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THE NONEXISTENCE OF EXTREMALS

FOR THE HARDY–TRUDINGER–MOSER

INEQUALITY IN THE HYPERBOLIC SPACE

QIANJIN LUO

(Communicated by M. Krnić)

Abstract. Let B be the unit disc in R
2 , H be the completion of C∞

0 (B) under the norm

||u||H =
(∫

B

|∇u|2dx−
∫

B

u2

(1−|x|2)2 dx
) 1

2
, ∀u ∈C∞

0 (B).

We prove that the supremum in the following inequality

sup
u∈H ,||u||H �1

∫
B

exp{4π(1+α ||u||22)u2}dx < +∞

can not be achieved by any functions in the function space H when α is sufficiently close to
λ−

1 , i.e., 0 < λ1 −α � 1 , where

λ1(B) = inf
u∈H ,u �≡0

||u||2H
||u||22

.

Evidently, this conclusion is complementary to that of [12, Theorem 1.1 (ii)].

1. Document preamble

In our paper, we let B ⊂ R
2 be the unit disc, let B(σ) be the disc with radius σ

centered at origin, let || · ||p denote the usual Lp -norm of the classic Lp -Space, and
let W 1,2

0 (Ω) be the classic Sobolev space. It is well known that the famous Trudinger-
Moser inequality [16, 17, 18, 20, 30] is

sup
u∈W1,2

0 (B),||∇u||2�1

∫
B

exp{γu2}dx < ∞, ∀γ � 4π . (1.1)

When γ > 4π the supremum is infinite, although the above integrals are still finite.
Owing to the importance of the Trudinger-Moser inequality and the well-known Hardy
inequality ∫

B

|∇u|2dx �
∫

B

u2

(1−|x|2)2 dx, ∀u ∈W 1,2
0 (B), (1.2)
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in analysis, Wang-Ye [21] improved the Trudinger-Moser inequality (1.1) into the Hardy-
Trudinger-Moser inequality

sup
u∈H ,||u||H �1

∫
B

exp{4πu2}dx < +∞.

Moreover, the above supremum is also achieved by some extremals and the function
space H is the completion of C∞

0 (B) under the norm

||u||H =
(∫

B

|∇u|2dx−
∫

B

u2

(1−|x|2)2 dx
) 1

2
. (1.3)

In fact, (1.3) can be defined obviously by the inequality

∫
B

|∇u|2dx−
∫

B

u2

(1−|x|2)2 dx � C
∫

B

u2dx, ∀u ∈W 1,2
0 (B),

which is an improvement of (1.2) given by Brezis-Marcus [4]. Moreover, H is also a
Hilbert space with the inner product 〈·, ·〉H induced by the norm ‖ ·‖H on it. Another
improvement of (1.1) was also proved by P. L. Lions [10]. That is, for any smooth
bounded domain Ω ⊂ R

2 , if uε ∈W 1,2
0 (Ω) satisfies ||∇uε ||2 = 1 and uε ⇀ u0 weakly

in W 1,2
0 (Ω) , q < 1/(1−||∇u0||22) , there holds

limsup
ε→0

∫
Ω

exp{4πqu2
ε}dx < +∞

when u0 �≡ 0. For the case u0 ≡ 0, another modified Trudinger-Moser inequality of
(1.1) involving L2 -norm was also verified by Adimurthi-Druet [1]. Namely, letting
Ω ⊂ R

2 be the smooth bounded domain and

λ1(Ω) = inf
u∈W1,2

0 (Ω),u �≡0

||∇u||22
||u||22

> 0

be the first eigenvalue of the Laplacian with Dirichlet boundary condition in Ω , then,
for any 0 � α < λ1(Ω) ,

sup
u∈W1,2

0 (Ω),||∇u||2=1

∫
Ω

exp{4πu2(1+ α||u||22)}dx < +∞. (1.4)

Moreover, for any α � λ1(Ω) , the supremum in (1.4) is equal to positive infinity. Fur-
thermore, Lu-Yang [11] extended the results of Adimurthi-Druet [1] into Lp -norm,
p > 1. Going a step further, Lu-Yang [11] also considered the existence of extremal
function for the modified Moser-Trudinger inequality involving Lp -norm. That is to
say, with the facts that the first eigenvalue

λp(Ω) = inf
u∈W 1,2

0 (Ω),u �≡0

||∇u||22
||u||2p

> 0
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and the smooth bounded domain Ω ⊂ R
2 , for any fixed p > 1 and sufficiently small

α > 0, there holds∫
Ω

exp{4π(1+ α||uα||2p)u2
α}dx

= sup
u∈W1,2

0 (Ω),||∇u||2=1

∫
Ω

exp{4π(1+ α||u||2p)u2}dx,
(1.5)

where uα ∈ W 1,2
0 (Ω) ∩C2(Ω) satisfying ||∇uα ||2 = 1. Correspondingly, Mancini-

Thizy [15] researched the counterpart result of Lu-Yang [11] in the case p = 2, and
verified that (1.5) did not hold water when α is sufficiently close to the eigenvalue
λ−

1 (Ω) , where λ1(Ω) is the first eigenvalue of the Laplacian operator Δ = −∂xx − ∂yy

with zero Dirichlet boundary condition. Analogy to that of Lu-Yang [11], Luo [12]
studied the Adimurthi-Druet type inequality on the space H , and found that, for suffi-
ciently small α > 0, the supremum

sup
u∈H ,||u||H �1

∫
B

exp{4πu2(1+ α||u||2p)}dx

can be obtained by some extremals satisfying uα ∈ H ∩C2(B) , ||uα ||H = 1. Apart
from the papers on the Trudinger-Moser inequality mentioned above, Yang-Zhu [29]
extended the claim of (1.1) to the space H as well, however, with an equivalent norm
to that of (1.3), which improved the conclusion of Wang-Ye [21] to the version involving
the first eigenvalue of the Hardy-Laplacian operator −Δ− 1/(1− |x|2)2 . Using the
method of energy estimate, Wang [23] extended the result of Mancini-Thizy [15] into
the case of Lp norms, p > 1; In addition, Wang [22] reproved the results of Carleson-
Chang [5], Flucher [8], Li [9] and Su [19], which evidently includes the result of (1.1)
when the parameter α in the paper is equal to zero; Yang [26] reproved the conclusion
of Carleson-Chang [5] in the case of the smooth bounded domain Ω ⊂ R

2 ; The results
of Wang-Ye [21] and Yang-Zhu [29] were reproved by [25]. Besides, other literatures
based on the method of energy estimate, I refer the readers to [28], [24]. Another
important technique we use in our paper is blow-up analysis which will help us to get
one of the expression of the energy identity. Pioneer works about blow-up analysis
can be found in [2], [6] and [5]. In this aspect, a lot of work have been well done. In
addition to Lu-Yang [11], Wang-Ye [21] and Yang-Zhu [29], etc, combining the result
of Carleson-Chang [5] with the blow-up analysis, Yang [27] improved the classic result
of (1.1) with the new norm ||u||α =

∫
Ω |∇u|2dx−α

∫
Ω u2dx , where 0 � α < λ1(Ω)

and λ1(Ω) is the first eigenvalue of the Laplacian operator with the Dirichlet boundary
condition. Later, Yang also considered the similar problem on the Riemannian surface.
In view of Trudinger-Moser inequalities can be considered on Riemannian manifolds
(Trudinger-Moser inequalities on Riemannian manifolds were due to T. Aubin [3]), it
is interesting to ask whether or not our problem discussed in this paper can be hold on
Riemannian manifolds. Inspired by Mancini-Thizy [15] and Luo [12], in our paper, we
aim to get an complementary conclusion to that of Luo [12, Theorem 1.1 (ii)] as below.
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THEOREM 1.1. Let B⊂R
2 be the unit disc. Then, the supremum of the Trudinger-

Moser inequality of Adimurthi-Druet type

sup
u∈H ,||u||H �1

∫
B

exp{4π(1+ α||u||22)u2}dx < +∞

can not be achieved by any functions in the function space H when α is sufficiently

close to λ−
1 , i.e., 0 < λ1−α � 1 , where λ1(B) = infu∈H ,u �≡0

||u||2H
||u||22

.

To prove Theorem 1.1, we mainly follow the train of thought of [15] and use the
method of energy estimate, which was developed by [13] and [14] et al. Besides, some
critical results derived from the technique of non-increasing symmetrization are just
simply applied to our paper, for more information about this aspect, I refer the readers
to [21, 29].

The remaining part of this paper is organized as below: we mainly decompose our
proof into three parts. In part 2.1 and part 2.2, we get two different expressions of the
extremal function respectively. In part 2.3, we point out, by simple computation, that
the two different expressions are actually contradictory, which finally gives an end to
our demonstration.

2. The proof of Theorem 1.1

We know from Wang-Ye [21] or [29] that our problem can be equivalently dis-
cussed in the space of non-increasing, radially symmetric functions due to the technique
of non-increasing symmetrization. Precisely, we let

S0 = {u ∈C∞
0 (B) : u(x) = u(r),u′(r) � 0,r = |x|}

and let S be the completion of S0 under the norm || · ||H defined by (1.3).
Besides, we let Cα(B) be defined by

Cα(B) � sup
u∈H ,||u||H �1

∫
B

exp{4π(1+ α||u||22)u2}dx.

From Luo [12, Theorem 1.1], we have known that Cα(B) can be obtained by some
extremal functions when α > 0 is sufficiently small. Therefore, by contradiction, we
can assume that there exists a positive real number α0 satisfying 0 < α0 � λ1 such
that when 0 < α0 � αi < λ1 , Cαi(B) can be achieved by some extremal function uαi ,
where uαi � 0 is an radially symmetric function. Besides, owing to Cλ1

(B) = +∞ , we
know Cαi(B) → +∞ when αi → λ−

1 . For simplicity, we use the indexes α in place of
αi . Then, by a direct computation, we have the following equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δuα = Aαuα +2βαλαuαexp{βαu2
α}+

uα
(1−|x|2)2 in B,

||uα ||H = 1, uα > 0 in B,

βα = 4π(1+ α||uα||22),
Aα =

α
1+2α||uα||22

, λα =
(1+ α||uα ||22)(

1+2α||uα||22
)∫

B
u2

αexp{βαu2
α}dx

> 0.

(2.1)
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Furthermore, by Wang-Ye [21, Lemma 1 and Lemma 5] or Luo [12, Lemma 2.3], we
know that, up to a subsequence (in the sequel, for simplicity, we do not distinguish
between the sequence and its subsequence), uα ⇀ 0 weakly in S ⊂ H ; uα → 0
strongly in Lp(B),∀p � 1; uα → 0 a.e. in B as α → λ−

1 . Hence, it is easy to get

βα → 4π (2.2)

and
Aα → λ−

1 , (2.3)

as α → λ−
1 . Let vα =

√
βαuα , then we rewrite (2.1) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δvα = Aαvα + Λαvαexp{v2
α}+

vα
(1−|x|2)2 in B,

‖vα‖H =
√

βα , vα > 0 in B,

βα = 4π(1+
α
βα

||vα ||22),
Aα =

α
1+2 α

βα
||vα ||22

,

Λα = 2βαλα > 0.

(2.4)

In the upcoming two subsections, we will be dedicated to reaching two different ex-
pressions of ‖vα‖2

H respectively, which are contradictory to each other. Hence, we
know that our assumption established before can not be true and the proof of Theorem
1.1 is finished.

2.1. The first expression of ‖vα‖2
H

Basing on the standard quadratic-root formula and the Taylor expansion, we get
the first expression of ‖vα‖2

H from the third line of (2.4)

‖vα‖2
H = βα = 2π

(
1+

√
1+

α
∫
B
v2

αdx
π

)

= 4π
(
1+

α
∫
B
v2

αdx
4π

−
α2
(∫

B
v2

αdx
)2

16π2 +o
((∫

B

v2
αdx
)2))

.

(2.5)

Besides, noticing that∫
B

exp{v2
α}dx =

∫
B

exp{βαu2
α}dx = Cα(Ω) → +∞

and

Λα

∫
B

v2
αexp{v2

α}dx =
∫

B

|∇vα |2dx−
∫

B

v2
α

(1−|x|2)2 dx−Aα

∫
B

v2
αdx

= 4π +o(1),

as α → λ−
1 , we get, by the elementary inequality exp{t} � 1+ texp{t} , t � 0, that

Λα → 0, as α → λ−
1 . (2.6)
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2.2. The second expression of ‖vα‖2
H

We will make the blow-up analysis on (2.4) to get the second expression of ‖vα‖2
H

which is included in the following Proposition 2.1.

PROPOSITION 2.1. Let {vα}α ⊂ H
⋂

C1(B) be a sequence of solutions of

−Δvα = Aαvα + Λαvαexp{v2
α}+

vα
(1−|x|2)2 , vα > 0 in B, (2.7)

where Aα ∈ [0,λ1), Λα > 0, βα > 0 and α (0 < λ1 −α � 1) are given by (2.4). Be-
sides, we assume that the blow-up of vα occurs, i.e.,

γα � max
B

vα = vα(0) → +∞, (2.8)

and that (2.2), (2.3) and (2.6) hold true. Then, we have

Λα = o
( 1

γ2
α

)
, (2.9)

and

‖vα‖2
H = βα = 4π

(
1+

Aα
∫
B
v2

αdx
4π

+o
((∫

B

v2
αdx
)2))

, (2.10)

as α → λ−
1 .

As in [7], we define μα as below and have

1
μ2

α
� Λα γ2

α
4

exp{γ2
α}→ +∞, as α → λ−

1 . (2.11)

Moreover, there exists a positive number sequence {Rα}α satisfying Rα →+∞ , Rα μα
� 1, such that

‖γα(γα − vα(μαx))−T0‖C2(B(Rα )) → 0, as α → λ−
1 , (2.12)

where T0(x) = log(1+ |x|2) is the solution of the Liouville equation

ΔT0 = 4exp{−2T0} in R
2. (2.13)

Observing (2.7), (2.8) and ‖vα‖H = O(1) , we get

Λαexp{γ2
α}→ +∞, as α → λ−

1 .

Besides, we let

tα(x) � log
(
1+

|x|2
μ2

α

)
= T0

( x
μα

)
.

Because of |z| = r around the origin and the radial symmetry of functions, in the fol-
lowing, we will rewrite sometimes vα(z),tα (z) as vα(r), tα (r) respectively. For any
δ ∈ (0,1) , we let rα ,δ > 0 be determined by

tα(rα ,δ ) = δγ2
α . (2.14)
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Then, we have
r2

α ,δ = μ2
αexp{δγ2

α +o(1)}� μ2
α , (2.15)

as α → λ−
1 . In order to verify Proposition 2.1, we need to examine the asymptotic

behavior of vα in B(rα ,δ ) and in B\B(rα ,δ ) respectively, as α → λ−
1 . For this objec-

tive, we will separate our proof into four steps as below. We first consider the case in
B(rα ,δ ) , namely, the asymptotic behavior near the blow-up point 0 .

STEP 1. We have
| logΛα | = o(γ2

α), as α → λ−
1 . (2.16)

Proof. We make Bα = B \B(μα) and let Vα be the unique harmonic function
defined in Bα which satisfies Vα(x) = vα(x) for x ∈ ∂Bα . Then, for all α , there holds∫

Bα
|∇Vα |2dx �

∫
Bα

|∇vα |2dx. (2.17)

For Ǎα > 0, we define Ψα � Ǎα log |x|−1 such that Ψα coincides with γα − tα/γα
on ∂B(μα ) . Then, by (2.11), we have

Ǎα =
γ2

α − log2

γα log 1
μα

=
γα(1+o(1))

log 1
μα

. (2.18)

Combining (2.12) with the elliptic estimates, for all α (0 < λ1−α � 1) , we get

|∇Vα −∇Ψα | � o
( 1

γα |x|
)

in Bα . (2.19)

Then, by (2.18) and (2.19), we have

∫
Bα

|∇Vα |2dx = πǍ2
α log

1
μ2

α
(1+o(1)) =

4πγ2
α(1+o(1))
log 1

μ2
α

. (2.20)

Since ‖vα‖2
H = βα → 4π and

∫
B

v2
α/(1−|x|2)2dx = o(1) as α → λ−

1 , we have ‖vα‖2
H1

0

� 4π +o(1) . Then, combining (2.17) and (2.20) together, we find

log
1

μ2
α

� (1+o(1))γ2
α ,

which finishes the proof of (2.16) together with (2.6) and (2.11). �
Now, we fix δ ∈ (0,1) and let S0 be the radial symmetric function around 0∈R

2 ,
which solves

−ΔS0−8exp{−2T0}S0 = 4exp{−2T0}(T 2
0 −T0) (2.21)

and satisfies S0(0) = 0. Then, by [14], we have

S0(r) = −T0(r)+
2r2

1+ r2 −
T0(r)2

2
+

1− r2

1+ r2

∫ 1+r2

1

logt
1− t

dt
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and, in particular,

S0(r) =
A0

4π
log

1
r2 +B0 +O

((logr)2

r2

)
, as r → +∞, (2.22)

where 4π = A0 = −∫
R2 ΔS0dx and B0 = π2/6+2. For further arguments, we define

Sα(z) � S0

( z
μα

)
,

where 0 < λ1−α � 1.

STEP 2. For all the point sequence {zα}α ⊂ B(rα ,δ ) , we have

vα(zα ) = γα − tα(zα )
γα

+
Sα(zα )

γ3
α

+O
(1+ tα(zα)

γ5
α

)
, (2.23)

where 0 < λ1−α � 1.

Proof. We make w1,α satisfy

vα = γα − tα
γα

+
w1,α

γ3
α

(2.24)

and define ρ1,α as

ρ1,α � sup{r ∈ (0,rα ,δ ] : |Sα −w1,α | � 1+ tα in [0,r]}. (2.25)

First, we display the asymptotic expansions of −Δw1,α in a precise way in B(ρ1,α) ,
as α → λ−

1 . We have, by (2.11), (2.14) and (2.16), that

exp
{
−2tα + t2α

γ2
α

}
μ2

α
= exp{logΛα +o(γ2

α)}exp
{(

γα − tα
γα

)2}
� exp

{(
1− δ )2γ2

α +o(γ2
α)
} (2.26)

in B(rα ,δ ) . Evidently, vα � γα in B(ρ1,α) . Then, (2.26) gives

Aαvα � λ1γα = o

(
exp
{
−2tα + t2α

γ2
α

}
γ5

α μ2
α

)
(2.27)

uniformly in B(ρ1,α) . That is to say Aαvα is well controlled in B(ρ1,α) because of
Step 1. Moreover, observing that w1,α = O(1 + tα) is given by (2.22) and (2.25) in
B(ρ1,α) , we can get from (2.24) that

vα = γα − tα
γα

+O
(1+ tα

γ3
α

)
(2.28)
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and

v2
α = γ2

α −2tα +
t2α +2w1,α

γ2
α

+O
(1+ t2α

γ4
α

)
(2.29)

in B(ρ1,α) . Combining tα = O(γ2
α ) in B(rα ,δ ) with the inequality

∣∣∣exp{x}−
k−1

∑
j=0

x j

j!

∣∣∣� |x|k
k!

exp{|x|}

for all x ∈ R and integer k � 1, we have

exp
{ t2α +2w1,α

γ2
α

+O
(1+ t2α

γ4
α

)}
= 1+

t2α +2w1,α
γ2

α
+O

((1+ t4α)exp
{

t2α
γ2

α

}
γ4

α

)
(2.30)

in B(ρ1,α) . Then, by (2.11), (2.28), (2.29) and (2.30), we have

Λαvαexp{v2
α} =

4exp{−2tα}
μ2

α γα

[
1+

t2α +2w1,α − tα
γ2

α
+O

((1+ t4α)exp
{

t2α
γ2

α

}
γ4

α

)]
(2.31)

in B(ρ1,α) . Besides, by (2.11) and tα = O(γ2
α) , we easily get

vα γ3

(1−|x|2)2 · μ2
α

4exp{−2tα} = O
((1+ t4α)exp

{
t2α
γ2

α

}
γ2

α

)
(2.32)

in B(ρ1,α) . Therefore, by (2.7), (2.13), (2.27),(2.31) and (2.32), we have

−Δw1,α =
4exp{−2tα}

μ2
α

[
2w1,α + t2α − tα +O

((1+ t4α)exp{ t2α
γ2

α
}

γ2
α

)]
(2.33)

in B(ρ1,α) .
Second, we assess the growth of w1,α −Sα . In the following, we will confine our

discussions to B(rα ,δ ) , which gives that 2− tα
γ2

α
� 2− δ > 1. Then,

(1+ t4α)exp
{
−2tα +

t2α
γ2

α

}
� Cexp{−κtα}, in B(rα ,δ ), (2.34)

where 1 < κ < 2 and C > 0 are certain constants. Noticing that∫
B(r)

Δ(w1,α −Sα)dx = 2πr(w1,α −Sα)′(r) (2.35)

and, by (2.21), (2.33), that

−Δ(w1,α −Sα) =
8exp{−2tα}

μ2
α

[
(w1,α −Sα)+O

((1+ t4α)exp
{

t2α
γ2

α

}
γ2

α

)]
(2.36)
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for all 0 � r � ρ1,α , we have, by (2.34), that

∫
B(r)

8(1+ t4α)exp
{
−2tα + t2α

γ2
α

}
μ2

α
dx =

8π
κ −1

(
1− (1+(r/μα)2)1−κ

)
(2.37)

and, by |(w1,α −Sα)(r)| � ‖(w1,α −Sα)′‖L∞([0,ρ1,α ])r , that

∫
B(r)

8exp{−2tα}
μ2

α
|w1,α −Sα |dx � μαh(r/μα)‖(w1,α −Sα)′‖L∞([0,ρ1,α ]), (2.38)

where h(s) = 8π
(

arctans− s/(1+ s2)
)
, s � 0. Then, by (2.35), (2.37) and (2.38), we

have

r|(w1,α −Sα)′(r)|
C′ � (r/μα)2

γ2
α(1+(r/μα)2)

+
μα‖(w1,α −Sα)′‖L∞([0,ρ1,α ])(r/μα)3

1+(r/μα)3 (2.39)

for some constant C′ > 1, α (0 < λ1−α � 1) and all 0 � r � ρ1,α .
Third, we verify that

μα‖(w1,α −Sα)′‖L∞([0,ρ1,α ]) = O
( 1

γ2
α

)
. (2.40)

Otherwise, we assume, by contradiction, that there exists a positive real number se-
quence {sα}α ⊂ (0,ρ1,α ] such that

γ2
α μα‖(w1,α −Sα)′‖L∞([0,ρ1,α ]) = γ2

α μα |(w1,α −Sα)′|(sα) → +∞, (2.41)

as α → λ−
1 . Up to a subsequence, we assume that

ρ1,α
μα

→ η0,

as α → λ−
1 , for some η0 ∈ (0,+∞] . We know from (2.39) and (2.41) that sα = O(μα) ,

μα = O(sα ) , which implies η0 > 0. We define w̃α(s) as

w̃α(s) � (w1,α −Sα)(μαs)
μα‖(w1,α −Sα)′‖L∞([0,ρ1,α ])

.

Then, by (2.39) and (2.41), we have

|w̃′
α(s)| � C′′

1+ s
in [0,ρ1,α/μα ] (2.42)

for all α (0 < λ1 −α � 1) , where C′′ is some positive constant. Then, (2.36), (2.42)
and elliptic theory imply that

w̃α → w̃ in C1
loc(B(η0)), as α → λ−

1 , (2.43)
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and ⎧⎪⎨
⎪⎩
−Δw̃ = 8exp{−2T0}w̃ in B(η0),
w̃(0) = 0,

w̃ is radially symmetric around 0 ∈ R
2,

which indicates
w̃ ≡ 0 in B(η0). (2.44)

Besides, combining (2.42), (2.43), (2.44) and the dominated convergence theorem, we
have

∫
B(ρ1,α )

exp{−2tα}
μ2

α
|w1,α −Sα |dx = o(μα‖(w1,α −Sα)′‖L∞([0,ρ1,α ])). (2.45)

Now, we repeat the way to get (2.39), by replacing (2.38) with (2.45), and using (2.41),
we get

r|(w1,α −Sα)′(r)| = o(μα‖(w1,α −Sα)′‖L∞([0,ρ1,α ])) (2.46)

for all 0 � r � ρ1,α , as α → λ−
1 . Evidently, it is impossible for (2.46) at sα . Thus, we

have finished the proof of (2.40).
Finally, inserting (2.40) into (2.39), using the fundamental theorem of calculus and

the fact that w1,α(0) = Sα(0) = 0, we have

‖w1,α −Sα‖L∞([0,ρ1,α ]) = O
(1+ tα

γ2
α

)
, as α → λ−

1 ,

which, by(2.25), implies ρ1,α = rα ,δ and finishes the proof of Step 2. �

We let the functional sequence { fα} be defined by

fα (vα) � Aαvα + Λαvαexp{v2
α} = −Δvα − vα

(1−|x|2)2 , vα > 0 in B.

Then, we get the asymptotic expansion of fα from Step 2 directly that

fα (vα) = O(γα )+ Λαvαexp{v2
α},

which, together with (2.25) and (2.26), leads to the expansion, as in (2.26), (2.27),
(2.31), that

fα (vα) =
4exp{−2tα}

μ2
α γα

[
1+

2Sα + t2α − tα
γ2

α
+O

((1+ t4α)exp
{

t2α
γ2

α

}
γ4

α

)]

in B(rα ,δ ) . Because of δ < 1, as the arguments in (2.34), we can find κ > 1 such that

fα (vα) =
4exp{−2tα}

μ2
α γα

(
1+

2Sα + t2α − tα
γ2

α

)
+O

(exp{−κtα}
μ2

α γ4
α

)
(2.47)
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and

vα fα(vα) =
4exp{−2tα}

μ2
α

(
1+

2Sα + t2α −2tα
γ2

α

)
+O

(exp{−κtα}
μ2

α γ4
α

)
(2.48)

in B(rα ,δ ) . We second consider the case in B \B(rα ,δ ) , i.e., the asymptotic behav-
ior away from the blow-up point 0 . For vα is a non-increasing, radially symmetric
function, we can choose δ ′ satisfying 0 < δ ′ < δ < 1 and can define

ṽα �
{

vα in B\B(rα ,δ ),
min{vα ,(1− δ ′)γα} in B(rα ,δ ).

Then, by (2.23), we get

vα < (1− δ ′)γα in ∂B(rα ,δ ),

as 0 < λ1−α � 1. By the arguments similar to that of [11] or to that of [12], we have
that

‖ṽα‖H � 4π(1− δ ′+o(1)),

which implies, by [12, Proposition 2.2], that there exists p′ > 0 such that (exp{ṽ2
α})α

is bounded in Lp′(B) . Using (2.23) again, we get ṽα = vα in B \B(rα ,δ /2) . Hence,
we know that

(exp{ṽ2
α})α is bounded in Lp′(B\B(rα ,δ /2)). (2.49)

In addition, owing to [12, Lemma 2.3] and [21, Remark 1], we know that

vα → 0 strongly in Lp(B). (2.50)

From now on, we let p � 2 and r > 1 be fixed such that

1
p′

+
1
p

+
1
r

= 1, (2.51)

and let v be the unique function characterized by{
−Δv = λ1v+ v

(1−|x|2)2 , v > 0 in B

‖v‖H = 1.
(2.52)

STEP 3. For all the point sequence {zα}α ⊂ B\B(rα ,δ ) , we have

vα(zα ) = ‖vα‖H v(zα)+o(‖vα‖H )+
1
γα

log
1

|zα |2 +O
( 1

γα

)
(2.53)

for all α (0 < λ1 − α � 1) , where p and v satisfy (2.51) and (2.52) respectively.
Besides, (2.9) holds true.
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Proof. Since the item 1/(1−|x|2)2 is singular on the boundary, which makes our
problem not trivial, we need to consider the Hardy operator

LH = −Δ− I

(1−|x|2)2 ,

where I is the identity operator. We let G be the Green’s function of LH in the

disc B ⊂ R
2 . Then, we know from [21, Proposition 2] that G ∈ H +W1,p′′

0 (B(1/2)) ,
p′′ ∈ [1,2) , is the unique function such that

LH (G) = δ0,

and that G is a radial function satisfying

G(r) = − logr
2π

+CG +O(r1+τ)

for τ ∈ (0,1) , as r → 0, where δ0 is the Dirac distribution in the common sense and
CG ∈ R is a constant. Furthermore, we have

G(r) = − logr
2π

+O(1) (2.54)

for 0 < r � 1. Thus we know that there exists a constant C > 0 such that

Gx(y) =
1
2π

log
C

|x− y| +O(1), (2.55)

for all x �= y in B . Letting the point sequence (zα )α ⊂ B \B(rα ,δ ) for all α , by the
Green’s representation formula and (2.7), we have that

vα(zα) =
∫

B

Gzα (x) fα (vα (x))dx. (2.56)

Here, we proceed our arguments by splitting the integral in (2.56) into two parts ac-
cording to B = B(rα ,δ /2)∪B(rα ,δ /2)c , where B(rα ,δ /2)c = B\B(rα ,δ /2) . By (2.15)
and the dominated convergence theorem, we integrate (2.47) and have that∫

B(
rα,δ

2 )
fα (vα(x))dx =

∫
B(

rα,δ
2 )

4exp{−2tα}
μ2

α γα
dx+O

( 1

γ3
α

)
=

4π
γα

+O
( 1

γ3
α

)
(2.57)

for all α (0 < λ1−α � 1) . Independently, we know from (2.55) that

|Gzα (x)−Gzα (0)| � C|x|
rα ,δ

(2.58)

for all x ∈ B(rα ,δ /2) and some constant C > 0. Then, together with (2.47), (2.57) and
(2.58), we have∫

B(
rα,δ

2 )
Gzα (x) fα (vα(x))dx =

C
rα ,δ

∫
B(

rα,δ
2 )

fα(vα (x))|x|dx

+
(4π

γα
+O

( 1

γ3
α

))
Gzα (0).

(2.59)
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Moreover, by (2.15) and (2.47), we have

C
rα ,δ

∫
B(

rα,δ
2 )

fα(vα(x))|x|dx = O
(∫

B(
rα,δ

2 )

exp{−κtα}|x|
γα μ2

αrα ,δ
dx
)

= o
( 1

γα

)
. (2.60)

Hence, combining (2.59) and (2.60), we have∫
B(

rα,δ
2 )

Gzα (x) fα (vα (x))dx =
(4π

γα
+O

( 1

γ3
α

))
Gzα (0)+o

( 1
γα

)
. (2.61)

As for the domain B(rα ,δ /2)c , using Hölder’s inequality, Minkovsky’s inequality, the
fact that H is embedded continuously in Lt(B) for any t ∈ [1,+∞) , (2.6), (2.49),
(2.51) and (2.55), we know that∫

B(
rα,δ

2 )c
Gzα (x) fα (vα(x))dx

� C‖Gzα‖r‖vα‖H

(
λ1 + Λα‖exp{v2

α}‖Lp′ (B(
rα,δ

2 )c)

)
= O(‖vα‖H )

(2.62)

for all α . Combining (2.55), (2.56), (2.61) and (2.62), we get

vα(zα) � (1+o(1))
log C

|zα |2
γα

+C‖vα‖H , as α → λ−
1 , (2.63)

where C > 0 and C > 0 are certain constants. Evidently, we have

γα‖vα‖H → +∞, as α → λ−
1 . (2.64)

Now, we verify that

vα
‖vα‖H

→ v in C1
loc(B), as α → λ−

1 . (2.65)

Combining (2.6), (2.7), (2.50), (2.63), (2.64) and elliptic theory, we have that vα/‖vα‖H

→ ṽ in C1
loc(B) , as α → λ−

1 , and ṽ solves

−Δṽ− ṽ
(1−|x|2)2 = λ1ṽ (2.66)

in B . However, using (2.63), (2.64) again, we obtain that 0 � ṽ � C in B , where C
is as in (2.63). Besides, ṽ solves (2.66) and satisfies ‖ṽ‖H = 1. Hence, ṽ = v and
(2.65) is proved. rα ,δ → 0 and (2.65) indicate that there exists a positive real number
sequence (δα)α satisfying δα � rα ,δ /2 and δα → 0, as α → λ−

1 and that∥∥∥ vα
‖vα‖H

− v
∥∥∥

C0(B\B(δα ))
= o(1), as α → λ−

1 . (2.67)

Now, we turn to prove (2.53). Owing to (2.64) and (2.67), we have O(1/γα)= o(‖vα‖H )
and vα = v‖vα‖H +o(‖vα‖H ) respectively.
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Besides, liminfα→λ−
1
|zα | > 0 indicates that 1/γα log |zα |−2 = O(1/γα) . Hence,

if liminfα→λ−
1
|zα | > 0, we have

vα(zα) = ‖vα‖H v(zα )+o(‖vα‖H )+
1

γα
log

1
|zα |2 +O

( 1
γα

)
.

Namely, (2.53) is proved. Thus, we only need to prove that if |zα | → 0 as α → λ−
1 ,

then (2.53) holds. In this case, we know from (2.11) and (2.15) that

log
1

r2
α ,δ

= (1− δ +o(1))γ2
α . (2.68)

Because of zα ∈ B(rα ,δ )c , we obtain, by (2.55), (2.61) and (2.68), that

∫
B(

rα,δ
2 )

Gzα (x) fα (vα(x))dx =
log 1

|zα |2
γα

+O
( 1

γα

)
. (2.69)

Besides, since −Δv− v/(1− |x|2)2 = λ1v and (2.3), we have, by (2.6), (2.50), (2.67)
and the Green’s representation formula, that∫

B(δα )c
Gzα (x) fα (vα(x))dx = ‖vα‖H λ1

∫
B

Gzα (x)v(x)dx+o(‖vα‖H )

= ‖vα‖H v(zα)+o(‖vα‖H ),
(2.70)

as α → λ−
1 . Now, we deal with the integral on the domain Ωα � B(δα) \B(rα ,δ /2) .

Combining (2.54), (2.63) and (2.64), we have

∫
Ωα

Gzα (x)Aαvα(x)dx = O
(

δ 2
α log

1
δα

‖vα‖H

)
+O

( 1
γα

)
= o(‖vα‖H ), (2.71)

as α → λ−
1 . Besides, by (2.6), (2.56) and (2.63), we have

∫
Ωα

Gzα (x)Λαvα(x)exp{v2
α}dx

= o
(∫

Ωα
log

C
|zα − x|

( 1
γα

log
C
|x| +‖vα‖H

)

× exp
{(1+o(1)

γα
log

1
|x|2 +o(1)

)2}
dx
)

= o(‖vα‖H ),

(2.72)

as α → λ−
1 . Clearly, adding up (2.69), (2.70), (2.71) and (2.72) together leads to (2.53).

In addition, from (2.68), we obtain

1
γ2

α
log

1
|x|2 � 1− δ +o(1) < 1 in B

( rα ,δ

2

)c
(2.73)
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for all α , 0 < λ1−α � 1. Further more, together (2.11) with (2.23), we get

vα(z̃α ) =
1

γα

(
log

1
|z̃α |2 + log

1
γ2

α Λα
+O(1)

)
(2.74)

for all α , 0 < λ1−α � 1, and all z̃α ∈ ∂B(rα ,δ ) . Choosing zα = z̃α in (2.53) and by
(2.64), (2.74), we obtain

log
1

γ2
α Λα

= γα‖vα‖H v(0)(1+o(1))→ +∞, as α → λ−
1 ,

which finishes the proof of (2.9) and, finally, that of Step 3. �

STEP 4. The proof of (2.10).

Multiplying (2.7) by vα and integrating on B , we have

‖vα‖2
H = −

∫
B

vα Δvαdx−
∫

B

v2
α

(1+ |x|2)2 dx

= Aα

∫
B

v2
αdx+ Λα

∫
B

v2
αexp{v2

α}dx,

as α → λ−
1 . Comparing with the formula (2.10), we know that, for the purpose of

proving (2.10), it only needs to prove

Λα

∫
B

v2
αexp{v2

α}dx = 4π +o
((∫

B

v2
αdx
)2)

, as α → λ−
1 . (2.75)

Thus, we first use (2.48) and get that

Λα

∫
B(rα,δ )

v2
αexp{v2

α}dx =
∫

B(rα,δ )

4exp{−2tα}
μ2

α

(
1+

2Sα + t2α −2tα
γ2

α

)
dx

+O
(∫

B(rα,δ )

exp{−κtα}
μ2

αγ4
α

dx
)

= 4
∫

B(
rα,δ
μα )

exp{−2T0}
(
1+

2S0 +T2
0 −2T0

γ2
α

)
dx

+O
( 1

γ4
α

)
.

(2.76)

Noticing
∫
B(rα,δ /μα ) exp{−2T0}(2S0 +T 2

0 −2T0)γ−2
α dx vanishes, by (2.21) and (2.22),

we have
4π = A0 = −

∫
R2

ΔS0dx =
∫

R2
4exp{−2T0}T0dx.

Then, (2.15) and (2.76) give that

Λα

∫
B(rα,δ )

v2
αexp{v2

α}dx = 4π +O
( 1

γ4
α

)
. (2.77)
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Independently as in (2.72), we have, combining (2.50), (2.53) with (2.73), that

∫
B(rα,δ )c

v2
αexp{v2

α}dx = O
(∫

B(rα,δ )c

( 1
γ2

α

(
log

C
|x|
)2

+‖vα‖2
H

)

× exp
{(1+o(1)

γα
log

1
|x|2 +o(1)

)2}
dx
)

= O
(
‖vα‖2

H +
1

γ2
α

)
.

(2.78)

In addition, we get from (2.53) and (2.64) that

∫
B

v2
αdx = ‖vα‖2

H

∫
B

v2dx+o
(
‖vα‖2

H

)
. (2.79)

Finally, (2.77), (2.78) and (2.79) together with (2.9) and (2.64) lead to the proof of
(2.75).

2.3. The final proof of Theorem 1.1

In the above two sections, we have given two different expressions of ‖vα‖2
H

respectively. Now, we aim to show that the two different expressions are actually con-
tradictory, which finally indicates that our assumption that there exists a sequence of
real numbers αi , 0 < α0 � αi < λ1 , such that Cαi(B) can be achieved by some ex-
tremal function uαi � 0, where uαi is an radially symmetric function, is not true. Thus,
the proof of Theorem 1.1 is finished at last. Noticing that expanding the forth line of
(2.4) gives

Aα = α − α2 ∫
B
v2

αdx
2π

+O
((∫

B

v2
αdx
)2)

, (2.80)

we get, by combining (2.10) and (2.80), that

‖vα‖2
H = βα = 4π

(
1+

α
∫
B
v2

αdx
4π

− α2(
∫
B
v2

αdx)2

8π2 +o
((∫

B

v2
αdx
)2))

. (2.81)

Then, matching (2.5) and (2.81), we have

−
α2
(∫

B
v2

αdx
)2

16π2 = o
((∫

B

v2
αdx
)2)

, as α → λ−
1 . (2.82)

Evidently, (2.82) is a contradictory conclusion, which indicates that the proof of Theo-
rem 1.1 is finished at last.
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