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4,-CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF ROWWISE
EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

JT GAO YAN AND JIN YU ZHOU

(Communicated by L. Mihokovic)

Abstract. In this paper, .Z, -convergence for weighted sums of arrays of rowwise extended neg-
atively dependent (rowwise END) random variables are investigated and some sufficient con-
ditions for convergence are established. Additionally, the relationships among the convergence
rates, weights of the sums and the dominating sequence of the rowwise END arrays are in a sense
revealed. The results obtained in this paper generalise some corresponding ones for independent
and some dependent random variables.

1. Introduction

In this paper, we consider an array of real-valued random variables {X;,i € I,,n >
1} defined on some probability space (Q,.%,P), where I,,CZ is an arbitrary subset and
no matter how many (finite or infinite) elements are in it.

The concept of rowwise END array was introduced by Lita da Silva (2016) [7] as
follows.

DEFINITION 1.1. An array {X,;,i € I,,n > 1} of random variables is said to be
rowwise upper extended negatively dependent (rowwise UEND) if for each n > 1, there
exists an M,, > 0 such that

P (X >xi} | < M. [T P{X0i > xi}
i€J] i€]
holds for any finite subset J C I, and all x; € R(i € J). An array {X,;,i € I,,n > 1} of

random variables is said to be rowwise lower extended negatively dependent (rowwise
LEND) if for each n > 1, there exists an M,, > 0 such that

P (X <xi} | <M, [[P{X0i < xi}
i€ i€]
holds for any finite subset J C I, and all x; € R(i € J). An array {X,;,i € I,,n > 1} of
random variables is said to be rowwise extended negatively dependent (rowwise END)
if it is both rowwise UEND and rowwise LEND.
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We point out that the above concept covers the concept of widely orthant depen-
dent (WOD) sequence (see [11]) and END sequence (see [12]). Of course the concept
of rowwise END arrays covers all negative dependence structures and more interest-
ingly, it covers certain positive dependence structures and some others. To make it
clear, one can refer to the following examples.

EXAMPLE 1.1. Let {X,;,1 <i<n,n> 1} be a lower triangular array and the
joint density of n-th row {X,;,---,Xun} be

1
P{anz---: m’l:j}:Z7 ]:_m+17am_1

for n=2m—1 and

for n = 2m, where m € N. Then for any given n > 1, one can easily verify that
Corr(X;,Xj) =1 for 1 <i,j <n and i # j. However, {X,;,;1 <i<nn>1}isa
rowwise END array with every dominating sequence {M,,n > 1} satisfying M, >
n" L,

EXAMPLE 1.2. Let {X;;,1 <i<n,n>1} be a lower triangular array and the
joint density of n-th row {X,,---, Xy} be

Then for any given n > 1, one can easily verify that Corr(X;,X;) =1 for 1 <i,j <
n and i # j. However, {X,;,1 <i<n,n> 1} is a rowwise END array with every
dominating sequence {M,,n > 1} and M, >2""1.

After the introduction of the definition for a rowwise END array, several works
have been done. Lita da Sliva (2016) [7] studied the limiting behaviour for rowwise
UEND arrays, which extended the corresponding results obtained in Lita da Silva
(2015) [8]. Lita da Sliva (2016) [6] established .Z),-convergence for rowwise END
arrays. Lita da Silva (2020) [9] obtained strong laws of large numbers for rowwise
END arrays, and so on.

Xu et al. (2016) [1] established the following results on .Z}, -convergence.

THEOREM 1.1. Let p € (1,2) and {X;,i € Z} be a sequence of END random
variables with E[X;] = 0,i € Z. Let {ani,i € Z,n > 1} be an array of constants such
that for any T > 1, Y, |ani|* = O(n). Denote T, = Y, aniX;.

i€Z i€Z

1
(1) If xPsupP{|X;| >x} — 0 as x — oo, then n" »T, L.0.
i€,
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(2) If xPsupP{|X;] > x} — 0 as x — = and supE[|X;|P] < oo, then for any p’ €
i€z i€z
12y
(0,p),n ?T,, — 0.

12,
(3) If supE[|Xi|P1(|X;] > x)] — 0 as x — oo, then n” »T,, — 0.
i€Z

Lita da Silva (2020) [10] pointed out that the assertion (1) of Theorem 1.1 does
not in general work for an array of random variables by the following counterexample.

EXAMPLE 1.3. For each n > 1 and suppose {X,;,i € Z} given by X,; =0, a.s.
for all i # n, and X, having probability density

n2
f(t)_{ﬁa |t|>na
n =

0, elsewhere.
Then {X,;,i € Z} is END with E[X,;] =0 forall i. And for any p € (1,2) and x > n,

xP sup P{|Xpi| > x} = xPP{|Xpn| > x} =n*xP "2 — 0, x — oo.

i€Z
Taking a,; = {(l)’ i;Z . Then for any € > 0, there exists some N = N¢ , > 0 such

that forall n > N,

P Z anani
i€Z
A proper reformulation of Theorem 1.1 (1) for a rowwise END array with domi-
nating sequence satisfying M,, = O(1)(n — oo) was then made by Lita da Silva (2020)
[10] as follows.

1 1
>8n5} = P{|Xyn| > enr} =1.

THEOREM 1.2. Let p € (1,2) and {Xpi,i € Z,n > 1} be an array of rowwise
END random variables with means zero and dominating sequence satisfying M, =
O(1)(n — oo). Let {an;,i € Z,n > 1} be an array of constants such that for any T >
1, Y |au|" = O(n). Denote T, = Y, aniXpi. If

i€, i€,

(a) xPsupsupP{|Xyi| >x} — 0 as x — oo foreveryn>1,
i€z
1
(b) [y ynsup P{|Xyi| > yn? }dy — 0 as n — oo,
i€l
1
(c) [{ nsupP{|Xpni| > yn? }dy — 0 as n — oo,
i€z

_1 P
thenn rT, — 0.
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Inspired by the above works, we will further study %}, -convergence and the pur-
pose of this article is threefold:

1. generalise the above results to arowwise END array {X,;, 1 <i< ky,n > 1} with
dominating sequence {M,,n > 1};

2. weaken the conditions in a sense;

3. reveal the relationships between the rate of convergence, weights of the sums and
the dominating sequence in a sense.

Before presenting the main result, we introduce some notations. The letter C
denotes a positive constant, whose value is not important and may change in each ap-
pearance. Denote by .Z,(p > 0) the collection of all random variables X satisfying

E[|X|P] < oo. X, L, X means a sequence of random variables X, converges to a ran-
dom variable X in probability, that is for all € > 0,P{|X,, —X| > €} — 0 as n — .

%
X, —% X means E[|X, — X|P] — 0 as n — oo. Set two sequences of real numbers
{an} and {b,}, then a, = O(b,) stands for a, < Cb, for all n and a, = b, means
0 < lim * < lim 32 <eo. I(A) is the indicator function on the measurable set A € .7 .

n—oo

_ . LD
Denote x™ =xV 0 and x~ = x" —x. For the sake of convenience, we write ‘=" to

define the corresponding expressions.

2. Main results and Lemmas

THEOREM 2.1. Let {Xy;,i € I,,n > 1} be an array of zero-mean rowwise END

random variables with dominating sequence {M,,n > 1}. Let {ﬁ,ﬁ” =1}, {[3,52) n>=
1} and {by,n > 1} be three sequences of positive constants, and {an;,i € I,,n > 1} be
an array of constants satisfying

Y lanil = OBS") and Y aul* = O(BY). (1)

i€l, i€l,

Denote T, = Y, aniXpi. If the following two conditions hold:

icl,
BV sup P{|Xpi| > bu} — O,
(c1) o n— e,
M, suﬂpP{\Xm-\ >b,} —0,
el
MoB?) [ ysup P{|X > buy}dy — 0,
(C2) 1) oo n— oo,
B i SUHPP{‘Xni| > byy}dy — 0,
1€l

o

P
7 — 0 asn— oo.
n

then
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THEOREM 2.2. Let p € (1,2) and {Xpi,i € L,,n > 1} be an array ofzero mean
rowwzse END random variables with dominating sequence {M,,n > 1}. Let { [3,, =

1}, {ﬂn ,n =1} and {b,,n > 1} be three sequences of positive constants, and {ap;,i €
I,,n> l} be an array of constants satisfying (1). Denote T, = Y., a,iXni. If the condi-

icl,
tions
(C1’) Forany € >0,
[3,, sup P{|Xyi| > bpe} — 0,
l€]1,1
— 0o,
Mnﬁ,, sup P{|Xyi| > bpe} — 0,
icl,
and
supﬁél)b;psupEHXniV’} < oo,
(C3) n>1 i€l,
supM, B> by psupE[|X,,l\ ] <
n>1 i€l,
hold, then sup E[| 22 2|P] < co.

n>1

REMARK 2.1. On the one hand, it is easy to see that (C1’) is equivalent to the
following weaker condition
(C1”) Forany € € (0,1),

[3,5” sup P{|Xyi| > bpe} — 0,

icl,

Mnﬁ,sz) sup P{|Xyi| > bpe} — 0,

icl,

Either (C1’) or (C1”) implies (C1).
On the other hand, we can find that (C1’) and (C3) together imply (C2). In fact,

note that | 5
) (=M B ysup P{|Xi| > buy}, v € (0,1)
icl,

and
D)= supP{|Xul > by}, v (1,00)

i€l,

both approach 0 pointwisely as n — oo by (C1’). And, by Markov’s inequality, we have

#@KlpmMmbﬂwmmm W (y)

i€l,

and
g’ () < ”SUPﬁn b, ”squE[IXmI”] ()
1€ly
for all n. Since g(!)(y) and g(®(y) are integrable in (0,1) and (1,0) respectively due
to (C3), applying Lebesgue’s dominated convergence theorem, we conclude that (C1”)
and (C3) together imply (C2).
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REMARK 2.2. Let r >0 and {&,,n > 1} be a sequence of random variables with
supE[|&,|"] < e and &, converges to some random variable £ in probability, then for
n

< o
every ' € (0,r),&, =, & as n — oo. Therefore, taking into account the results of

i
Theorems 2.1 and 2.2 as well as the fact mentioned above, we have . Z7, 0Oasn— oo
for all p’ € (0, p) under the conditions of Theorem 2.2.

THEOREM 2.3. Let p € (1,2) and {Xy;,i € I,,n > 1} be an array of zero-mean
rowwise END random variables with dominating sequence {M,,n > 1}. Let { ﬁ,ﬁ” n=

1}, {ﬁn ,n =1} and {b,,n > 1} be three sequences of positive constants, and {ap;,i €
Iy,n > 1} be an array of constants satisfying (1). Denote T, = Y, aniXpi. If (C3) and

i€l,
(C4) for each € > 0,
BV b sup E[|Xpi|PI(|Xpi| > bue)] — 0
i€l, N — oo
M8 by 7 sup B[Pl 1 (Xl > b)) =
i€l,

=‘?I’
hold, then ﬁ — 0 as n— oo,

REMARK 2.3. Clearly, (C4) implies (C1°) and together with (C3) yields (C2).

Taking T, = {1,---,n} and B, = n, we obtain the following Corollary 2.1 for
weighted sums of (lower triangular) rowwise END arrays.

COROLLARY 2.1. Let {Xp;,1 <i<n,n>=1} be azero-mean rowwise END array
with dominating sequence {My,n > 1}. Let {b,,n > 1} be a sequence of positive

constants, and {ani,1 <i < n,n > 1} be an array of constants satisfying Z |lanil? =
i=1

O(n). Set p € (1,2) and denote T, = 2 niXni.
i=1

(i) If nM, max P{|Xui| > b} — 0,nM, max Jo yP{|Xni| > bpy}dy — 0 and

7 max 7 P{|Xyi| > buy}dy — 0 as n — oo, then 1 LO.

(ii) If for any € > 0,nM, max P{|Xpi| > by} — 0 as n — o and
<isn

supnM,b, " max E[|X,i|?] < o, then 1 l>0f0r all p' € (0,p).

n>1 Sisn

(iii) If supnM,b, plmax E[|Xni|P] < oo, and for any € >0,

n=>1 Sisn

<z
nM,b," max E[|X,ul?1(|Xui] > bug)] — 0 as n— oo, then =2 0.
Isn n
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1

n n 2
REMARK 2.4. Since 1 2 lani| < (l > |am-2> , one can see that 2 |ani]®
i=1

O(n) implies Z |ani] = O(n). So the condition Z |ani|> = O(n) in Corollary 2.1 is

weaker than the correspondmg ones in Theorem 1 1 and 1.2. Particularly, taking a,; =
1,1 <i<n,n>1in Corollary 2.1 leads to the corresponding modes of convergence
for partial sums of (lower triangular) rowwise END arrays.

We have the following corollary for END sequence.

COROLLARY 2.2. Let {X;,i € Z} be a zero-mean END sequence {b,,n> 1} and
{Bu,n = 1} be two sequences of positive constants. Suppose {ap;,i € Z,n > 1} be an
array of constants satisfying 'Y, |an;|* = O(Bn) for =1 and 2. Set p € (1,2) and

i€z

denote T, = Y, aniX;.
i€Z

(i) If Bn SuPP{\Xz’\ > by} — 0, By folySUPP{\Xi\ > byytdy — 0 and B, [{” sup P{|X;|
> byy}dy — 0 as n — oo, then " LO.

(ii) If for any € > 0, B, supP{|X;| > b,€} — 0 as n — oo and sup B,b, " sup E[|X;|"]
i n=1 i

< oo, then —’2 —”,>Of0rall P €(0,p).
(iii) If sup Buby psupE[|X|p} < oo, and for any € >0, B,by psupE[|X |PI(1X;| > bne)]
n=1

£p
— 0 as n— oo, then h” =20.
n

REMARK 2.5. Taking 8, = bl in Corollary 2.2, since for any given § > 0, there
isan N > 0 such that

sup E[[X,/] < sup E[[X"1(X| < bw)] + supE[X;"1(X > by)] < bfy 5 <

we conclude that Corollary 2.2 can serve as a generalisation of Theorem 1.1. Addition-
ally setting that {X;,i € Z} is stochastically dominated by (or identically distributed
with) some random variable X and b,, — oo with n — o, we conclude that three state-
ments (a) supE[|X;|PI(|X;| > bn€)] — 0 for all € > 0, (b) supE[|X;|’] < e and (c)

1
X € £, are equivalent.

The following lemmas are of significance in the proofs of our main results. The
first lemma is about a basic property for rowwise END arrays due to Lita da Silva
(2016) [7].

LEMMA 2.1. Let {Xyi,i € Iy,n > 1} be an array of random variables and { fui,i €
Iy,n > 1} be an array of real-valued functions.
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(1) If {Xui,i € Ly,n > 1} is rowwise UEND, LEND, or END with dominating se-
quence {M,,,n > 1} and fyi,i €1,,n > 1 are all nondecreasing, then { fni(Xpi),i €
Iy,n > 1} is still rowwise UEND, LEND, or END respectively.

(2) If {Xui,i € Ly,n > 1} is rowwise UEND, LEND, or END with dominating se-
quence {M,,n > 1} and fy;,i €1,,n > 1 are all nonincreasing, then { f,i(Xni),i €
Iy,n > 1} is rowwise LEND, UEND, or still END respectively.

For each case, the dominating sequence {M,,n > 1} remains unchanged.

The second lemma is a Rosenthal type inequality for rowwise END arrays with
dominating sequence {M,,n > 1}, which was established by Lita da Silva (2016) [6].

LEMMA 2.2. Let 0 >2 and {Xp;,i € I,,n > 1} C %y be an array of zero-mean
rowwise END random variables with dominating sequence {My,n > 1}. Then there
exists a constant C > 0 depending only on 0 such that

[*]
2 Xni

i€l, i€l, il

<C | Y E[1Xul°] +M<ZE >g

The next three lemmas play significant roles in the proofs of the main results.

LEMMA 2.3. Assume the conditions from Theorem 2.1 hold. Set X, =T (Xy;,bn)
and X'=X,; — X,
eb, eb,
> ) > )

ni’
11:P{
T(x,t)=—tl(x < —t)+xI(|x| <t)+tl(x>1), —co<x<oo, t>0.

Z am’(X;ii —E [Xr/u])

icl,

Y an(Xy; — E[Xy])

i€l,

where T (x,t) is defined as

Then for all € > 0, when n — oo, J1 — 0, J, — 0.
LEMMA 2.4. Assume the conditions from Theorem 2.2 hold. Set

Y’i(s):T(Xm-,s%) and Y)\(s) =Xy —Yy(s) forall s>0,

n

1
sP
J3:supb;p/ an(Y, E[Y,(s)])| > = ¢ ds,
sup lEEHH )] > 5
1
Ja=supb, 1’/ Y ani(Yyi(s) — E[Yyi(s)])| > ST Vs
n=1 icl, 2 '

where T (x,t)(—oo < x < oo, > 0) is defined as the same as Lemma 2.3. Then J3 < oo,
Jy < oo,
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LEMMA 2.5. Assume the conditions from Theorem 2.3 hold. Let Y,.(s) and Y,(s)
be defined as the same as Lemma 2.4, and
1
P
> % } ds,

e {
1
SP
7}‘”

b [ {
h,le
3. Proofs of the Lemmas and the main results

Zam [Y/( )

i€l,

Zam YH [Y//( | >

i€l,

Then for all € € (0,1), when n — e, Js — 0, Jo — 0.

Without loss of generality, we suppose in this section that a,; > 0 for each i €

L,,n>1and Y a} <, for T=1,2 with respect to (1).
i€l,

Proof of Lemma 2.3. By Markov’s inequality, Lemma 2.2 and the definition of

X/;, we have
2
Ji ng;2E 2 ani(X mD < CMnb;2 2 aﬁiE[IXf,i\z}
icl, i€l,
<CM,y Y, agiP{|Xuil > bu} +CMyb, Y, ani[E | X 1(| Xni] < bn)]
icl, i€l,

A
=C(J11+J12).

It follows directly from (1) and (C1) that

J11 < CM B sup P{[Xi| > by} — 0, n— oo,

i€l,
By (1) and (C2), we have

Jio <CMb, % Y a; / xP{|X,i| > x}dx

i€l,

1
=CM,, Z aﬁi/o yP{|Xpi| > yb, }dy

icl,

1
<CM, Bn sup yP{|Xm-| > yby}dy — 0, n— oo.

iel,

It can be checked that

‘XH‘ | Xi | L([Xnil > D) = (1Xni| — bn)+ + DuI (|Xni| > bn).
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Applying Markov’s inequality, (C1) and (C2) leads to

2 i (X//

i€l,

<Cb, 'Y anE[|X)]]

i€l,

J, <Cb,'E l

<Y an /h P{|Xui| > x}dx+C Y anP{|Xui| > by}

icl, icl,

—c S ay / P{IXui| > buy}dy+C Y aniP{|Xui] > by}

i€l, i€l,

Cﬁn sup P{\Xm\ > bny}dy—i-Cﬁn sup P{|Xpi| > bp} — 0, n— oo.

i€l, i€l,

The proof is completed. []

Proof of Lemma 2.4. By Remark 2.1, conditions (C1) and (C2) can be used in this
proof. By Markov’s inequality, Lemma 2.2 and the definition of Y/,(s), we have
2

> ani(¥, E[Y,(s)])| | ds

i€l,

J; <Csupb;”/ s PE
n}l n

had 2
ngupMnb;p/hp sy anE[|Yi(s)*)ds

nzl icl,

_ °° 2 1
<CsupM,b, p/p > anP{|Xui| > 57 }ds

nz1 n icl,

_ < _2 2 2 1
+CsupMnbn1’/p 50 @E[Xul21(Xu] < 57)]ds

nz1 i€ll,
201 +J3).
It follows directly from (1) and (C3) that
J31 < CM, BV b, P Sup E[|X,i]7) <

i€l,
1 2
Note that |X,,;|?1(|X,:| < s7) < |X,i|*> As?, we have

- .
/bp s~ P E[| X 1(|Xi| < 57)]ds

1
2

o0 sP
gc/, s P / tP{|Xyi| > t}dt | ds
vl 0

:C/ tP{| Xy >t} </ szzids> dt
0 bhver

by, o
:C/ bP 2t P{|X,i| > t}dt+C/ P P{ X, > t}de
0 b
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foreach i € I,;,n > 1, thus applying (1), (C2) and (C3) yields
@2 [
J3o <SCsupM,Bn~'b,“sup | tP{|Xy| > t}dt
n>1 i€l,

+CsupMnﬁ,$2)b;p sup [ tPTIP{|X,| > 1}dr
bn

n=1 i€l

1
<CsupM, B sup | yP{|Xoi| > buy}dy
0

n>1 i€l,
+CsupM, B b P sup E[|X,ul?] <
n>1 i€l,

It can be checked that

1 1 1 1
(Vi ()] < |Xoi [ 1(1Xi] > 57) = (1Xi| = 57) 4 + 57 I(|Xi] > 7).

Applying Markov’s inequality,

2 ani(Yi(s) — E[Yi(s)])

i€l,

bt 1
Js <Csupb, p/ s_EEl
bh

n>1

Ja

<Csupb;”/ s PEam [|Y,i(s)

nz1 i€l,
<Csupbnp/ 5 Zam (/1 P{| X, >t}dt) ds
nzl1 iel, s?

1
+Csupb;1’/p Eam-P{|Xm'\ > 57 }ds
n>1

n i€l

A
=C(Ja1 +Ja2).

Note that

oo oo oo tP
/ s (/1 P{|Xpi| > t}dt) ds :/ P{[Xpi| > 1} (/ s_%ds) dt
b,I; sP bn bII;

< / P P{|Xy| > 1) dt
h)l
for each i € I,, n > 1, taking into account (1) and (C3), we obtain

Ja1 ngupﬁn b Psup 5P (/1 P{|X,i| > t}dt) ds
sP

n>1 i€l,

ngupﬁ,El)b;psup t”’lP{|Xm-\ > t}dt

n=1 i€l,

<Csupﬁ,, b psupE[\an| | <

n>1 i€l,

1551
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and

Jyp < Csupﬁn b psup P{|Xm\ > sﬁ}ds
by

n>1 i€l,

< Csup b, P sup E[|X,i7] <

n=1 iel,

The proof is completed. [J

Proof of Lemma 2.5. By remark 2.3, conditions (C1), (C1°) and (C2) can be used
in this proof. By Markov’s inequality, Lemma 2.2 and the definition of Y},(s), we get

2
o [T -2 v /
Js <Cb, s PE Zam(Yni(S)_E[Yni(S)]) ds
bhe icl,
<CMnb;1’/p s anamE|
n€ 1€l

<CMyb; P/ S @P{|X,i| > 57 }ds

bue i€l,

CMby? [ 57F S GNP < 5H)lds

i€l,

=C(151 +Js2).

It follows from (1) and (C4) that

Js1 <CM, Bn b psup P{\Xm\ >sﬁ}ds

icl,
1
SCMnﬁ,, b;p Sup E[|X,i|PI(|Xni| > bne?)] — 0, n— oo,

i€l,

Since

L5 PEDP 1] < 57)ds

1

oo

2 [ ps?
<C | s v / tP{|Xyi| > t}dt | ds
0

bhe

—C/ tP{| Xy >t} (/’ s %ds) dt
b)

1

bpe?P oo
=C / bl tP{|Xu| > t}dt +C / L P IP{| X > 1}t
0 byeP
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for each i € I,;,n > 1, taking into account (1), (C2) and (C4), we obtain

bt 2 1
Jsy SCMu B b7 sup [ 570 E{ X P1(|Xoi| < 57)ds
i€l, / bn€
2), -2 bne%
<CM,B,"'b, “ sup tP{|Xyi| > t}dr
0

i€l,

+cM,BPb; Psup e 'P{|X,i| > t}dt
i€l,
l

epP
<cM,B? sup | YP{|Xyi| > buy}dy

i€l,

M B b7 sup E[| X P1(|Xo| > bue?)]

zen

<M, B sup yP{|Xni| > byy}dy

i€l,

1
—|—CM,,[3,, b;psupE[|Xni|pl(|Xn,~| > buer)] — 0, n— oo

i€l,

Similarly, by Markov’s inequality, the definition of Y,/(s), (1) and (C4), we have

Zam Y// [Y”( )

i€l,

Ch, /SPZam [1Y,i(s)

icl,

Jo <Cb,, p/ s ”
bl’

]ds

1
<Cb;1’/bp 57 anE[Xull (Xl > 7 ))ds
Pe

i€l,

1 1
<Cb; s p Zam IXmI_Sp) ]+S;P{|Xm| >s5}]ds

bye i€l,
<cBMbPsup [ 57 </1P{|Xm-|>t}dt)ds
i€l h S
B b sup [ P{Xul > 7 }ds
i€l, n
(1)~ "l
=CB,'b, " sup P{|Xm|>t} / s rds | drt
icl,, Jbne ﬁ

+ BV b sup E[(| Xl — bPe) ]

ie]ln

<CBVb, P sup e VP{ X, > 1}dt + CBS Vb, P sup E[(|Xui]? — bPe) ]

icl,, J bne i€l,

<CB b sup E[| Xt "I Xoi| > bue?)] — 0, 1 — oo,

i€l,

1553
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The proof is completed. [

Proof of Theorem 2.1. Let X, and X, be defined as the same as Lemma 2.3. Note
that E[X,; = 0], taking into account Lemma 2.3, we have for any € >0,
> ¢eby, }

Z ani(Xr/n' Xpil) + Z ani( X// D

i€l i€l

P{|T,| >£bn}:P{

<N +h—0

as n — oo, which completes the proof. [

Proof of Theorem 2.2. Let Y, (s) and Y,i(s) be defined as the same as Lemma 2.4.
Note that E[X,;] = 0, taking into account Lemma 2.4, we have

B oo
supby PE(|T;|7) = supb, ( L+ ) P{IT:| > 57 }ds

1+supb 1’/ {

4 Eam Y// Y//( )])

i€l,

Eam Y/( )

i€l,
1
> 5P pds

K1+J3+J4 <o

Then the proof is completed. [l

Proof of Theorem 2.3. Let Y,.(s) and Y,i(s) be defined as the same as Lemma 2.5.
We know by Lemma 2.5 that for any € € (0, 1), there exists an N = N, > 0 such that
when n > N, then J5 < € and Jg < €.

Note that E[X,;] = 0, taking into account Lemma 2.5, we have for any given € €
(0,1) and N mentioned above, when n > N, then

bhe

<£+b;1’/ {

+ Eam Y” YU( )])

i€l,
L<e+J5+Js < 3e,

bhe oo
b PE(|T,|?) =b, P (/ n )P{m > 57 }ds
0

Eam Y/( )

i€l,
1
> 5P pds

and the proof is hence completed due to the arbitrariness of €. [
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