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SOME DEGENERATE MEAN CONVERGENCE THEOREMS

FOR BANACH SPACE VALUED RANDOM ELEMENTS
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(Communicated by M. Krnić)

Abstract. For an array {Vn, j,1 � j � kn,n � 1} of random elements taking values in a real
separable Rademacher type p (1 < p � 2) Banach space and a sequence of positive constants
{dn,n � 1} , a theorem is established providing conditions under which the degenerate mean
convergence result E‖(Sn −ESn)/dn‖p → 0 holds where Sn = ∑n

j=1Vn, j , n � 1 . An example is
provided showing that the above degenerate mean convergence can fail if the Banach space is not
of Rademacher type p where 1 < p � 2 . Moreover for a general sequence of random elements
{Wn,n � 1} which is not structurally of any specific form taking values in a real separable
Banach space which is not assumed to be of Rademacher type p for any p ∈ (1,2] , conditions
are provided under which the degenerate mean convergence result E(g(‖Wn‖))→ 0 holds where
g is a continuous strictly increasing function with g(0) = 0 and limx→∞ g(x) = ∞ .

1. Introduction

In this article, we obtain two degenerate mean convergence theorems for sequences
of random elements. For a sequence of random elements {Wn,n � 1} taking values in a
real separable Banach space X with norm ‖ · ‖ and a measurable function g : [0,∞) →
[0,∞) , the sequence of random variables {g(‖Wn‖) ,n � 1} is said to converge in mean
to 0 if E(g(‖Wn‖)) → 0. The main results to be presented, Theorems 1 and 2, provide
conditions under which convergence in mean to 0 holds.

In Theorem 1, we consider an array {Vn, j,1 � j � kn,n � 1} of random elements
taking values in a real separable Rademacher type p (1 < p � 2) Banach space. (Tech-
nical definitions will be reviewed in Section 2.) The sequence of random elements under
consideration is of the specific form Wn = (Sn−ESn)/dn , n � 1 where Sn = ∑kn

j=1Vn, j ,
n � 1 and {dn,n � 1} is a sequence of positive constants. Let g be the function
g(x) = xp , x � 0. Conditions are given for {‖Wn‖,n � 1} to converge in mean of
order p to 0; that is for E‖Wn‖p → 0. In Theorem 1 and Corollary 1, {kn,n � 1} is
a sequence of positive integers with kn → ∞ as n → ∞ and the array is assumed to be
comprised of rowwise independent random elements; that is, the random elements from
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the same row are independent but there are no independence or dependence conditions
imposed on the random elements from different rows.

The argument for proving Theorem 1 is a modification of the argument used to
prove Theorem 3.3 of Chandra, Li, and Rosalsky (2018) which established a degenerate
mean convergence result of order 1 for normed and centered row sums from an array of
random variables whose nth row is comprised of pairwise negative quadrant dependent
random variables. However, the truncation schemes used in the proofs of Theorem 1
and Theorem 3.3 of Chandra, Li, and Rosalsky (2018) are substantially different.

In contradistinction to Theorem 1, the sequence of random elements {Wn,n � 1}
in Theorem 2 is not structurally of any specific form and the underlying Banach space
is not assumed to be of Rademacher type p for any p∈ (1,2] . Conditions are placed on
the sequence of random elements {Wn,n � 1} and on a continuous strictly increasing
function g with g(0)= 0 and limx→∞ g(x) = ∞ for E(g(‖Wn‖))→ 0 to hold. Corollary
2 is the special case g(x)= xp , x � 0 (0< p< ∞) of Theorem2 and it extends in several
directions a result appearing in Fristedt and Gray (1997, p. 110) which states that if
{Xn,n � 1} is a sequence of (real-valued) random variables such that Xn → 0 almost
surely (a.s.) and supn�1 VarXn < ∞ , then E |Xn|p → 0 for p = 1. In Corollary 2, the
Fristedt and Gray assumption supn�1 VarXn < ∞ is replaced by supn�1 E‖Wn−wn‖q <
∞ for some q > p and some sequence {wn,n � 1} in the Banach space. Morover,
convergence a.s. is weakened to convergence in probability.

2. Preliminaries

Throughout, let (X,‖·‖) be a real separable Banach space equipped with its Borel
σ -algebra B (= the σ -algebra generated by the class of open subsets of X determined
by ‖ · ‖ ) and all random elements under consideration are defined on a fixed but other-
wise arbitrary probability space (Ω,F ,P) and take values in X . A random element in
X is an F -measurable transformation from Ω to the measurable space (X,B) . Let
X∗ be the (dual) space of all continuous linear functionals on X . The symbol C is used
to denote a generic constant (0 <C < ∞) which is not necessarily the same one in each
appearance.

We now review various technical definitions pertaining to an X -valued random
element V or to the Banach space X itself.

The expected value or mean of an X -valued random element V , denoted by EX ,
is defined to be the Pettis integral provided it exists; that is, V has expected value
EV ∈ X if f (EV ) = E( f (V )) for every f ∈ X∗ . If E‖V‖ < ∞ , then (see, e.g., Taylor
(1978, p. 40)) V has an expected value.

Let {Rn, n � 1} be a Rademacher sequence; that is, {Rn, n � 1} is a sequence of
independent and identically distributed randomvariables with P(R1 = 1)= P(R1 = −1)
= 1/2. Let X∞ = X×X×X×·· · and define

C (X) =

{
(v1,v2, ...) ∈ X∞ :

∞

∑
n=1

Rnvn converges in probability

}
.

Let 1 � p � 2. Then X is said to be of Rademacher type p if there exists a constant
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0 < C < ∞ such that

E

∥∥∥∥∥
∞

∑
n=1

Rnvn

∥∥∥∥∥
p

� C
∞

∑
n=1

‖vn‖p for all (v1,v2, ...) ∈ C (X).

Rosalsky and Volodin (2007) pointed out that the condition that X is of Rademacher
type p is indeed equivalent to the structurally simpler condition that there exists a con-
stant 0 < C < ∞ such that

E

∥∥∥∥∥
N

∑
n=1

Rnvn

∥∥∥∥∥
p

� C
N

∑
n=1

‖vn‖p for all N � 1 and vn ∈ X, 1 � n � N.

Moreover, Hoffmann-Jørgensen and Pisier (1976) proved for 1 � p � 2 that X is of
Rademacher type p if and only if there exists a constant 0 < C < ∞ such that

E

∥∥∥∥∥
n

∑
j=1

Vj

∥∥∥∥∥
p

� C
n

∑
j=1

E
∥∥Vj
∥∥p

for every finite collection {V1, ...,Vn} of independent 0 mean, X -valued random ele-
ments.

If X is of Rademacher type p for some p∈ (1,2] , then it is of Rademacher type q
for all q∈ [1, p) . For 1 � p < ∞ , the Lp -spaces and lp -spaces are of Rademacher type
p∧ 2. Every real separable Banach space is of Rademacher type (at least) 1 . Every
real separable Hilbert space and real separable finite-dimensional Banach space is of
Rademacher type 2.

3. Mainstream

With the preliminaries accounted for, the main results may be presented.

THEOREM 1. Let {Vn, j,1 � j � kn,n � 1} be an array of rowwise independent
random elements in a real separable Rademacher type p (1 < p � 2 ) Banach space
X and suppose that E

∥∥Vn, j
∥∥p

< ∞ , 1 � j � kn , n � 1 . Let h : [0,∞) → [0,∞) be a
continuous function with

h(0) = 0, h(x) = O(x), and
hp(x)

x
↑ as 0 < x ↑ ∞. (1)

Set Xn, j = h−1 (‖Vn, j‖) , 1 � j � kn , n � 1 . Let {bn, n � 1} , {cn, n � 1} , and {dn, n �
1} be sequences of positive constants with cn < bn , n � 1 such that

1
dp

n

kn

∑
j=1

E

(
X p

n, jI(Xn, j > bn)
)
→ 0, (2)

hp(bn)
dp

n bn

kn

∑
j=1

E(Xn, jI(Xn, j > cn)) → 0, (3)
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hp(bn)
dp

n bn

kn

∑
j=1

EXn, j = O(1), (4)

and
hp(cn)

cn
= o

(
hp(bn)

bn

)
. (5)

Then

E

∥∥∥∥Sn−ESn

dn

∥∥∥∥
p

→ 0 (6)

where Sn = ∑n
j=1Vn, j , n � 1 and, a fortiori,

Sn−ESn

dn

P→ 0.

Proof. For 1 � j � kn and n � 1, set Un, j = Vn, jI (‖Vn, j‖ � h(bn)) and Wn, j =
Vn, jI (‖Vn, j‖ > h(bn)) . Then Un, j +Wn, j =Vn, j , 1 � j � kn , n � 1. Set Tn = ∑kn

j=1Un, j ,
n � 1. We will show that

∑kn
j=1 E

∥∥Wn, j
∥∥p

dp
n

→ 0 (7)

and

E

∥∥∥∥Tn−ETn

dn

∥∥∥∥
p

→ 0. (8)

To prove (7), note that for 1 � j � kn and n � 1,∥∥Wn, j
∥∥ = ‖Vn, j‖I (‖Vn, j‖ > h(bn))

= h(Xn, j) I (h(Xn, j) > h(bn))

= h(Xn, j) I (Xn, j > bn)

� CXn, jI (Xn, j > bn) (by (1))

(9)

and hence

∑kn
j=1 E

∥∥Wn, j
∥∥p

dp
n

�
C∑kn

j=1 E

(
X p

n, jI (Xn, j > bn)
)

dp
n

→ 0

by (2) proving (7).
To prove (8), note that for 1 � j � kn and n � 1,∥∥Un, j

∥∥p =
∥∥Vn, j

∥∥p
I (‖Vn, j‖ � h(bn))

= hp (Xn, j) I (h(Xn, j) � h(bn))

= hp (Xn, j) I (Xn, j � bn)

=
hp (Xn, j)

Xn, j
·Xn, jI (0 < Xn, j � cn)+

hp (Xn, j)
Xn, j

·Xn, jI (cn < Xn, j � bn) .
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Then for n � 1,

E‖Tn −ETn‖p

dp
n

�
C∑kn

j=1 E
∥∥Un, j −EUn, j

∥∥p

dp
n

(since X is of Rademacher type p)

�
C∑kn

j=1 E
∥∥Un, j

∥∥p

dp
n

(by Jensen’s inequality)

=
C
dp

n

(
kn

∑
j=1

E

(
hp (Xn, j)

Xn, j
·Xn, j (I (0 < Xn, j � cn)+ I (cn < Xn, j � bn))

))

� C

dp
n

(
kn

∑
j=1

hp (cn)
cn

·EXn, j +
hp (bn)

bn

kn

∑
j=1

E(Xn, jI (Xn, j > cn))

)

=
C

dp
n

(
kn

∑
j=1

hp (bn)
bn

·o(1) ·EXn, j +
hp (bn)

bn

kn

∑
j=1

E(Xn, jI (Xn, j > cn))

)
(by (5))

=
Chp (bn)

dp
n bn

(
kn

∑
j=1

EXn, j

)
o(1)+

Chp (bn)
dp

n bn

kn

∑
j=1

E(Xn, jI (Xn, j > cn))

= o(1) (by (4) and (3))

proving (8).
Next, note that for n � 1,

E

∥∥∥∥∥∑kn
j=1Wn, j −∑kn

j=1 EWn, j

dn

∥∥∥∥∥
p

= E

∥∥∥∥∥∑kn
j=1 (Wn, j −EWn, j)

dn

∥∥∥∥∥
p

�
C∑kn

j=1 E
∥∥Wn, j −EWn, j

∥∥p

dp
n

(since X is of Rademacher type p) (10)

�
C∑kn

j=1 E
∥∥Wn, j

∥∥p

dp
n

(by Jensen’s inequality)

�
C∑kn

j=1 E

(
X p

n, jI (Xn, j > bn)
)

dp
n

(by (9))

→ 0 (by (2)).
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Finally, note that for n � 1,

Sn−ESn

dn
=

∑kn
j=1Un, j + ∑kn

j=1Wn, j −∑kn
j=1 EUn, j −∑kn

j=1 EWn, j

dn

=
∑kn

j=1Wn, j −∑kn
j=1 EWn, j

dn
+

Tn−ETn

dn

and the conclusion (6) follows from (10) and (8). �

COROLLARY 1. Let {Vn, j,1 � j � kn,n � 1} be a uniformly bounded array of
rowwise independent random elements in a real separable Rademacher type p (1 <
p � 2 ) Banach space X and let {bn, n � 1} be a sequence of constants with 1 < bn →
∞ . Then

E‖Sn−ESn‖p

knb
p−1
n

= E

∥∥∥∥∥∥
Sn−ESn

k
1
p
n b

p−1
p

n

∥∥∥∥∥∥
p

→ 0 (11)

and, a fortiori,
Sn−ESn

k
1
p
n b

p−1
p

n

P→ 0

where Sn = ∑n
j=1Vn, j , n � 1 .

Proof. Let dn = k
1
p
n b

p−1
p

n , n � 1 and cn =
√

bn , n � 1. Let h(x) = x , x � 0. Set

Xn, j = h−1 (‖Vn, j‖) = ‖Vn, j‖, 1 � j � kn, n � 1.

Since the array is comprised of uniformly bounded random elements, conditions (2),
(3), and (4) hold. Moreover, (5) holds since p > 1 and bn →∞ ensures that cn = o(bn) .
The conclusion (11) follows from Theorem 1. �

The following example, which was inspired by an example of Kuczmaszewska
and Szynal (1994), shows that Theorem 1 and Corollary 1 can fail if the Banach space
X is not of Rademacher type p where p ∈ (1,2] .

EXAMPLE 1. Consider the real separable Banach space l1 of absolutely summable
real sequences v = {vk,k � 1} with norm ‖v‖ = ∑∞

k=1 |vk| . It is well known that l1 is
not of Rademacher type p for every p ∈ (1,2] . Let v( j) denote the j -th element
of the standard basis in l1 , j � 1; that is, v( j) in the element in l1 having 1 for
its j -th coordinate and 0 for the other coordinates. Let p ∈ (1,2] . Define an array{
Vn, j,1 � j � n,n � 1

}
of random elements in l1 by requiring

{
Vn, j,1 � j � n,n � 1

}
to be a rowwise independent array with

P

(
Vn, j = v( j)

)
= P

(
Vn, j = −v( j)

)
=

1
2
, 1 � j � n, n � 1.
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Set Sn = ∑n
j=1Vn, j , n � 1. Let 0 < c < 1, b1 = 2c/2 , and bn = nc , n � 2. Then for

n � 2,

E‖Sn−ESn‖p

nbp−1
n

= E

∥∥∥∥∥∥
Sn−ESn

n
1
p b

p−1
p

n

∥∥∥∥∥∥
p

=

(
n

n
1
p +c

(
p−1
p

)
)p

= n(1−α)p → ∞

where α = 1
p + c

(
p−1
p

)
< 1. We have shown that the conclusions of Corollary 1 and

Theorem 1 fail.

REMARK 1. Example 3.2 of Chandra, Li, and Rosalsky (2018) demonstrates that
the hypotheses of Corollary 1 (hence of Theorem 1) do not necessarily ensure that

Sn−ESn

dn
=

Sn−ESn

k
1
p
n b

p−1
p

n

→ 0 a.s.

THEOREM 2. Let {Wn,n � 1} be a sequence of random elements in a real sepa-
rable Banach space X . Let g and h be continuous strictly increasing functions defined
on [0,∞) with

g(0) = h(0) = 0, lim
x→∞

g(x) = ∞, lim
x→∞

g(x)
h(x)

= 0. (12)

If

Wn
P→ 0 (13)

and
sup
n�1

E(h(2‖Wn−wn‖)) < ∞ (14)

for some sequence {wn,n � 1} in X , then

E(g(‖Wn‖)) → 0. (15)

Proof. It follows from (12) that limx→∞ h(x) = ∞ and hence by (14), a number
A > 0 can be chosen so that

h(2A) > 2sup
n�1

E(h(2‖Wn−wn‖)) .

Then by the Markov inequality,

inf
n�1

P(‖Wn−wn‖ � A) = 1− sup
n�1

P(2‖Wn−wn‖ > 2A)

= 1− sup
n�1

P(h(2‖Wn−wn‖) > h(2A))

� 1− 1
h(2A)

sup
n�1

E(h(2‖Wn−wn‖))

>
1
2
.

(16)
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Now by (13), there exists a positive integer N such that

P(‖Wn‖ � 1) >
1
2

for all n � N. (17)

It follows from (16) and (17) that for all n � N ,

{‖Wn−wn‖ � A}∩{‖Wn‖ � 1} 
= /0.

Thus for all n � N , there exists a sample point ωn such that

‖Wn(ωn)−wn‖ � A and ‖Wn(ωn)‖ � 1

implying

‖wn‖ � ‖wn −Wn(ωn)‖+‖Wn(ωn)‖ � A+1.

Thus

sup
n�N

h(2‖wn‖) � h(2(A+1)).

Hence the sequence {h(2‖wn‖),n � 1} is bounded which together with (14) ensures
that

sup
n�1

E(h(‖Wn‖)) � sup
n�1

E(h(‖Wn−wn‖+‖wn‖))

� sup
n�1

E(h(2max{‖Wn−wn‖,‖wn‖}))

= sup
n�1

E(h(max{2‖Wn−wn‖,2‖wn‖}))

� sup
n�1

E(h(2‖Wn−wn‖))+ sup
n�1

h(2‖wn‖)

< ∞.

(18)

It will now be shown that the sequence of random variables {g(‖Wn‖),n � 1} is
uniformly integrable. Let ε > 0 be arbitrary and let B = supn�1 E(h(‖Wn‖)) . Then
B < ∞ by (18). By (12), a number A0 > 0 can be chosen so that

g(x)
h(x)

� ε
B

for all x � A0.
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Then for all a � g(A0) ,

sup
n�1

E(g(‖Wn‖)I (g(‖Wn‖) � a))

� sup
n�1

E(g(‖Wn‖)I (g(‖Wn‖) � g(A0)))

= sup
n�1

E

(
g(‖Wn‖)
h(‖Wn‖) ·h(‖Wn‖)I(‖Wn‖ � A0)

)

= sup
n�1

E

( ε
B

h(‖Wn‖)
)

= ε

proving that the sequence of random variables {g(‖Wn‖),n � 1} is uniformly inte-
grable. Since g is continuous and g(0) = 0, it follows from (13) that

g(‖Wn‖) P→ g(0) = 0. (19)

The conclusion (15) follows from (19) and the uniform integrability of {g(‖Wn‖),n �
1} by the mean convergence criterion (see, e.g., Chow and Teicher (1997, p. 99)). �

The following corollary establishes degenerate mean convergence of order p > 0
for {‖Wn‖,n � 1} .

COROLLARY 2. Let {Wn,n � 1} be a sequence of random elements in a real
separable Banach space X . If

Wn
P→ 0

and
sup
n�1

E‖Wn−wn‖q < ∞

for some q > 0 and some sequence {wn,n � 1} in X , then

E‖Wn‖p → 0 for all 0 < p < q.

Proof. The corollary follows immediately from Theorem 2 by taking h(x) = xq ,
x � 0 and g(x) = xp , x � 0. �

COROLLARY 3. Let {Wn,n � 1} be a sequence of random elements in a real
separable Banach space X and let {wn,n � 1} be an unbounded sequence in X . If

Wn
P→ 0 , then

sup
n�1

E‖Wn −wn‖q = ∞ for all q > 0.
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Proof. If supn�1 E‖Wn−wn‖q < ∞ for some q > 0, then by taking h(x) = xq ,
x � 0, necessarily the sequence {wn,n � 1} is bounded as was shown in the proof of
Theorem 2, a contradiction. �

The following example shows that under the hypotheses of Corollary 2,

E‖Wn‖q → 0

does not necessarily hold.

EXAMPLE 2. Let the Banach space (X,‖ · ‖) be (R, | · |) and let {Wn,n � 1} be
a sequence of random variables where P(W1 = 0) = 1 and for n � 2,

P(Wn = n) = P(Wn = −n) =
1
n
, P(Wn = 0) = 1− 2

n
.

Let q = 1 and wn = 0, n � 1. It is clear that

Wn
P→ 0 and sup

n�1
E |Wn−wn|q = 2 < ∞.

But for n � 2, E |Wn|q = 2 � 0.
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