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P–ADIC WEAK CENTRAL MORREY
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Abstract. In this article, the theory of differential forms on Rn was extended to the filed Qn
p of

p -adic numbers. The imbedding inequalities for differential forms were derived on Qn
p . Then,

we show the definitions of p -aidc weak central Morrey spaces and p -adic λ -central BMO
spaces on differential forms. The boundedness of Hardy operator and its adjoint operator were
given in the new space. Finally, we give the characterization of the two operators in p -adic
λ -central BMO spaces by using imbedding inequalities on differential forms.

1. Introduction

For a fixed prime p , a nonzero rational number x can be represented in the form
x = pγm/n , where p,m and n are coprime to each other and γ = γ(x) ∈ Z . The norm
is defined as |x|p = p−γ . For x = 0 we have |0|p = 0. The p -adic valuation | · |p
of Q satisfies all the conditions of real norm together with so called strong triangular
inequality,

|x+ y|p � max{|x|p, |y|p}. (1)

Furthermore, if |x|p �= |y|p , then (1) takes the form:

|x± y|p = max{|x|p, |y|p}.

We denote the field of p -adic numbers by Qp , and Qp is the completion of the field of
rational number Q with respect to ultrametric p -adic norm | · |p . From the standard p -
adic analysis [6], we know that any p -adic number x∈Qp\{0} can also be represented
in the canonical form as:

x = pγ
∞

∑
j=0

a j p
j, (2)

where a j,γ ∈ Z , a0 �= 0 � a j < p . The series (2) converges in p -adic norm, because
|pγa j p j|p = p−γ− j for a j �= 0.
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The space Qn
p = Qp×·· ·×Qp consists of points x = (x1,x2, . . . ,xn) , where xk ∈

Qp , k = 1,2, . . . ,n . The p -adic norm defined on higher dimensional space Qn
p as

|x|p = max
1�k�n

|xk|p. (3)

The symbols Bγ (a) and Sγ(a) represent, respectively, the ball and the sphere with
center at a ∈ Qn

p and radius pγ , defined by

Bγ (a) = {x ∈ Qn
p : |x−a|p � pγ}, Sγ(a) = {x ∈ Qn

p : |x−a|p = pγ}. (4)

It is clear that Sγ(a) = Bγ (a)\Bγ−1(a) , and

Bγ (a) =
⋃
k�γ

Sk(a).

We set Bγ(0) = Bγ and Sγ(0) = Sγ . Also, for each a0 ∈ Qn
p , a0 + Bγ = Bγ(a0) and

a0 +Sγ = Sγ(a0) .
The locally compact commutative group under addition of Qn

p makes sure the
existence of additive positive Haar measure dx on Qn

p . It is unique up to a positive
constant factor and is translation invariant. We normalize the measure dx by the equal-
ity ∫

B0(0)
dx = |B0(0)|H = 1,

where |B|H indicates the Haar measure of a subset B of Qn
p , which is measurable.

Also, an easy calculation shows |Bγ (a)|H = pnγ , |Sγ(a)|H = pnγ(1− p−n) , for any
a ∈ Qn

p .
The p -adic analysis is a key tool to describe Kohlrausch-Williams-Watts law, the

power decay law and the logarithmic decay law, see [1]. It has also cemented its role in
p -aidc pseudo-differential equations and stochastic process, see [10].

2. Differential forms in Qn
p

In this section, the extension of differential forms in Qn
p was introduced and the

imbedding inequalities for differential forms in Qn
p were derived.

The spaces of all l -forms in Qn
p is denoted by ∧l(Qn

p) , spanned by exterior prod-
ucts eI = ei1 ∧ ei2 · · · ∧ eil , for all ordered l -tuples I = (i1, i2, · · · , il) , 1 � i1 < · · · <
il � n . In particular, ∧1(Qn

p) is the dual of Qn
p . The basis of dual space is denoted

by {e1,e2, · · · ,en} . The direct sum ∧(Qn
p) = ⊕n

l=0∧l (Qn
p) , where ∧0(Qn

p) = Qn
p , is a

graded algebra with respect to the exterior product.
If u is a differential l -form in Qn

p and it is differentiable, we see the derivative
mapping u′(x) : Qn

p →∧l(Qn
p) . Then u′(x)θi is an l -antisymmetric metric function on

Qn
p×·· ·× ∈ Qn

p , where θi ∈ Qn
p for i = 1,2 · · · , l +1. The exterior differential du(x)

is an (l +1)-form which is defined by

du(x)(θ1,θ2, . . . ,θl+1) : = du(x;θ1,θ2, . . . ,θl+1)

=
l+1

∑
i=1

(−1)i−1[u′(x)θi](θ1, . . . , θ̂i, . . . ,θl+1), (5)
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where θ̂i denotes that θi is absent from (θ1, . . . , θ̂i, . . . ,θl+1) .
The coordinate functions x1,x2, . . . ,xn in Qn

p are considered to be differential
forms of degree 0. The 1-forms dx1,dx2, . . . ,dxn are constant functions from Qn

p into
∧l(Qn

p) . The constant value of dxi is simply ei , i = 1,2, . . . ,n . Then l -form u from
Qn

p to ∧l(Qn
p) and exterior differential du can be written as

u(x) = ∑
1�i1<···<il�n

ui1i2···il (x)dxi1 ∧·· ·∧dxil

and

du(x) =
n

∑
k=1

∑
1�i1···<il�n

∂ui1···il (x)
∂xk

dxk ∧dxi1 ∧·· ·∧dxil ,

respectively. Moreover, we denote by C∞(∧l ,Qn
p) the space of differential l -forms

on Qn
p for all l -tuples I = {i1i2 · · · il} whose coefficient functions uI are infinitely

differentiable functions.
We shall denote by Lq(∧l ,Qn

p) the space of differential l -forms on Qn
p for all

l -tuples I and with finite norm

‖u‖Lq(∧l ,Qn
p)

=
(∫

Qn
p

(
∑
I

|uI(y)|2
) q

2
dy
) 1

q
.

A differential l -form u is called a closed form if du = 0 in Qn
p . Similarly, a differ-

ential (l +1)-form v is called a coclosed form if d�v = 0. From the Poincaré lemma,
ddu = 0, we know that du is a closed form. The operator � : ∧l(Qn

p) → ∧n−l(Qn
p)

is the Hodge-star operator which is an isometric isomorphism. The Hodge codif-
ferential operator d� : ∧l+1(Qn

p) → ∧l(Qn
p) , the formal adjoint of d , is defined by

d� = (−1)nl+1 � d� , see [12] for more introduction. By A � B we mean that A � CB
with some positive constant C independent of appropriate quantities. If A � B and
B � A , we write A ∼ B , then we say that A and B are equivalent. Now, we prove the
basic estimates for differential forms in Qn

p .

THEOREM 1. Let Bγ be a ball of radius pγ centered at 0 ∈ Qn
p . For each y ∈ Bγ

there exists a linear operator Ky : C∞(Bγ ,∧l) →C∞(Bγ ,∧l−1) defined by

(Kyu)(x;θ1, . . . ,θl−1) =
∫

B0

|t|l−1
p u((1−|t|p)x+ |t|py;x−y,θ1, . . . ,θl−1)dt (6)

and the following decomposition

u = d(Kyu)+Ky(du), (7)

where y be any point in Bγ ⊂ Qn
p .

Proof. From (5), we have

du(x;θ1,θ2, . . . ,θl+1) = [u′(x)θ0](θ1, . . . ,θl)+
l+1

∑
i=1

(−1)i−1[u′(x)θi](θ1, . . . , θ̂i, . . . ,θl)



72 J. WANG, L. WANG AND Y. XING

for all x ∈ Bγ and θi ∈ Qn
p , where i = 0,1,2, . . . , l .

Then

du((1−|t|p)x+ |t|py;x−y,θ1,θ2, . . . ,θl)
= [u′((1−|t|p)x+ |t|py)(x−y)](θ1, . . . ,θl)

+
l

∑
i=1

(−1)i−1[u′((1−|t|p)x+ |t|py)θi](x−y,θ1, . . . , θ̂i, . . . ,θl).

By using (6), we obtain

(Kydu)(x;θ1, . . . ,θl)

=
∫

B0

|t|lp[u′((1−|t|p)x+ |t|py)(x−y)](θ1, . . . ,θl)dt

+
l

∑
i=1

(−1)i−1
∫

B0

|t|lp[u′((1−|t|p)x+ |t|py)θi](x−y,θ1, . . . , θ̂i, . . . ,θl)dt. (8)

Similarly, for Kyu is an l−1 form, we have

[(Kyu)′(x)θi](θ1, . . . , θ̂i, . . . ,θl−1)

=
∫

B0

|t|lp[u′((1−|t|p)x+ |t|py)θi](x−y,θ1, . . . , θ̂i, . . . ,θl)dt

+
∫
B0

|t|l−1
p u((1−|t|p)x+ |t|py;θi,θ1, . . . , θ̂i, . . . ,θl−1)dt.

For Ky : C∞(Bγ ,∧l) →C∞(Bγ ,∧l−1) and d : ∧l(Qn
p) →∧l+1(Qn

p) , we get d(Kyu) is
an l -form given by

(dKyu)(x;θ1, . . . ,θl) =
l

∑
i=1

(−1)i−1[(Kyu)′(x)θi](θ1, . . . , θ̂i, . . . ,θl).

Combining these two facts, we deduce

(dKyu)(x;θ1, . . . ,θl)

=
l

∑
i=1

(−1)i−1
∫

B0

|t|lp[u′((1−|t|p)x+ |t|py)θi](x−y,θ1, . . . , θ̂i, . . . ,θl)dt

+
l

∑
i=1

(−1)i−1
∫

B0

|t|l−1
p u((1−|t|p)x+ |t|py;θi,θ1 . . . , θ̂i, . . . ,θl)dt. (9)

It is easy to see that the second part of (8) is counteracted by the first part of (9).
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Therefore,

(dKyu+Kydu)(x;θ1,θ2, . . . ,θl)

=
∫

B0

|t|lp[u′((1−|t|p)x+ |t|py)(x−y)](θ1, . . . ,θl)dt

+ l
∫

B0

|t|l−1
p u((1−|t|p)x+ |t|py;θ1, . . . ,θl)

=
∫

B0

d
dt

[|t|lpu((1−|t|p)x+ |t|py;θ1, . . . ,θl)]dt

= u(x;θ1, . . . ,θl). (10)

The proof of Theorem 1 has been completed. �
The following imbedding inequalities are derived as follow.

THEOREM 2. Let T : C∞(Bγ ,∧l) → C∞(Bγ ,∧l−1) is a homotopy operator for
l = 3,4 . . . ,n, 1 � q < ∞ . For u be a differential l -form, we have

T u =
∫

Bγ
ϕ(y)Kyudy,

where ϕ ∈C∞
0 (Bγ) satisfies

∫
Bγ

ϕ(y)dy = 1 . Then u has the following decomposition:

u = d(T u)+T (du). (11)

and the following inequality

‖T u‖Lq(∧l ,Bγ ) � |Bγ |1+1/n
H ‖ϕ‖L∞‖u‖Lq(∧l ,Bγ ). (12)

Proof. For θ1, . . . ,θl−1 ∈ Qn
p , we see

T u(x;θ1, . . . ,θl−1) =
∫

B0

|t|l−1
p

∫
Bγ

ϕ(y)u((1−|t|p)x+ |t|py;x−y,θ1, . . . ,θl−1)dydt.

Let a = (1−|t|p)x+ |t|py and b = x−a . We consider a mapping Γ : Qn
p×Qn

p → Rn ,
whose valuation is defined by

|Γ(a,b)| = |b| fp
∣∣∣∫

B0

|t|l−3
p ϕ(a−

(1−|t|p
|t|p

)
b)dt

∣∣∣,
where the mapping fp : Qn

p → Rn is given by fp(z) = |z| fp := (|z1|p, |z2|p, . . . , |zn|p)
for any z ∈ Qn

p . By using Hölder inequality, we estimate

|Γ(a,b)| � | fp(b)|‖ϕ‖L∞

∫
B0

|t|l−3
p dt

� |t|p| fp(x−y)|
l−2

‖ϕ‖L∞

� |Bγ |1/n
H ‖ϕ‖L∞ ,
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and

|T u(x)|=
∣∣∣∫

Bγ
u(a;Γ(a,b),θ1, . . . ,θl−1)dy

∣∣∣� |Bγ |1/n
H ‖ϕ‖L∞

∫
Bγ
|u(y)|dy.

Thus, we conclude that

‖T u‖Lq(∧l ,Bγ ) � |Bγ |1+1/n
H ‖ϕ‖L∞‖u‖Lq(∧l ,Bγ ). (13)

The proof of Theorem 2 has been completed. �

COROLLARY 1. Let u∈Lq
loc(∧l ,Bγ) is a differential l -form and du∈Lq

loc(∧l+1,Bγ) ,
1 � q < ∞ , l = 3,4, . . . ,n. Then, we have the following result

‖d(T u)‖Lq
loc(∧l ,Bγ ) � ‖u‖Lq

loc(∧l ,Bγ ) + |Bγ |1+1/n
H ‖ϕ‖L∞‖du‖Lq

loc(∧l+1,Bγ )

for each Bγ is a ball in Qn
p , and ϕ ∈C∞

0 (Bγ) satisfies
∫
Bγ

ϕ(y)dy = 1 .

Similar to the integral average in function spaces, we denote the integral average
of u over Bγ ⊂ Qn

p by uBγ which satisfies

uBγ =

{
1

|Bγ |H
∫
Bγ

u(y)dy, l = 0

d(T u), l = 1,2 · · · ,n
and

u = T d(u)+uBγ . (14)

From (14), we can obtain the following result in Qn
p .

THEOREM 3. Let u∈ Lq(∧l,Qn
p) be a differential l -form and du∈ Lq(∧l+1,Qn

p) .
Then u−uγ satisfies the following inequality

‖u−uγ‖Lq(∧l ,Bγ ) � |Bγ |1+1/n
H ‖ϕ‖L∞‖du‖Lq(∧l+1,Bγ )

for ϕ ∈C∞
0 (Bγ) satisfies

∫
Bγ

ϕ(y)dy = 1 and Bγ is a ball in Qn
p .

Next, we show the definitions of p -adic Morrey spaces and p -adic central Morrey
spaces on differential forms. The p -adic weak Lebesgue space WLq(∧l ,Qn

p) for which
the set of all differential l -forms u is defined as:

‖u‖WLq(∧l ,Qn
p)

:= sup
λ>0

λ
∣∣{x ∈ Qn

p : |u(x)| > λ}∣∣1/q
< ∞. (15)

More details of p -adic weak Lebesgue space were introduced in [14].

DEFINITION 1. Let u be a differential l -form on Qn
p . For 1 � q < ∞ and −1/q�

λ < ∞ , we denote the p -adic Morrey space on differential forms by Lq,λ (∧l ,Qn
p) with

norm

‖u‖Lq,λ (∧l ,Qn
p)

= sup
a∈Qn

p,γ∈Z

1

|Bγ (a)|1/q+λ
p

‖u‖Lq(∧l ,Bγ (a)) < ∞.



P -ADIC CENTRAL WEAK MORREY SPACES 75

It is easy to see that Lq,λ (∧l ,Qn
p) coincides with Lq(∧l ,Qn

p) when λ = −1/q .

DEFINITION 2. Let 1 � q < ∞ and −1/q � λ < ∞ . The p -adic central Morrey
space on differential forms Ḃq,λ (∧l ,Qn

p) is defined as

Ḃq,λ (∧l ,Qn
p) := sup

γ∈Z

1

|Bγ |1/q+λ
H

‖u‖Lq(∧l ,Bγ ), (16)

where Bγ = Bγ (0) is a ball in Qn
p centered at 0 and radius of pγ .

It is clear that Lq,λ (∧l ,Qn
p)⊂ Ḃq,λ (∧l ,Qn

p) . When λ <−1/q , the space Ḃq,λ (∧l ,Qn
p)

reduces to {0} .

DEFINITION 3. Let 1 � q < ∞ and −1/q � λ < ∞ . The p -adic weak central
Morrey space on differential forms Ḃq,λ (∧l ,Qn

p) is defined as

WḂq,λ (∧l,Qn
p) := {u : ‖u‖WḂq,λ (∧l ,Qn

p)
< ∞},

where

‖u‖WḂq,λ (∧l ,Qn
p)

= sup
γ∈Z

1

|Bγ |1/q+λ
H

‖u‖WLq(∧l ,Bγ ),

and ‖u‖WLq(∧l ,Bγ ) is the local p -adic Lq -norm of u(x) respect to (15).

Also, Ḃq,λ (∧l ,Qn
p) ⊂ WḂq,λ (∧l ,Qn

p) for 1 � q < ∞ and −1/q < λ < 0. The

definition of CMOq,λ (∧l ,Qn
p) is as follows.

DEFINITION 4. For 1 � q < ∞ , let u be a differential l -form on Qn
p , l = 0,1, · · · ,n

and λ ∈ (−∞,n) . The space CMOq,λ (∧l ,Qn
p) is defined by

‖u‖CMOq,λ (∧l ,Qn
p)

:= sup
γ∈Z

(
1

|Bγ |1+λq
H

∫
Bγ
|u(x)−uBγ |qdx

)1/q

< ∞. (17)

REMARK 1. If l = 0, the space of CMOq,λ (∧l ,Qn
p) coincides with CMOq,λ (Qn

p)
which intoduced in [20]. The formulas (16) and (17) yield that Ḃq,λ is a Banach space
continuously included in CMOq,λ .

Next, we show a important property for differential forms in CMOq,λ (∧l ,Qn
p) .

THEOREM 4. Assume that u ∈ Lq(∧l ,Qn
p) be a differential l -form and du ∈

Lq(∧l+1,Qn
p) , 1 � q < ∞ . Then we have the following characterization:

(i) If ‖u‖CMOq,λ (∧l ,Qn
p)

= 0 , then u is a closed form.

(ii) Let λ ′ = λ −1−1/n, then we have

‖u‖CMOq,λ (∧l ,Qn
p)

� ‖ϕ‖L∞‖du‖Ḃq,λ ′(∧l+1,Qn
p)

,

where ϕ ∈C∞
0 (Bγ) satisfies

∫
Bγ

ϕ(y)dy = 1 .
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Proof. From (i), it is clear to see that u = uBγ . In fact, the definition of uBγ
coincides with (14) and according to the Poincaré lemma

duBγ = du−d(T du) = T (ddu)+dT (du)−dT (du) = 0.

Then, both u and uBγ are closed form. Next, we show that

‖u‖CMOq,λ (∧l ,Qn
p)

= sup
γ∈Z

(
1

|Bγ |1+λq
H

∫
Bγ
|u(x)−uBγ |qdx

)1/q

= sup
γ∈Z

(
1

|Bγ |1+λq
H

∫
Bγ
|T du(x)|qdx

)1/q

� ‖ϕ‖L∞ sup
γ∈Z

1

|Bγ |1/q+λ
H

|Bγ |1+1/n
H ‖du‖Lq(∧l+1,Bγ )

� ‖ϕ‖L∞‖du‖Ḃq,λ ′ (∧l+1,Qn
p)

.

The proof of Theorem 4 has been completed. �

3. Estimates of fractional p -adic Hardy operator

For a locally integrable function f on R+ , the one-dimensional Hardy operator is
defined as:

H f (x) =
1
x

∫ x

0
f (y)dy, x > 0,

which satisfies the following integral inequality:

‖H f‖Lq � q
q−1

‖ f‖Lq , 1 < q < ∞.

More details for Hardy operator were introduced in [21, 22]. For f ∈ Lloc(Qn
p) and

0 < α < n , the p -adic fractional Hardy operator is defined as:

Hα f (x) =
1

|x|n−α
p

∫
|y|p�|x|p

f (y)dy, x ∈ Qn
p \ {0}.

If α = 0, the fractional p -adic Hardy operator is reduced to p -adic Hardy operator, see
[13] for more detials. Now we give the fractional p -adic Hardy operator on differential
forms:

Hαu(x) :=
1

|x|n−α
p

∑
I

∫
|y|p�|x|p

uI(y)dydxI, x ∈ Qn
p \ {0}, (18)

and its adjoint operator on differential forms:

H ∗
α u(x) = ∑

I

∫
|y|p>|x|p

uI(y)
|y|n−α

p
dydxI, x ∈ Qn

p \ {0}, (19)

where u(x) ∈ Lloc(∧l ,Qn
p) is a differential l -form and each uI is a locally integrable

function on R+ . In this section, we give the boundedness of fractional p -adic Hardy
operator in p -adic weak central Morrey spaces on differential forms.
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THEOREM 5. Let 0 < α < n, 1 � q < ∞ and −1/q � λ < n. If u∈ Lq
loc(∧l,Qn

p) ,
then

‖Hαu(x)‖Ḃq,λ (∧l ,Qn
p)

� ‖u‖Ḃq,λ (∧l ,Qn
p)

sup
γ∈Z

(
pαqγ(1− p−n)

1− p−(n+αq+nλq)

)1/q

and

‖Hαu(x)‖WḂq,λ (∧l ,Qn
p)

� ‖u‖Ḃq,λ (∧l ,Qn
p)

.

Proof. By using Fubini’s theorem and the elementary inequality |∑n
i=1 si|q �

nq−1 ∑n
i=1 |si|q for q,n > 0, we deduce that

|Hαu(x)| = 1

|x|n−α
p

∣∣∣∣∣∑I
∫
|y|p�|x|p

uI(y)dydxI

∣∣∣∣∣
� 1

|x|n−α
p

∣∣∣∣∣
∫
|y|p�|x|p

∑
I

uI(y)dxIdy

∣∣∣∣∣
� 1

|x|n−α
p

∫
|y|p�|x|p

(∣∣∑
I

uI(y)
∣∣2)1/2

dy

�
(n

l

) 1

|x|n−α
p

∫
|y|p�|x|p

(∑
I

|uI(y)|2)1/2dy,

where n and l are fixed integers. In fact, we know

dim(∧l) =
(n

l

)

and for l = 0,1,2, · · · ,n , we get

dim(∧) =
n

∑
l=0

dim(∧l) =
n

∑
l=0

(n
l

)
= 2n.

Hence, by using Hölder’s inequality, we get

|Hαu(x)| = 1

|x|n−α
p

∣∣∣∣∣∑I
∫
|y|p�|x|p

uI(y)dydxI

∣∣∣∣∣
� 1

|x|n−α
p

∫
B(0,|x|p)

(∑
I
|uI(y)|2)1/2dy

� 1

|x|n−α
p

(∫
B(0,|x|p)

(∑
I
|uI(y)|2)q/2dy

)1/q(∫
B(0,|x|p)

dy
)1/q′

� |x|α+nλ
p ‖u‖Ḃq,λ (∧l ,Qn

p)
,
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and

1

|Bγ |1+λq
H

∫
Bγ
|x|αq+nλq

p dx = p−γn(1+λq)
γ

∑
k=−∞

∫
Sk

pkαq+knλqdx

=
pαqγ(1− p−n)

1− p−(n+αq+nλq) .

Hence

‖Hαu(x)‖Ḃq,λ (∧l ,Qn
p)

� ‖u‖Ḃq,λ (∧l ,Qn
p)

sup
γ∈Z

(
pαqγ(1− p−n)

1− p−(n+αq+nλq)

)1/q

. (20)

Let M = ‖u‖Ḃq,λ (∧l ,Qn
p)

is a constant. We have

‖Hαu(x)‖WḂq,λ (∧l ,Qn
p)

= sup
γ∈Z

sup
t>0

t|B|−λ−1/q
H |{|x|p ∈ Bγ : M|x|α+nλ

p < t}|1/q

� sup
γ∈Z

sup
t>0

t|B|−λ−1/q
H |{|x|p � pγ : |x|p < (t/M)

1
α+nλ }|1/q.

If γ � logp(t/M)
1

α+nλ , for λ < 0,

sup
t>0

sup

γ�logp(t/M)
1

α+nλ

t|B|−λ−1/q
H {|x|p � pγ : |x|p < (t/M)

1
α+nλ }|1/q

� sup
t>0

sup

γ�logp(t/M)
1

α+nλ

t p−γ(α+nλ )

= ‖u‖Ḃq,λ (∧l ,Qn
p)

.

If γ > logp(t/M)
1

α+nλ ,

sup
t>0

sup

γ>logp(t/M)
1

α+nλ

t|B|−λ−1/q
H {|x|p � pγ : |x|p < (t/M)

1
α+nλ }|1/q

� sup
t>0

sup

γ>logp(t/M)
1

α+nλ

t p−γn(−λ−1/q)(t/M)
1

α+nλ

= ‖u‖Ḃq,λ (∧l ,Qn
p)

.

Then, we obtain
‖Hαu(x)‖WḂq,λ (∧l ,Qn

p)
� ‖u‖Ḃq,λ (∧l ,Qn

p)
. (21)

The proof of Theorem 5 has been completed. �

Then, we show a property of fractional p -adic Hardy operator in CMOq,λ (∧l ,Qn
p) .
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THEOREM 6. Let 1 � q < ∞ , λ ∈ (−∞,n) and ϕ ∈C∞
0 (Bγ) satisfies

∫
Bγ

ϕ(y)dy =
1 . Let also u∈Lq

loc(∧l,Qn
p) and du∈ Lq

loc(∧l+1,Qn
p) , l = 3,4, · · · ,n−1 . Then, we have

‖Hαu‖CMOq,λ (∧l ,Qn
p)

� ‖ϕ‖L∞‖dHαu‖Ḃq,λ ′(∧l+1,Qn
p)

, (22)

where λ ′ = λ −1−1/n.

Proof. Clearly we know that Hαu be a differential l -form in Qn
p . Then, we have

Hαu = dT (Hαu)+T d(Hαu).

From (14) and Definition 4, we have

‖Hαu‖CMOq,λ (∧l ,Qn
p)

= sup
γ∈Z

(
1

|Bγ |1+λq
H

∫
Bγ
|Hαu(x)− (Hαu)Bγ |qdx

)1/q

= sup
γ∈Z

(
1

|Bγ |1+λq
H

∫
Bγ
|T d(Hαu(x))|qdx

)1/q

= sup
γ∈Z

1

|Bγ |1/q+λ
H

‖T d(Hαu(x))‖Lq(∧l ,Bγ )

� ‖ϕ‖L∞‖dHαu‖Ḃq,λ ′ (∧l+1,Qn
p)

.

According to Theorem 2, we obtain

‖Hαu‖CMOq,λ (∧l ,Qn
p)

� sup
γ∈Z

1

|Bγ |1/q+λ
H

|Bγ |1+1/n
H ‖ϕ‖L∞‖u‖Lq(∧l ,Bγ )

= ‖ϕ‖L∞‖dHαu‖Ḃq,λ ′(∧l+1,Qn
p)

,

where λ ′ = λ −1−1/n . The proof of Theorem 6 has been completed. �
Next, we show the boundedness of fractional p -adic adjoint Hardy operator in

p -adic weak central Morrey space.

THEOREM 7. Let 0 < α < n, 1 � q < ∞ and −1/q � λ < n. Let also u ∈
Lq

loc(∧l ,Qn
p) . Then H ∗

α u(x) is bounded from Ḃq,λ (∧l ,Qn
p) to WḂq,λ (∧l ,Qn

p) .

Proof. By using Hölder’s inequality, we have

|H ∗
α u(x)| =

∣∣∣∣∣∑I
∫
|y|p>|x|p

uI(y)
|y|n−α

p
dydx

∣∣∣∣∣
�
∫
|y|p>|x|p

(∑I |uI(y)|2)1/2

|y|n−α
p

dy

�
(∫

|y|p>|x|p
(∑

I
|uI(y)|2)q/2dy

)1/q(∫
|y|p>|x|p

|y|(α−n)q′dy
)1/q′

. (23)
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Then, we estimate

(∫
|y|p>|x|p

|y|(α−n)q′dy
)1/q′

=

⎛
⎝ ∞

∑
k=logp |x|p+1

∫
Sk

pkq′(α−n)dy

⎞
⎠

1/q′

= (1− p−n)1/q′

⎛
⎝ ∞

∑
k=logp |x|p

pkq′(α−n)

⎞
⎠

1/q′

=
(

1− p−n

1− pq′(α−n)

)1/q′

|x|α−n
p . (24)

Combining with (23) and (24), we obtain

|H ∗
α u(x)| �

(
1− p−n

1− pq′(α−n)

)1/q′

|x|α+nλ
p ‖u‖Ḃq,λ (∧l ,Qn

p)
.

Let M1 =
(

pαqγ (1−p−n)
1−p−(n+αq+nλq)

)1/q ‖u‖Ḃq,λ (∧l ,Qn
p)

is a constant. We get

‖H ∗
α u(x)‖WḂq,λ (∧l ,Qn

p)
= sup

γ∈Z

sup
t>0

t|B|−λ−1/q
H |{|x|p ∈ Bγ : M1|x|α+nλ

p < t}|1/q

� sup
γ∈Z

sup
t>0

t|B|−λ−1/q
H |{|x|p � pγ : |x|p < (t/M1)

1
α+nλ }|1/q.

Hence

‖H ∗
α u(x)‖WḂq,λ (∧l ,Qn

p)
�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
t>0

sup

γ�logp(t/M1)
1

α+nλ

t p−γ(α+nλ )

sup
t>0

sup

γ>logp(t/M1)
1

α+nλ

t p−γn(−λ−1/q)(t/M1)
1

α+nλ
.

Finally, we obtain
‖H ∗

α u(x)‖WḂq,λ (∧l ,Qn
p)

� ‖u‖Ḃq,λ (∧l ,Qn
p)

.

The proof of Theorem 7 has been completed. �

COROLLARY 2. Let 1 < q < ∞ and λ ∈ (−∞,n) . Let also u ∈ Lq
loc(∧l ,Qn

p) and
du ∈ Lq

loc(∧l+1,Qn
p) , l = 3,4, · · · ,n−1 . Then, we have

‖H ∗
α u‖CMOq,λ (∧l ,Qn

p)
� ‖ϕ‖L∞‖dH ∗

α u‖Ḃq,λ ′ (∧l+1,Qn
p)

,

where λ ′ = λ −1−1/n and ϕ ∈C∞
0 (Bγ) satisfies

∫
Bγ ϕ(y)dy = 1 .
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