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SHARP INEQUALITIES FOR THE TOADER MEAN OF

ORDER −1 IN TERMS OF OTHER BIVARIATE MEANS
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Abstract. In the article, we present the best possible parameters α1 , α2 , α3 , α4 , β1 , β2 , β3 ,
β4 ∈ R such that the double inequalities

α1

H(a,b)
+

1−α1

G(a,b)
<

1
T−1(a,b)

<
β1

H(a,b)
+

1−β1

G(a,b)
,

α2

H(a,b)
+

1−α2

A(a,b)
<

1
T−1(a,b)

<
β2

H(a,b)
+

1−β2

A(a,b)
,

α3

H(a,b)
+

1−α3

L(a,b)
<

1
T−1(a,b)

<
β3

H(a,b)
+

1−β3

L(a,b)
,

α4

H(a,b)
+

1−α4

P(a,b)
<

1
T−1(a,b)

<
β4

H(a,b)
+

1−β4

P(a,b)
hold for all a,b > 0 with a �= b , and provide several new bounds for the complete elliptic integral

of the second kind, where T−1(a,b) =
(

2
π
∫ π/2
0

√
a−1 cos2 θ +b−1 sin2 θdθ

)2
is the Toader

mean of order −1 , and H(a,b) = 2ab/(a + b) , G(a,b) =
√

ab , L(a,b) = (a− b)/(loga−
logb) , P(a,b) = (a−b)/[2arcsin((a−b)/(a+b))] and A(a,b) = (a+b)/2 are the harmonic,
geometric, logarithmic, Seiffert and arithmetic means, respectively.

1. Introduction

For r ∈ (0,1) , Legendre’s complete elliptic integrals of the first kind K (r) and
second kind E (r) [1, 2, 9, 11, 16, 17, 25, 28, 31, 34, 35, 36, 40, 43, 44, 45, 47, 52, 57,
58] are defined by

K = K (r) =
∫ π/2

0
(1− r2 sin2 θ )−1/2dθ , E = E (r) =

∫ π/2

0
(1− r2 sin2 θ )1/2dθ .

(1.1)
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It is well-known that K (r) and E (r) are the special cases of the Gaussian hyper-
geometric function [21, 22, 23, 29, 30, 32, 33, 37, 38, 51, 59]

F(a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
(|x| < 1),

where (a)0 = 1 for a �= 0 and (a)n = a(a+1)(a+2) · · ·(a+n−1)= Γ(a+n)/Γ(a) is
the shifted factorial function and Γ(x) =

∫ ∞
0 tx−1e−tdx is the gamma function [24, 46,

50]. Indeed,

K (r) =
π
2

F(1/2,1/2;1;r2), E (r) =
π
2

F(−1/2,1/2;1;r2).

We clearly see that the function r �→ K (r) is strictly increasing from (0,1) onto
(π/2,∞) and the function r �→ E (r) is strictly decreasing from (0,1) onto (1,π/2) .
K (r) and E (r) satisfy the derivative formulas and Landen identities (See [2, Appendix
E. pp. 474–475])

dK (r)
dr

=
E (r)− r′2K (r)

rr′2
,

dE (r)
dr

=
E (r)−K (r)

r
, (1.2)

K

(
2
√

r
1+ r

)
= (1+ r)K (r), E

(
2
√

r
1+ r

)
=

2E (r)− r′2K (r)
1+ r

, (1.3)

where and what follows we denote by r′ =
√

1− r2 for r ∈ (0,1) .
There is a close relationship between complete elliptic integrals and bivariate

means. Many mathematicians established various asymptotic bounds for K (r) and
E (r) by studying their related bivariate means in the past few years [6, 7, 12, 13, 14,
19, 20, 27, 39, 41, 42, 48, 49, 53, 54, 55, 56].

Let a,b > 0. Then the harmonic mean H(a,b) , geometric mean G(a,b) , arith-
metic mean A(a,b) , logarithmic mean L(a,b) , Seiffert mean P(a,b) and arithmetic-
geometric mean AGM(a,b) are defined by

H(a,b) =
2ab
a+b

, G(a,b) =
√

ab, A(a,b) =
a+b

2
,

L(a,b) =

⎧⎨
⎩

a−b
loga− logb

, a �= b

a, a = b,
P(a,b) =

⎧⎨
⎩

a−b
2arcsin[(a−b)/(a+b)]

, a �= b

a, a = b,

and
AGM(a,b) = lim

n→∞
an = lim

n→∞
bn,

respectively, where the sequences {an} and {bn} are defined by

a0 = a, b0 = b,

an+1 = A(an,bn) =
an +bn

2
, bn+1 = G(an,bn) =

√
anbn.
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It is well-known that the inequalities

H(a,b) < G(a,b) < L(a,b) < AGM(a,b) < P(a,b) < A(a,b)

hold for all a,b > 0 with a �= b , and the arithmetic-geometric mean AGM(a,b) can be
expressed by

AGM(a,b) =
π/2∫ π/2

0
(a2 cos2 θ +b2 sin2 θ )−1/2dθ

=
{πa

/[
2K
(√

1− (b/a)2
)]

, a � b,

πb
/[

2K
(√

1− (a/b)2
)]

, a < b.

In particular the Gauss identity (See [2, Theorem 4.4]) shows that

AGM(1,r)K (r′) =
π
2

.

More properties for AGM(a,b) and its application to the circumference rate cal-
culation can be found in the literatures [5, 15].

Chu and Wang [8, 10] gave the bounds for the perimeter of an ellipse by use of the
Toader mean [26]

T (a,b) =
2
π

∫ π/2

0

√
a2 cos2 θ +b2 sin2 θdθ

=
{ 2aE

(√
1− (b/a)2

)
/π , a � b,

2bE
(√

1− (a/b)2
)

/π , a < b,
(1.4)

and established several sharp inequalities for T (a,b) in terms of other classical means.
As applications, numerous new asymptotic upper and lower bounds for the perimeter
of an ellipse and the complete elliptic integral of the second kind E (r) were derived,
which improve some previous well-known results in [3, 4]. Very recently, Chu et al.
[12] extended T (a,b) to the one-parameter Toader mean Tn(a,b) for n ∈ Z , called
Toader mean of order n , given by

Tn(a,b) =

⎧⎪⎨
⎪⎩
(

2
π

∫ π/2

0

√
an cos2 θ +bn sin2 θdθ

)2/n

, n �= 0,
√

ab, n = 0.

According to (1.4), Tn can be rewritten by

Tn(a,b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a

[
2
π

E
(√

1− (b/a)n
)]2/n

, an � bn,

b

[
2
π

E
(√

1− (a/b)n
)]2/n

, an < bn.

(1.5)
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In particular, T2(a,b) = T (a,b) , and T1(a,b) = E(a,b) is the quasi-arithmetic mean
which has been investigated in [18, 60].

In this paper, we focus on studying the Toader mean of order −1 and establishing
several double inequalities for T−1(a,b) in terms of other bivariate means. Specifically,
we would like to find the optimal constants α1 , α2 , α3 , α4 , β1 , β2 , β3 , β4 ∈ R such
that

α1

H(a,b)
+

1−α1

G(a,b)
<

1
T−1(a,b)

<
β1

H(a,b)
+

1−β1

G(a,b)
,

α2

H(a,b)
+

1−α2

A(a,b)
<

1
T−1(a,b)

<
β2

H(a,b)
+

1−β2

A(a,b)
,

α3

H(a,b)
+

1−α3

L(a,b)
<

1
T−1(a,b)

<
β3

H(a,b)
+

1−β3

L(a,b)
,

α4

H(a,b)
+

1−α4

P(a,b)
<

1
T−1(a,b)

<
β4

H(a,b)
+

1−β4

P(a,b)

hold for all a,b > 0 with a �= b . From these results, some new bounds for the complete
elliptic integral of the second kind can be discovered.

2. Lemmas

LEMMA 2.1. [2, Theorem 1.25] Suppose that a,b ∈ (−∞,∞) , f ,g : [a,b] → R

are continuous on [a,b] and differentiable on (a,b) , and g′ �= 0 on (a,b) . If f ′/g′ is
increasing (decreasing) on (a,b) , then so are the functions

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′/g′ is strictly monotone, then the monotonicity in the conclusion is also strict.

The following Lemma 2.2 can be found in [2, Theorem 3.21(8) and Exercise
3.43(11), (16), (29)] and [40, Lemma 2.3].

LEMMA 2.2. Let r ∈ (0,1) . Then the following statements are true:
(1) The function r �→ r′cE (r) is strictly increasing from (0,1) onto (0,π/2) if

c � −1/2 ;
(2) The function r �→ [K (r)− E (r)]/r2 is strictly increasing from (0,1) onto

(π/4,∞);
(3) The function r �→ [(1+ r′2)K (r)−2E (r)]/r4 is strictly increasing from (0,1)

onto (π/16,∞);
(4) The function r �→ [(K (r)−E (r))2 −2E (r)

(
(1+ r′2)K (r)−2E (r)

)
]/r6 is

strictly increasing from (0,1) onto (π2/64,∞) ,
(5) The function r �→ [E 2(r)−r′2K 2(r)]/r4 is strictly increasing from (0,1) onto

(π2/32,1) .
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LEMMA 2.3. The function

ϕ(r) = [K (r)−E (r)][E (r)− r′2K (r)]−2[E 2(r)− r′2K 2(r)]

is strictly increasing from (0,1) onto (0,∞) .

Proof. Clearly ϕ(0+) = 0 and ϕ(1−) = ∞ . Elaborated computations lead to

dϕ(r)
dr

=
rE

r′2
(E − r′2K )+ rK (K −E )

−2

⎡
⎣2E (E −K )

r
+2rK 2−

2K
(
E − r′2K

)
r

⎤
⎦

=
ϕ1(r)
rr′2

, (2.1)

where
ϕ1(r) = r4E 2− (3+ r′2)r′2(K −E )2.

Note that
ϕ1(0) = 0, (2.2)

dϕ1(r)
dr

= 2r[9E 2− (10+4r′2)K E +(3+2r′2)K 2]

= 2r7
{

2(K −E )
r2

[(1+ r′2)K −2E ]
r4 +

(K −E )2−2E [(1+ r′2)K −2E ]
r6

}
.

(2.3)

Making use of Lemma 2.2(2), (3) and (4), we conclude that ϕ1(r) is strictly increasing
on (0,1) . Finally, combining with (2.1) and (2.2), the monotonicity of ϕ(r) on (0,1)
is obtained. �

LEMMA 2.4. The function

γ(r) =
E (r)[(1+ r′2)E (r)−2r′2K (r)]

r4

is strictly increasing from (0,1) onto (3π2/32,1) .

Proof. Clearly γ(1−) = 1. Since

d[(1+ r′2)E −2r′2K ]
dr

= 3r(K −E ),
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differentiating γ(r) yields

dγ(r)
dr

=

{
−(K −E )[(1+ r′2)E −2r′2K ]/r+3E r(K −E )

}
r4

r8

− E [(1+ r′2)E −2r′2K ]4r3

r8

=
3r2E (K −E )− (K +3E )[(1+ r′2)E −2r′2K ]

r5

=
2[(1− r2)K 2 +(2− r2)E K −3E 2]

r5

=
2
r5 [(K −E )(E − r′2K )−2(E 2− r′2K 2)] =

2
r5 ϕ(r), (2.4)

where ϕ(r) is defined as in Lemma 2.3. Thus the monotonicity of γ(r) follows easily
from (2.4) and Lemma 2.3. By Lemma 2.2(3), we get γ(0+) = 3π2/32. �

LEMMA 2.5. The function

η(r) =
E 2(r)[E 2(r)− r′2K 2(r)]

r4

is strictly increasing from (0,1) onto (π4/128,1) .

Proof. Clearly η(1−) = 1. Since

d(E 2− r′2K 2)
dr

= 2
(K −E )2

r
,

differentiating η(r) yields

dη(r)
dr

=

{
2E (E −K )[E 2− r′2K 2]/r+2E 2(K −E )2/r

}
r4 −E 2[E 2− r′2K 2]4r3

r8

=
2E

r5

[
−(K −E )(E 2− r′2K 2)+E (K −E )2 −2E (E 2 − r′2K 2)

]
=

2K E

r5 ϕ(r), (2.5)

where ϕ(r) is defined as in Lemma 2.3. It follows from Lemma 2.3 and (2.5) that
η(r) is strictly increasing on (0,1) . Moreover, by Lemma 2.2(5), one has η(0+) =
π4/128. �

LEMMA 2.6. The function

λ (r) =
(1+ r′2)

3

r′2E 2(r)

is strictly increasing from (0,1) onto (32/π2,∞) .
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Proof. Clearly λ (0+) = 32/π2 and λ (1−) = ∞ . Differentiating λ (r) yields

dλ (r)
dr

=
−6r
(
1+ r′2

)2
r′2E 2 −

(
1+ r′2

)3
[−2rE 2 +2r′2E (E −K )/r]

r′4E 4

=
2
(
1+ r′2

)2

rr′4E 3
[−3r2r′2E + r2(1+ r′2)E +(1+ r′2)r′2(K −E )]

=
2
(
1+ r′2

)2

rr′4E 3
[r2E (1−2r′2)+ (1+ r′2)r′2(K −E )]

=
2
(
1+ r′2

)2

rr′4E 3
{r′2[(1+ r′2)K −2E ]+ r4E }

=
2r3
(
1+ r′2

)2

r′2E 3

[
(1+ r′2)K −2E

r4 +
E

r′2

]
. (2.6)

Therefore, Lemma 2.6 follows easily from (2.6) together with Lemma 2.2(1) and
(3). �

LEMMA 2.7. The function

μ(r) =
8E (r)[K (r)−E (r)]/(π2r2)−1

4/(1+ r′2)2 −1

is strictly increasing from (0,1) onto (1/8,∞) .

Proof. Let μ1(r) = 8E (r)[K (r)−E (r)]/(π2r2)−1 and μ2(r) = 4/
(
1+ r′2

)2−
1. Then μ(r) = μ1(r)/μ2(r) , μ1(0) = μ2(0) = 0, and

μ1
′(r) =

8
π2

[
−(K −E )2/r+ rE 2/r′2

]
r2 −E (K −E )2r

r4 =
8

π2

E 2− r′2K 2

r′2r3
,

μ2
′(r) =

16r(
1+ r′2

)3 ,

and consequently

μ ′
1(r)

μ ′
2(r)

=
1

2π2

(
1+ r′2

)3
(E 2− r′2K 2)

r′2r4
=

1
2π2 η(r)λ (r), (2.7)

where η(r) and λ (r) are defined as in Lemma 2.5 and 2.6.
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It follows from Lemmas 2.5 and 2.6 together with equation (2.7) that μ1
′(r)/μ2

′(r)
is strictly increasing on (0,1) , so that μ(r) is also strictly increasing on (0,1) by
Lemma 2.1. Clearly μ(1−) = ∞ , and by l’Hôptial’s rule we obtain

lim
r→0+

μ(r) = lim
r→0+

μ1
′(r)/μ2

′(r) = 1/8. �

LEMMA 2.8. The function

ζ (r) =
4E (r)[(1+ r′2)E (r)− r′2K (r)]/π2− r′2

r4

is strictly decreasing from (0,1) onto (4/π2,13/32) .

Proof. Clearly ζ (1−) = 4/π2 . Since

d[(1+ r′2)E − r′2K ]
dr

=
E −3r2E −K +2r2K

r
,

differentiating ζ (r) yields

dζ (r)
d(r)

= − 2
π2r5 ζ1(r), (2.8)

where

ζ1(r) = 10E 2 −2r′2K 2−π2(1+ r′2).

Simple computations lead to

ζ1(0) = 0, (2.9)

dζ1(r)
d(r)

=
4[K (r)−E (r)][K (r)−5E (r)]

r
+2π2r =: 2π2rζ2(r), (2.10)

where

ζ2(r) =
2[K (r)−E (r)][K (r)−5E (r)]

π2r2 +1,

ζ2(0) = 0, (2.11)

dζ2(r)
dr

=
4

π2r′2r3
ϕ(r), (2.12)

where ϕ(r) is defined as in Lemma 2.3 and is positive on (0,1) . Hence the mono-
tonicity of ζ (r) on (0,1) can be derived by (2.8)–(2.12). Finally, using Maclaurin
expansions of K (r) and E (r) we get

lim
r→0+

4E [(1+r′2)E−r′2K ]/π2−r′2
r4

= lim
r→0+

4/π2·(π2/4)[1−1/4·r2−3/64·r4+o(r4)][1−3/4·r2+17/64·r4+o(r4)]−1+r2

r4

=
13
32

. �
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3. Main results

THEOREM 3.1. The double inequality

α1

H(a,b)
+

1−α1

G(a,b)
<

1
T−1(a,b)

<
β1

H(a,b)
+

1−β1

G(a,b)

holds for all a,b > 0 with a �= b if and only if α1 � 3/4 and β1 � 8/π2 = 0.8105 · · · .

Proof. Since H(a,b) , G(a,b) and T−1(a,b) are symmetric and homogeneous of
degree one with respect to a and b , without loss of generality, we assume that a = 1 >
b = r′2 (0 < r < 1). Then simple computations lead to

H(a,b) = A(a,b)
4r′2

(1+ r′2)2 , G(a,b) = A(a,b)
2r′

1+ r′2
, (3.1)

T−1(a,b) = A(a,b)
2b

(a+b)
[
2E (
√

1−b/a)/π
]2 = A(a,b)

π2r′2

2(1+ r′2)E 2(r)
. (3.2)

It follows from (3.1) and (3.2) that

1/T−1(a,b)−1/G(a,b)
1/H(a,b)−1/G(a,b)

=
4E 2(r)/π2− r′

(1+ r′2)/2− r′
=

4E 2(r)/(π2r′)−1
(1+ r′2)/(2r′)−1

=: f (r). (3.3)

Let f1(r) = 4E 2(r)/(π2r′)− 1 and f2(r) = (1 + r′2)/(2r′)− 1. Then f1(0) =
f2(0) = 0, f (r) = f1(r)/ f2(r) ,

f ′1(r) =
4
π

2r′2E (E −K )+ r2E

rr′3
,

f ′2(r) =
1
2

( r
r′
)3

,

and thereby

f1 ′(r)
f2 ′(r)

=
8

π2

E (r)[(1+ r′2)E (r)−2r′2K (r)]
r4 =

8
π2 γ(r), (3.4)

where γ(r) is defined as in Lemma 2.4.
Lemma 2.4 and (3.4) imply that f1 ′(r)/ f2′(r) is strictly increasing on (0,1) , so is

f (r) by Lemma 2.1. Note that

lim
r→0+

f (r) = lim
r→0+

f1 ′(r)
f2 ′(r)

=
3
4
, lim

r→1−
f (r) =

8
π2 = 0.8105 · · · . (3.5)

Therefore, Theorem 3.1 follows easily from (3.3) and (3.5) together with the
monotonicity of f (r) on the interval (0,1) . �
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THEOREM 3.2. The double inequality

α2

H(a,b)
+

1−α2

A(a,b)
<

1
T−1(a,b)

<
β2

H(a,b)
+

1−β2

A(a,b)

holds for all a,b > 0 with a �= b if and only if α2 � 8/π2 and β2 � 7/8 .

Proof. Without loss of generality, we suppose that a = 1 > b = r′2 for r ∈ (0,1) .
Then from (3.1) and (3.2) we have

1/T−1(a,b)−1/A(a,b)
1/H(a,b)−1/A(a,b)

=
4E 2(r)/π2−2r′2/(1+ r′2)
(1+ r′2)/2−2r′2/(1+ r′2)

=: g(r). (3.6)

Let g1(r) = 4E 2(r)/π2−2r′2/(1+r′2) , g2(r) = (1+r′2)/2−2r′2/(1+r′2) . Then
g1(0) = g2(0) = 0, g(r) = g1(r)/g2(r) and

g1
′(r) =

4
π2

2E (E −K )
r

+
4r

(1+ r′2)2
, g2

′(r) =
4r

(1+ r′2)2
− r,

and thereby
g1

′(r)
g2

′(r)
= 1− μ(r), (3.7)

where μ(r) is defined as Lemma 2.7 and it is strictly increasing on (0,1) . By (3.7) we
conclude that g1

′(r)/g2
′(r) is strictly decreasing on (0,1) . Applying Lemma 2.1, the

same monotonicity property of g(r) is obtained. Moreover,

lim
r→0+

g(r) = lim
r→o+

g1
′(r)

g2
′(r)

=
7
8
, lim

r→1−
g(r) =

8
π2 = 0.8105 · · ·. (3.8)

Therefore, Theorem 3.2 follows easily from (3.6) and (3.8) together with the
monotonicity of g(r) on the interval (0,1) . �

THEOREM 3.3. The double inequality

α3

H(a,b)
+

1−α3

L(a,b)
<

1
T−1(a,b)

<
β3

H(a,b)
+

1−β3

L(a,b)

holds for all a,b > 0 with a �= b if and only if α3 � 8/π2 and β3 � 13/16 .

Proof. Suppose that a = 1 > b = r′2 ∈ (0,1) . Then simple computations leads to

L(a,b) =
A(a,b)r2

(1+ r′2) log(1/r′)
, (3.9)

1/T−1(a,b)−1/L(a,b)
1/H(a,b)−1/L(a,b)

=
2r2E 2(r)/(π2r′2)− log(1/r′)
r2(1+ r′2)/(4r′2)− log(1/r′)

=: h(r). (3.10)
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Let h1(r)= 2r2E 2(r)/(π2r′2)− log(1/r′), h2(r)= r2(1+r′2)/(4r′2)− log(1/r′) .
Then h1(0) = h2(0) = 0, h(r) = h1(r)/h2(r) , h2

′(r) = r5/(2r′4) ,

h1
′(r) =

2
π2

(
2rE
r′

)
[E +(E −K )]r′ + r2E /r′

r′2
− r

r′2

=
4

π2

rE

r′4
[(1+ r′2)E − r′2K ]− r

r′2
,

and thereby
h1

′(r)
h2

′(r)
= 2ζ (r), (3.11)

where ζ (r) is defined by Lemma 2.8.
It follows from Lemma 2.8 and (3.11) that h1

′(r)/h2
′(r) is strictly decreasing on

(0,1) . So is h(r) by application of Lemma 2.1. Note that

lim
r→0+

h(r) = lim
r→0+

h1
′(r)

h2
′(r)

=
13
16

, lim
r→1−

h(r) =
8

π2 = 0.8105 · · · . (3.12)

Therefore, Theorem 3.3 follows easily from (3.10) and (3.12) together with the
monotonicity of h(r) on the interval (0,1) . �

THEOREM 3.4. The double inequality

α4

H(a,b)
+

1−α4

P(a,b)
<

1
T−1(a,b)

<
β4

H(a,b)
+

1−β4

P(a,b)

holds for all a,b > 0 with a �= b if and only if α4 � 8/π2 and β4 � 17/20 .

Proof. Let r ∈ (0,1) , a = 1 > b = r′2 ∈ (0,1) . Then by simple computations one
has

P(a,b) =
A(a,b)r2

(1+ r′2)arcsin [r2/(1+ r′2)]
(3.13)

and

1/T−1(a,b)−1/P(a,b)
1/H(a,b)−1/P(a,b)

=
2r2E 2(r)/(π2r′2)− arcsin

[
r2/(1+ r′2)

]
r2(1+ r′2)/(4r′2)− arcsin[r2/(1+ r′2)]

=: 1− k(r),

(3.14)
where

k(r) =
r2(1+ r′2)/(4r′2)−2r2E 2(r)/(π2r′2)
r2(1+ r′2)/(4r′2)− arcsin[r2/(1+ r′2)]

.

Let k1(r) = r2(1+ r′2)/(4r′2)−2r2E 2(r)/(π2r′2), k2(r) = r2(1+ r′2)/(4r′2)−
arcsin[r2/(1+ r′2)] . Then k(r) = k1(r)/k2(r) , k1(0) = k2(0) = 0,

k1
′(r) =

1
2

r(1+ r′4)
r′4

− 4
π2

rE [(1+ r′2)E − r′2K ]
r′4
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k2
′(r) =

1
2

r(1+ r′4)
r′4

− 2r

r′(1+ r′2)
,

and thereby

k1
′(r)

k2
′(r)

=
(1+ r′2)(1+ r′)2

r′4 +2r′3 +4r′2 +2r′+1
· (1+ r′4)−8E (r)[(1+ r′2)E (r)− r′2K (r)]

r4

= ω(r′)[1−2ζ (r)], (3.15)

where ζ (r) is defined as in Lemma 2.8 and it is strictly decreasing from (0,1) onto
(4/π2,13/32) , and

ω(r) =
(1+ r2)(1+ r)2

r4 +2r3 +4r2 +2r+1

is positive and strictly decreasing on (0,1) since

ω ′(r) = − 4r(1+ r)(1− r3)
(r4 +2r3 +4r2 +2r+1)2 < 0

for all r ∈ (0,1) . Hence by (3.15) we know that k1
′(r)/k2

′(r) is positive and strictly
increasing on (0,1) , so is k(r) by Lemma 2.1. Moreover,

lim
r→0+

k(r) = lim
r→0+

k1
′(r)

k2
′(r)

=
3
20

, lim
r→1−

k(r) = 1− 8
π2 = 0.1894 · · · . (3.16)

Therefore, Theorem 3.4 follows easily from (3.14) and (3.16) together with the
monotonicity of k(r) on the interval (0,1) . �

According to Theorems 3.1–3.4, we get the following Corollary 3.5 immediately,
in which some new upper and lower bounds for the complete elliptic integral of the
second kind E are given.

COROLLARY 3.5. The double inequalities

π
√

6(1+ r′2)+4r′

8
< E (r) <

√
(1+ r′2)+

(
π2

2
−4

)
r′,

√
(1+ r′2)+

(π2/2−4)r′2

1+ r′2
< E (r) <

π
√

7(1+ r′2)+4r′2/(1+ r′2)
8

,

√
(1+ r′2)+

(π2/2−4)r′2 log(1/r′)
r2 < E (r) <

π
√

13(1+ r′2)/2+6r′2 log(1/r′)/r2

8
,

√
(1+ r′2)+

(π2/2−4)r′2 sin−1(r∗)
r2 < E (r)<

π
√

17(1+ r′2)/10+6r′2 sin−1(r∗)/5r2

4

hold for r ∈ (0,1) , where r∗ = r2/(1+ r′2) .
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