of deploy-
ment. Let X be an Rd -valued random variable. Then X induces a probability measure
μX on the Borel measurable space (Rd ,Bd) and μX is called the distribution of X . The
expectation of X can be expressed as

EX =
∫

Rd
xdμX (x).

More generally, if g : Rd → Rm is Borel measurable, we then have the following
transformation formula

Eg(X) =
∫

Rd
g(x)dμX (x).

For p∈ (0,∞), let Lp = Lp(Ω;Rd) be the family of all Rd -valued random variable
X such that E|X |p < ∞. Moreover, the following Hölder inequality is very useful:

|E(XTY ) � (E|X |p)1/p(E|Y |q)1/q

if p > 1, 1/p+1/q = 1, X ∈ Lp , Y ∈ Lq.
Let (Ω,F ,P) be a complete probability space. A filtration is a family {Ft}t�t0

of increasing sub-σ -algebra F .
A family {Xt}t∈I of Rd -valued random variable is called a stochastic process with

parameter set I and state space Rd .
A random variable τ : Ω → [0,∞] (it may take the value ∞) is called and {Ft} -

stopping time (or simply, stopping time) if {ω : τ(ω) � t} ∈ Ft for any t � 0.
An Rd -valued {Ft} -adapted integrable process {Mt}t�t0 is called a martingale

with respect to {Ft} (or simply, martingale) if

E(Mt |Fs) = Ms a.s.

for all 0 � s < t < ∞. An Rd -valued {Ft} -adapted integrable process {Mt}t�t0 is
called a submartingale with respect to {Ft} if

E(Mt |Fs) � Ms a.s.

for all 0 � s < t < ∞.
To describe the Brownian motion mathematically it is natural to use the concept

of a stochastic process Bt(ω), interpreted as the position of the pollen grain ω at time
t . The following is a well-known mathematical definition of the Brownian motion.

DEFINITION 1. [6] Let (Ω,F ,P) be a probability space with a filtration {Ft}t�0.
A one dimensional Brownian motion is a real-valued continuous {Ft} -adapted process
{Bt}t�0 with the following properties:

(i) B0 = 0 a. s.;
(ii) for 0 � s < t < ∞, the increment Bt −Bs is normally distributed with mean

zero and variance t− s ;
(iii) for 0 � s < t < ∞, the increment Bt −Bs is independent of {Fs}.
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A m-dimensional process {Bt = (B1
t ,B

2
t , . . . ,B

m
t )}t�0 is called a m-dimensional

Brownian motion if every {Bi
t} is a one dimensional Brownian motion, and {B1

t }, . . . ,
{Bm

t } are independent.
Let 0 � a < b < ∞. Denote by M 2([a,b];R) the space of all real valued measur-

able {Ft} -adapted process f = { f (t)}a�t�b such that

|| f ||2a,b = E
∫ b

a
| f (t)|2 dt < ∞.

Denote by M0([a,b];R) the family of all real valued stochastic simple(or step) pro-
cesses g = {g(t)}a�t�b.

For a simple process g in M0([a,b];R) and bounded random variable ξi , define∫ b

a
g(t) dBt =

k−1

∑
i=0

ξi(Bti+1−Bti)

and call it the stochastic integral of g with respect to the Brownian motion {Bt} or Itô
integral. The Itô integral of stochastic process f in M 2([a,b];R) with respect to {Bt}
is defined by ∫ b

a
f (t)dBt = lim

n→∞

∫ b

a
gn(t)dBt in L2(Ω;R),

where {gn} is a sequence of simple processes such that

lim
n→∞

E
∫ b

a
| f (t)−gn(t)|2 dt = 0.

The stochastic integral has many nice properties. The following theorem is part of
such stochastic integral properties:

THEOREM 4. [6] Let f ,g ∈ M 2([a,b];R) and let α,β be two real numbers.
Then

(i) E
∫ b
a f (t)dBt = 0;

(ii) E|∫ b
a f (t) dBt |2 = E

∫ b
a | f (t)|2 dt;

(iii)
∫ b
a [α f (t)+ βg(t)] dBt |2 = α

∫ b
a f (t)dBt + β

∫ b
a g(t)dBt .

Let f ∈ M 2([a,b];R) and let τ be an {Ft} -stopping time such that 0 � τ � T.
Then {I[[0,τ]](t) f (t)}0�t�T ∈ M 2([a,b];R) clearly, and we define∫ τ

0
f (s)dBs =

∫ T

0
I[[0,τ]](s) f (s) dBs.

We shall now extend the Itô stochastic integral to the multi-dimensional case.
Let {Bt = (B1

t ,B
2
t , . . . ,B

m
t )T}t�0 is called a m-dimensional Brownian motion defined

on the complete probability space (Ω,F ,P) adapted to the filtration {Ft} . Denote
by M 2([a,b];Rd×m) denote the family of all d×m-matrix-valued measurable {Ft} -
adapted process f = {( fi j(t))d×m}0�t�T such that

E
∫ T

0
| f (t)|2 dt < ∞.
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Here, if A is a vector or a matrix, its transpose is denoted by AT ; |A| will denote
the trace norm for matrix A, that is |A| = √

trace(AT A).
And let L 2(R+;Rd×m) denote the family of all d×m-matrix-valued measurable

{F} -adapted processes f ∈ L 2(R+;Rd×m) such that
∫ T
0 | f (t)|2 dt < ∞.

And let M 2(R+;Rd×m) denote the family of all processes { f (t)}t�0 such that
E

∫ T
0 | f (t)|2 dt < ∞.

A one-dimensional Itô process is a continuous process x(t) on t � 0 of the form

x(t) = x(0)+
∫ t

0
f (s)ds+

∫ t

0
g(s)dBs,

where f ∈ L 1(R+;R) and g ∈ L 2(R+;R). We shall say that x(t) has stochastic dif-
ferential dx(t) on t � 0 given by

dx(t) = f (t)dt +g(t)dBt.

Let C2,1(Rd ×R+;R) denote the family of all real-valued functions V (x,t) defined
Rd ×R+ such that they are continuously twice differentiable in x and once in t. The
following theorem is a stochastic version of the chain rule for the Itôs integrals, which
is known as one-dimensional Itôs formula.

THEOREM 5. [6] (The one-dimensional Itôs formula) Let x(t) be an Itô process
on t � 0 with the stochastic differential given by

dx(t) = f (t)dt +g(t)dBt,

where f ∈L 1(R+;R) and g∈L 2(R+;R). And let V ∈C2,1(R×R+;R). Then V (x(t),t)
is again an Itô process with the stochastic differential given by

dV (x(t), t) = [Vt(x(t),t)+Vx(x(t),t) f (t)+
1
2
Vxx(x(t),t)g2(t)]dt

+Vx(x(t),t)g(t)dBt a.s.

We shall now extend the 1-dimensional Itô stochastic formula to the multi-di-
mensional case. Let {Bt = (B1(t),B2(t), . . . ,(Bm(t))T }t�0 is called a m-dimensional
Brownian motion defined on the complete probability space (Ω,F ,P) adapted to the
filtration {Ft} .

A d -dimensional Itô process is an Rd -value continuous process x(t) = (x1(t), · · · ,
xd(t))T on t � 0 of the form

x(t) = x(0)+
∫ t

0
f (s)ds+

∫ t

0
g(s)dB(s),

where f = ( f1, · · · , fd)T ∈ L 1(R+;Rd) and g = (gi j)d×m ∈ L 2(R+;Rd×m). We shall
say that x(t) has stochastic differential dx(t) on t � 0 given by

dx(t) = f (t)dt +g(t)dB(t).

The following theorem is a stochastic version of the chain rule for the Itôs inte-
grals, which is known as multi-dimensional Itôs formula.
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THEOREM 6. [6] (The multi-dimensional Itôs formula) Let x(t) be a d -dimen-
sional Itô process on t � 0 with the stochastic differential given by

dx(t) = f (t)dt +g(t)dB(t),

where f = ( f1, · · · , fd)T ∈ L 1(R+;Rd) and g = (gi j)d×m ∈ L 2(R+;Rd×m). And let
V ∈ C2,1(Rd ×R+;R). Then V (x(t),t) ia again an Itô process with the stochastic dif-
ferential given by

dV (x(t), t) = [Vt(x(t),t)+Vx(x(t),t) f (t)+
1
2
trace(gT (t)Vxx(x(t),t)g(t))]dt

+Vx(x(t),t)g(t)dB(t) a.s.

3. Gronwall type moment inequalities

In this section, we want to establish some stochastic moment inequalities in the
stochastic process by applying the Itô formula and the Gronwall-type inequalities. For
the convenience of the proofs of main results, we introduce the following well known
inequality of the Gronwall-type.

LEMMA 1. [3] Let a(t),b(t) and u(t) be continuous functions in J = [α,β ] , and
let a(t) be nondecreasing in J and b(t) be nonnegative in J . Suppose that

u(t) � a(t)+
∫ t

α
b(s)u(s)ds, t ∈ J.

Then,

u(t) � a(t) exp

(∫ t

α
b(s)ds

)
, t ∈ J.

Now we shall apply Itô’s formula to describe some very interesting moment in-
equalities for stochastic integrals as well as the exponential martingale inequality.

THEOREM 7. If p � 2,g ∈ M 2([0,T ];Rd×m) such that

E
∫ T

0
|g(s)|p ds < ∞,

then

E

∣∣∣∣∫ T

0
g(s)dB(s)

∣∣∣∣p

� (p−1)
[
E

∫ T

0
|g(s)|p ds

]
exp

(
(p−1)(p−2)

2
T

)
. (1)

Proof. For p = 2 the required result follows form Theorem 4 so we only need to
show the theorem for the case of p > 2. For 0 � t � T, set

x(t) =
∫ t

0
g(s)dB(s).
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By Itô’s formula and Theorem 4,

E|x(t)|p =
p(p−1)

2
E

∫ t

0
|x(s)|p−2|g(s)|2 ds+ pE

∫ t

0
|x(s)|p−1g(s)dB(s)

=
p(p−1)

2
E

∫ t

0
|x(s)|p−2|g(s)|2 ds. (2)

Using the Hölder’s inequality, we have

E|x(t)|p =
p(p−1)

2
E

∫ t

0
|x(s)|p−2|g(s)|2 ds

� p(p−1)
2

(
E

∫ t

0
|x(s)|p ds

) p−2
p

(
E

∫ t

0
|g(s)|p ds

) 2
p

.

By the Young’s inequality implies the estimate

E|x(t)|p � (p−1)
(

E
∫ t

0
|g(s)|p ds

)
+

(p−1)(p−2)
2

(
E

∫ t

0
|x(s)|p ds

)
. (3)

By Lemma 1, this yields

E|x(t)|p � (p−1)
(

E
∫ t

0
|g(s)|p ds

)
exp

(
(p−1)(p−2)

2
t

)
,

and the required (1) follows by replacing t with T. �

THEOREM 8. Under the same assumptions Theorem 7, we have following moment
inequality for stochastic integrals

E

(
sup

0�t�T

∣∣∣∣∫ t

0
g(s)dB(s)

∣∣∣∣p)
�

(
pp

(p−1)p−1

)(
E

∫ t

0
|g(s)|p ds

)
exp

(
(p−1)(p−2)

2
T

)
.

Proof. Recall that the stochastic integral
∫ t
0 g(s)dB(s) is an Rd -valued continuous

martingale. Hence, by Doob’s martingale inequality (i.e. Theorem 1), we have

E

(
sup

0�t�T

∣∣∣∣∫ t

0
g(s)dB(s)

∣∣∣∣p)
�

(
p

(p−1)

)p

E

∣∣∣∣∫ T

0
g(s)dB(s)

∣∣∣∣p

.

In view of Theorem 7, we have obtain the desired result. �

In following theorem, using the Gronwall-type moment inequality, we introduce a
new proof of some parts of the Burkholder-Davis-Gundy inequality.
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THEOREM 9. Let g ∈ L 2([0,T ];Rd×m). Define, for t � 0,

x(t) =
∫ t

0
g(s)dB(s) and A(t) =

∫ t

0
|g(s)|2 ds.

Then, we have

E|A(t)| � E

(
sup

0�s�t
|x(s)|2

)
� 4E|A(t)| (4)

for all t � 0.

Proof. We may assume without loss of generality that both x(t) and A(t) are
bounded. Otherwise, for each integer n � 1, define the stopping time

τn = inf{t � 0 : |x(t)| ∨A(t) � n}.
If we can show (4) for the stooped process x(t∧τn) and A(t∧τn), then the general case
follows upon letting n → ∞. It follows from Theorem 4 that∫ t

0
|g(s)|2 ds = E

∣∣∣∣∫ t

0
g(s)dB(s)

∣∣∣∣2 � E

(
sup

0�s�t
|x(s)|2

)
which is the left-hand-side inequality of (4). On the other hand, by the Theorem 8
yields

E

(
sup

0�s�t
|x(s)|2

)
� 4E

∣∣∣∣∫ t

0
|g(s)|2 ds

∣∣∣∣
which is the right-hand-side inequality of (4). This required the inequality. �

THEOREM 10. Let g ∈ L 2([0,T ];Rd×m). Define, for t � 0,

x(t) =
∫ t

0
g(s)dB(s) and A(t) =

∫ t

0
|g(s)|2 ds.

Then for every p > 2, we have, for all t � 0

E

(
sup

0�s�t
|x(s)|p

)
� Dp exp

(
pp(p−2)

2(p−1)p−1 t

)
E

∫ t

0
|g(s)|p ds, (5)

where Dp = pp/(p−1)p−1.

Proof. We may assume without loss of generality that both x(t) and A(t) are
bounded. Otherwise, for each integer n � 1, define the stopping time

τn = inf{t � 0 : |x(t)| ∨A(t) � n}.
If we can show (5) for the stooped process x(t∧τn) and A(t∧τn), then the general case
follows upon letting n → ∞. By Itô’s formula and Theorem 4,

E|x(t)|p =
p(p−1)

2
E

∫ t

0
|x(s)|p−2|g(s)|2 ds.
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Using the Hölder’s inequality, we have

E|x(t)|p � p(p−1)
2

(
E

∫ t

0
|x(s)|p ds

) p−2
p

(
E

∫ t

0
|g(s)|p ds

) 2
p

.

It follows from that

E|x(t)|p � (p−1)
(

E
∫ t

0
|g(s)|p ds

)
+

(p−1)(p−2)
2

(
E

∫ t

0
|x(s)|p ds

)
, (6)

where the Young’s inequality has been used. On the other hand, by the Doob’s martin-
gale inequality yields

E

(
sup

0�s�t
|x(s)|p

)
�

(
p

p−1

)p

E|x(t)|p.

Substituting this into inequality (6) yields

E

(
sup

0�s�t
|x(s)|p

)
�

(
pp

(p−1)p−1

)
E

∫ t

0
|g(s)|p ds+

(
pp(p−2)

2(p−1)p−1

)
E

∫ t

0
|x(s)|p ds.

This implies

E

(
sup

0�s�t
|x(s)|p

)
�

(
pp

(p−1)p−1

)
E

∫ t

0
|g(s)|p ds+

(
pp(p−2)

2(p−1)p−1

)∫ t

0
E sup

0�r�s
|x(r)|p ds.

By Lemma 1, this yields

E

(
sup

0�s�t
|x(s)|p

)
� pp

(p−1)p−1 exp

(
pp(p−2)

2(p−1)p−1 t

)
E

∫ t

0
|g(s)|p ds.

This required the inequality. The proof is now complete. �
In following theorem, we induce a inverse inequality of some parts of the Burkholder-

Davis-Gundy inequality.

THEOREM 11. Let g ∈ L 2([0,T ];Rd×m). Define, for t � 0,

x(t) =
∫ t

0
g(s)dB(s) and A(t) =

∫ t

0
|g(s)|2 ds.

Then for every p > 2 and 2(p−1)p−1 < pp(p−2) , we have

E

(
sup

0�s�t
|x(s)|p

)
> D̃pE|A(t)| p

2 , (7)

where D̃p = 2pp/[2(p−1)p−1− pp(p−2)].
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Proof. We may assume without loss of generality that both x(t) and A(t) are
bounded. Otherwise, for each integer n � 1, define the stopping time

τn = inf{t � 0 : |x(t)| ∨A(t) � n}.

If we can show (7) for the stooped process x(t∧τn) and A(t∧τn), then the general case
follows upon letting n → ∞. Besides, for convenience, we set x∗(t) = sup0�s�t |x(s)|.
It follows form (2),

E|x(t)|p =
p(p−1)

2
E

[|x∗(t)|p−2A(t)
]

� p(p−1)
2

[E|x∗(t)|p] p−2
p

[
|A(t)| p

2

] 2
p
,

where the Hölder’s inequality has been used. It follows from that

E|x(t)|p � (p−1)(p−2)
2

E|x∗(t)|p +(p−1)E|A(t)| p
2 , (8)

where the Young’s inequality has been used. On the other hand, by the Doob’s martin-
gale inequality yields

E|x∗(t)|p �
(

p
p−1

)p

E|x(t)|p.

Substituting this into inequality (8) yields

E|x∗(t)|p � pp(p−2)
2(p−1)p−1E|x∗(t)|p +

pp

(p−1)p−1E|A(t)| p
2 .

This implies for 2(p−1)p−1 < pp(p−2),

E|x∗(t)|p >
2pp

2(p−1)p−1− pp(p−2)
E|A(t)| p

2 .

This required the inequality. The proof is now complete. �

REMARK. In the Theorem 7 and 8, we established a Gronwall type moment in-
equality of the stochastic process by applying the Itô formula. In the Theorem 9, we
gave a new proofs of a parts of the Burkholder-Davis-Gundy inequality. Also in the
Theorem 10, we gave a new moment inequality of the stochastic process. Further-
more, in the Theorem 10, we established a inverse moment inequality of a parts of the
Burkholder-Davis-Gundy inequality.
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