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ON STEVIĆ–SHARMA OPERATORS FROM THE MINIMAL

MÖBIUS INVARIANT SPACE INTO ZYGMUND–TYPE SPACES

ZHITAO GUO, LINLIN LIU AND XIANFENG ZHAO ∗

(Communicated by L. Mihoković)

Abstract. The boundedness, essential norm and compactness of Stević-Sharma operators from
the minimal Möbius invariant space into Zygmund-type spaces are investigated in this paper.

1. Introduction

Let H(D) be the space of all analytic functions on D , where D is the open unit
disk in the complex plane C , and S(D) the family of all analytic self-maps of D .
Denote by N the set of positive integers.

An f ∈ H(D) is said to belong to the Zygmund-type space, which is denoted by
Zμ = Zμ(D) , if

‖ f‖ = sup
z∈D

μ(z)| f ′′(z)| < ∞,

where μ is a weight, namely a strictly positive continuous function on D . We also as-
sume that μ is radial: μ(z) = μ(|z|) for any z ∈ D . Under the norm ‖ f‖Zμ = | f (0)|+
| f ′(0)|+‖ f‖ , Zμ becomes a Banach space. When μ(z) = 1−|z|2 , the induced space
Zμ reduce to the classical Zygmund space. The little Zygmund-type space Zμ,0 con-
sists of those functions f in Zμ satisfying lim|z|→1 μ(z)| f ′′(z)|= 0, and it is easily seen
that Zμ,0 is a closed subspace of Zμ . For some results on the Zygmund-type spaces
and operators on them see for instance [2, 6, 9, 10, 12, 13, 14, 15, 17, 19, 26, 36, 40].

For w ∈ D , let σw be the automorphism of D exchanging points w and 0, that is,

σw(z) =
w− z
1−wz

, z ∈ D.

Mathematics subject classification (2020): 47B38, 47B33, 30H25.
Keywords and phrases: Stević-Sharma operator, Möbius invariant space, Zygmund-type space, bound-
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The analytic Besov space B1 consists of all f ∈ H(D) which can be written as

f (z) =
∞

∑
n=1

anσλn(z)

for some sequences {an}n∈N ⊂ l1 and {λn}n∈N ⊂ D . For f ∈ B1 , the norm is defined
by

‖ f‖B1 = inf

{ ∞

∑
n=1

|an| : f (z) =
∞

∑
n=1

anσλn(z)
}

.

The space B1 was extensively studied in [3], where it was shown that if one defines
appropriately the notion of a “Möbius invariant space”, then B1 is the smallest one.
For this reason, B1 is also called the minimal Möbius invariant space. It is evident that
B1 ⊂ H∞ . In fact, functions in B1 can extend continuously to the boundary, hence
B1 is also a “boundary regular” space (see [5]). Furthermore, there exists a positive
constant C such that for each f ∈ B1 (see [3, 38]),

C−1
∫

D

| f ′′(z)|dA(z) � ‖ f − f (0)− f ′(0)z‖B1

� C
∫

D

| f ′′(z)|dA(z),

where dA denotes the normalized area measure, i.e., A(D) = 1. See [4, 12, 18, 23, 39]
for some more related results about B1 space.

Let ϕ ∈ S(D) , the composition operator Cϕ is defined by

Cϕ f (z) = f (ϕ(z)), f ∈ H(D).

For ψ ∈ H(D) the multiplication operator Mψ is defined by

Mψ f (z) = ψ(z) f (z), f ∈ H(D).

The product Wψ,ϕ := MψCϕ of these two operators is known as the weighted com-
position operator, which has been extensively studied. For more research about the
(weighted) composition operators acting on several spaces of analytic functions, we re-
fer to [5]. The differentiation operator D , which is defined by Df (z) = f ′(z) , where
f ∈ H(D) , plays an important role in operator theory and dynamical system.

In [32, 33], Stević et al. introduced the following so-called Stević-Sharma opera-
tor:

Tψ1,ψ2,ϕ f (z) = ψ1(z) f (ϕ(z))+ ψ2(z) f ′(ϕ(z)), f ∈ H(D),

where ψ1,ψ2 ∈ H(D) and ϕ ∈ S(D) . Meanwhile, the boundedness, compactness and
essential norm of Tψ1,ψ2,ϕ on the weighted Bergman space were characterized. By
taking some specific choices of the involving symbols, we can easily get the general
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product-type operators:

MψCϕ = Tψ,0,ϕ , CϕMψ = Tψ◦ϕ,0,ϕ , MψD = T0,ψ,id , DMψ = Tψ ′,ψ,id ,

CϕD = T0,1,ϕ , DCϕ = T0,ϕ ′,ϕ , MψCϕD = T0,ψ,ϕ , MψDCϕ = T0,ψϕ ′,ϕ ,

CϕMψD = T0,ψ◦ϕ,ϕ , DMψCϕ = Tψ ′,ψϕ ′,ϕ ,

CϕDMψ = Tψ ′◦ϕ,ψ◦ϕ,ϕ , DCϕMψ = Tϕ ′(ψ ′◦ϕ),ϕ ′(ψ◦ϕ),ϕ .

Recently, the research of Stević-Sharma operator between analytic function spaces
has aroused the interest of experts. For instance, Zhu in [41] characterized the bound-
edness and compactness of Tψ1,ψ2,ϕ from the Besov space Bp into Bloch space. Wang
et al. in [35] considered the difference of two Stević-Sharma operators and investi-
gated its boundedness, compactness and order boundedness between Banach spaces of
analytic functions. Abbasi et al. in [1] generalized the Stević-Sharma operator and
studied its boundedness, compactness and essential norm from Hardy space into the
n th weighted-type space. Some more related results can be found (see, e.g., [2, 4, 6,
8, 9, 10, 11, 12, 16, 19, 21, 24, 27, 28, 29, 30, 31, 34, 36, 39, 40] and the references
therein). Motivated by these, in this paper, we investigate the boundedness, compact-
ness and essential norm of Stević-Sharma operator from the minimal Möbius invariant
space into Zygmund-type space.

Recall that the essential norm of a bounded linear operator T : X → Y is the dis-
tance from T to the compact operators K : X → Y , namely

‖T‖e,X→Y = inf
{‖T −K‖X→Y : K is compact

}
.

Here X and Y are Banach spaces. Notice that ‖T‖e,X→Y = 0 if and only if T : X → Y
is compact.

Throughout this paper, for nonnegative quantities X and Y , we use the abbrevia-
tion X �Y or Y � X if there exists a positive constant C independent of X and Y such
that X � CY . Moreover, we write X ≈ Y if X � Y � X .

2. Preliminaries

In this section, we state several lemmas which will be used in the proofs of the
main results. The first one is folklore (see, for instance, [37]).

LEMMA 1. Let k ∈ N, then

‖ f‖∞ � ‖ f‖B1 and (1−|z|2)k| f (k)(z)| � ‖ f‖B1

for any f ∈ B1 .

For any w ∈ D and j ∈ N , set

f j,w(z) =
(1−|w|2) j

(1−wz) j , z ∈ D. (1)

It is known that f j,w ∈ B1 , and for each j ∈ N , ‖ f j,w‖B1 � 1. Moreover, f j,w con-
verges to zero uniformly on compact subsets of D as |w| → 1.
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LEMMA 2. For any 0 
= w∈D and i,k ∈ {0,1,2,3}, there exists a function gi,w ∈
B1 such that

g(k)
i,w(w) =

wkδik

(1−|w|2)k ,

where δik is Kronecker delta.

Proof. For any 0 
= w ∈ D and constants c1,c2,c3,c4 , we set

gw(z) =
4

∑
j=1

c j f j,w(z),

where f j,w is defined in (1). For each i ∈ {0,1,2,3} , the system of linear equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

gw(w) = c1 + c2 + c3 + c4 = δi0

g′w(w) = (c1 +2c2 +3c3 +4c4) w
1−|w|2 = wδi1

1−|w|2

g′′w(w) =
(
2c1 +6c2 +12c3 +20c4

)
w2

(1−|w|2)2 = w2δi2
(1−|w|2)2

g′′′w (w) =
(
6c1 +24c2 +60c3 +120c4

)
w3

(1−|w|2)3 = w3δi3
(1−|w|2)3

has a unique solution ci
j, j ∈ {1,2,3,4} that is independent of w , since the determinant

of coefficient matrix is not equal to zero. For such chosen numbers ci
j, j ∈ {1,2,3,4}

the function

gi,w(z) :=
4

∑
j=1

ci
j f j,w(z)

satisfies the desired conditions. �
By a standard arguments in [5, Proposition 3.11], we can get the following lemma

and we omit the details.

LEMMA 3. Let ψ1,ψ2 ∈H(D) and ϕ ∈ S(D) . Then the operator Tψ1,ψ2,ϕ : B1 →
Zμ is compact if and only if for each bounded sequence { fn}n∈N in B1 and converges
to zero uniformly on compact subsets of D as n → ∞ , we have ‖Tψ1,ψ2,ϕ fn‖Zμ → 0 as
n → ∞ .

LEMMA 4. [39] Every sequence in B1 bounded in norm has a subsequence
which converges uniformly in D to a function in B1 .

LEMMA 5. [22] A closed set Q in Zμ,0 is compact if and only if it is bounded
and satisfies

lim
|z|→1

sup
f∈Q

μ(z)| f ′′(z)| = 0.
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3. Boundedness

In this section, we give some necessary and sufficient conditions for Stević-Sharma
operator Tψ1,ψ2,ϕ : B1 → Zμ(Zμ,0) to be bounded. To simplify notation of this paper,
we set

A0(z) = ψ ′′
1 (z),

A1(z) = 2ψ ′
1(z)ϕ ′(z)+ ψ1(z)ϕ ′′(z)+ ψ ′′

2 (z),

A2(z) = ψ1(z)ϕ ′(z)2 +2ψ ′
2(z)ϕ

′(z)+ ψ2(z)ϕ ′′(z),

A3(z) = ψ2(z)ϕ ′(z)2.

THEOREM 1. Let ψ1,ψ2 ∈ H(D) , ϕ ∈ S(D) and μ be a radial weight. Then the
following statements are equivalent.

(i) The operator Tψ1,ψ2,ϕ : B1 → Zμ is bounded.
(ii) For each i ∈ {0,1,2,3},

sup
w∈D

‖Tψ1,ψ2,ϕ fi+1,w‖Zμ < ∞ and sup
z∈D

μ(z)|Ai(z)| < ∞,

where fi+1,w is defined in (1).
(iii) For each i ∈ {0,1,2,3},

sup
z∈D

μ(z)|Ai(z)|
(1−|ϕ(z)|2)i < ∞. (2)

Proof. (i)⇒(ii). Suppose that Tψ1,ψ2,ϕ : B1 → Zμ is bounded. For any w ∈ D

and i ∈ {0,1,2,3} , we have supw∈D ‖ fi+1,w‖B1 � 1. Therefore,

sup
w∈D

‖Tψ1,ψ2,ϕ fi+1,w‖Zμ � ‖Tψ1,ψ2,ϕ‖B1→Zμ sup
w∈D

‖ fi+1,w‖B1 < ∞.

Taking f0(z) = 1 ∈ B1 (see [37], where it was proved that each polynomial belongs to
B1 ), by the boundedness of Tψ1,ψ2,ϕ : B1 → Zμ we get

sup
z∈D

μ(z)|A0(z)| � ‖Tψ1,ψ2,ϕ f0‖Zμ < ∞. (3)

Applying the operator Tψ1,ψ2,ϕ to f1(z) = z ∈ B1 , we obtain

∞ > ‖Tψ1,ψ2,ϕ f1‖Zμ � sup
z∈D

μ(z)|(Tψ1,ψ2,ϕ f1)′′(z)|

= sup
z∈D

μ(z)|A0(z)ϕ(z)+A1(z)|

� sup
z∈D

μ(z)|A1(z)|− sup
z∈D

μ(z)|A0(z)ϕ(z)|,

which along with (3) and the fact that |ϕ(z)| < 1 implies

sup
z∈D

μ(z)|A1(z)| < ∞. (4)
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Taking f2(z) = z2 ∈ B1 , then we have

∞ > ‖Tψ1,ψ2,ϕ f2‖Zμ � sup
z∈D

μ(z)|(Tψ1,ψ2,ϕ f2)′′(z)|

= sup
z∈D

μ(z)|A0(z)ϕ(z)2 +2A1(z)ϕ(z)+2A2(z)|,

which along with (3), (4), the triangle inequality and the fact that |ϕ(z)| < 1 we get

sup
z∈D

μ(z)|A2(z)| < ∞. (5)

By using the function f3(z) = z3 ∈ B1 , we obtain

∞ > ‖Tψ1,ψ2,ϕ f3‖Zμ � sup
z∈D

μ(z)|(Tψ1,ψ2,ϕ f3)′′(z)|

= sup
z∈D

μ(z)|A0(z)ϕ(z)3 +3A1(z)ϕ(z)2 +6A2(z)ϕ(z)+6A3(z)|,

which along with (3), (4), (5), the triangle inequality and the fact that |ϕ(z)| < 1 yields

sup
z∈D

μ(z)|A3(z)| < ∞.

(ii)⇒(iii). Note that we only need to show that for i ∈ {1,2,3} , (2) holds. By
Lemma 2, for each i ∈ {1,2,3} and ϕ(w) 
= 0, there exist constants ci

1,c
i
2,c

i
3,c

i
4 such

that

gi,ϕ(w)(z) =
4

∑
j=1

ci
j f j,ϕ(w)(z) ∈ B1, (6)

and

g(k)
i,ϕ(w)(z) =

ϕ(w)
k
δik

(1−|ϕ(w)|2)k
,

where k ∈ {0,1,2,3} . Then we have

4

∑
j=1

|ci
j| sup

w∈D

‖Tψ1,ψ2,ϕ f j,ϕ(w)‖Zμ � sup
w∈D

‖Tψ1,ψ2,ϕgi,ϕ(w)‖Zμ

� μ(w)
∣∣(Tψ1,ψ2,ϕgi,ϕ(w))

′′(w)
∣∣

=
μ(w)|Ai(w)||ϕ(w)|i

(1−|ϕ(w)|2)i . (7)

From (7) and (ii), for each i ∈ {1,2,3} , we have

sup
|ϕ(w)|> 1

2

μ(w)|Ai(w)|
(1−|ϕ(w)|2)i �

4

∑
j=1

sup
w∈D

‖Tψ1,ψ2,ϕ f j,ϕ(w)‖Zμ < ∞,
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and

sup
|ϕ(w)|� 1

2

μ(w)|Ai(w)|
(1−|ϕ(w)|2)i � sup

w∈D

μ(w)|Ai(w)| < ∞.

Therefore,

sup
z∈D

μ(z)|Ai(z)|
(1−|ϕ(z)|2)i < ∞.

(iii)⇒(i). Assume that (iii) holds. For any f ∈ B1 , by Lemma 1 we have

μ(z)|(Tψ1,ψ2,ϕ f )′′(z)| �
3

∑
i=0

μ(z)|Ai(z)|| f (i)(ϕ(z))|

� ‖ f‖B1

3

∑
i=0

μ(z)|Ai(z)|
(1−|ϕ(z)|2)i . (8)

Moreover,

|(Tψ1,ψ2,ϕ f )(0)|+ |(Tψ1,ψ2,ϕ f )′(0)|
�(|ψ1(0)|+ |ψ ′

1(0)|)| f (ϕ(0))|+(|ψ2(0)|+ |ψ ′
2(0)|+ |ψ1(0)||ϕ ′(0)|)| f ′(ϕ(0))|

+ |ψ2(0)||ϕ ′(0)|| f ′′(ϕ(0))|

�
(
|ψ1(0)|+ |ψ ′

1(0)|+ |ψ2(0)|+ |ψ ′
2(0)|+ |ψ1(0)||ϕ ′(0)|

1−|ϕ(0)|2 +
|ψ2(0)||ϕ ′(0)|
(1−|ϕ(0)|2)2

)
‖ f‖B1 .

Thus Tψ1,ψ2,ϕ : B1 → Zμ is bounded. The proof is completed. �

THEOREM 2. Let ψ1,ψ2 ∈ H(D) , ϕ ∈ S(D) and μ be a radial weight. Then
the operator Tψ1,ψ2,ϕ : B1 → Zμ,0 is bounded if and only if Tψ1,ψ2,ϕ : B1 → Zμ is
bounded and for each i ∈ {0,1,2,3},

lim
|z|→1

μ(z)|Ai(z)| = 0. (9)

Proof. Assume that Tψ1,ψ2,ϕ : B1 →Zμ,0 is bounded. It is immediate that Tψ1,ψ2,ϕ :
B1 → Zμ is bounded, and for every f ∈ B1 , we have Tψ1,ψ2,ϕ f ∈ Zμ,0 . Taking
f0(z) = 1 ∈ B1 , we get

lim
|z|→1

μ(z)|A0(z)| = lim
|z|→1

μ(z)|(Tψ1,ψ2,ϕ f0)′′(z)| = 0. (10)

Taking f1(z) = z ∈ B1 , we obtain

lim
|z|→1

μ(z)|A0(z)ϕ(z)+A1(z)| = 0,
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which along with (10), the triangle inequality, and the fact that |ϕ(z)| < 1 implies that

lim
|z|→1

μ(z)|A1(z)| = 0.

By using the functions f2(z) = z2 and f3(z) = z3 ∈ B1 , we conclude similarly that (9)
holds for i = 2,3.

On the contrary, if Tψ1,ψ2,ϕ : B1 → Zμ is bounded and (9) holds, then for any
polynomial p , we have

μ(z)|(Tψ1,ψ2,ϕ p)′′(z)| �
3

∑
i=0

μ(z)|Ai(z)|‖p(i)‖∞.

Letting |z| → 1 in the last inequality yields Tψ1,ψ2,ϕ p ∈ Zμ,0 . Since the set of all
polynomials is dense in B1 (see [3]), and consequently for each f ∈ B1 , there exists
a sequence of polynomials {pn}n∈N such that limn→∞ ‖ f − pn‖B1 = 0. It follows that

‖Tψ1,ψ2,ϕ f −Tψ1,ψ2,ϕ pn‖Zμ � ‖Tψ1,ψ2,ϕ‖ · ‖ f − pn‖B1 → 0

as n → ∞ . Thus Tψ1,ψ2,ϕ f ∈ Zμ,0 and Tψ1,ψ2,ϕ (B1) ⊆ Zμ,0 . As a consequence,
Tψ1,ψ2,ϕ : B1 → Zμ,0 is bounded. �

4. Essential norm

In this section, we mainly estimate the essential norm of Stević-Sharma operator
acting from the minimal Möbius invariant space to Zygmund-type space. For some
results on essential norm of operators, see, e.g., [6, 7, 20, 25, 30, 31, 32, 39, 40].

THEOREM 3. Let ψ1,ψ2 ∈ H(D) , ϕ ∈ S(D) and μ be a radial weight such that
Tψ1,ψ2,ϕ : B1 → Zμ is bounded. Then

‖Tψ1,ψ2,ϕ‖e,B1→Zμ ≈ max{ρi}3
i=0 ≈ max{τl}3

l=1,

where

ρi = limsup
|w|→1

‖Tψ1,ψ2,ϕ fi+1,w‖Zμ , τl = limsup
|ϕ(z)|→1

μ(z)|Al(z)|
(1−|ϕ(z)|2)l .

Proof. First we prove that

‖Tψ1,ψ2,ϕ‖e,B1→Zμ � max{ρi}3
i=0.

It is obvious that for each i ∈ {0,1,2,3} , supw∈D ‖ fi+1,w‖B1 � 1 and fi+1,w converges
to zero uniformly on compact subsets of D as |w| → 1. For any compact operator K
from B1 into Zμ , analysis similar to [20, Theorem 3.6] (see also [7, 25]) shows that

lim
|w|→1

‖K fi+1,w‖Zμ = 0.
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Hence, for each i ∈ {0,1,2,3} ,

‖Tψ1,ψ2,ϕ −K‖B1→Zμ � limsup
|w|→1

‖(Tψ1,ψ2,ϕ −K) fi+1,w‖Zμ

� limsup
|w|→1

‖Tψ1,ψ2,ϕ fi+1,w‖Zμ − limsup
|w|→1

‖K fi+1,w‖Zμ = ρi.

Therefore

‖Tψ1,ψ2,ϕ‖e,B1→Zμ = inf
K
‖Tψ1,ψ2,ϕ −K‖B1→Zμ � max{ρi}3

i=0. (11)

Next, we show that

‖Tψ1,ψ2,ϕ‖e,B1→Zμ � max{τl}3
l=1. (12)

Let {z j} be a sequence in D such that |ϕ(z j)| → 1 as j → ∞ . Since Tψ1,ψ2,ϕ : B1 →
Zμ is bounded, using Lemma 3 and (7) for any compact operator K : B1 → Zμ and
l ∈ {1,2,3} , we obtain

‖Tψ1,ψ2,ϕ −K‖B1→Zμ � limsup
j→∞

‖Tψ1,ψ2,ϕgl,ϕ(z j)‖Zμ − limsup
j→∞

‖Kgl,ϕ(z j)‖Zμ

� limsup
j→∞

μ(z j)|Al(z j)||ϕ(z j)|l
(1−|ϕ(z j)|2)l ,

where gl,ϕ(z j) is defined in (8). Thus we have

‖Tψ1,ψ2,ϕ‖e,B1→Zμ � limsup
j→∞

μ(z j)|Al(z j)||ϕ(z j)|l
(1−|ϕ(z j)|2)l

= limsup
|ϕ(z)|→1

μ(z)|Al(z)|
(1−|ϕ(z)|2)l = τl ,

and consequently (12) holds.
It will thus be sufficient to prove that

‖Tψ1,ψ2,ϕ‖e,B1→Zμ � min
{

max{ρi}3
i=0,max{τl}3

l=1

}
.

Define

Kr f (z) = fr(z) = f (rz), 0 � r < 1.

Then Kr : B1 → B1 is a compact operator with ‖Kr‖ � 1. Moreover, it is easily
seen that fr → f uniformly on compact subsets of D as r → 1. Let {r j} ⊂ (0,1) be a
sequence such that r j → 1 as j → ∞ . Consequently, for any j ∈N , Tψ1,ψ2,ϕKrj : B1 →
Zμ is compact, and so

‖Tψ1,ψ2,ϕ‖e,B1→Zμ � limsup
j→∞

‖Tψ1,ψ2,ϕ −Tψ1,ψ2,ϕKrj‖B1→Zμ .
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Hence, we only need to show that

limsup
j→∞

‖Tψ1,ψ2,ϕ −Tψ1,ψ2,ϕKrj‖B1→Zμ � min
{

max{ρi}3
i=0,max{τl}3

l=1

}
. (13)

For any f ∈ B1 such that ‖ f‖B1 � 1, we have

‖(Tψ1,ψ2,ϕ −Tψ1,ψ2,ϕKrj ) f‖Zμ

=|(Tψ1,ψ2,ϕ f −Tψ1,ψ2,ϕ fr j )(0)|+ |(Tψ1,ψ2,ϕ f −Tψ1,ψ2,ϕ fr j )
′(0)|

+ sup
z∈D

μ(z)|(Tψ1,ψ2,ϕ f −Tψ1,ψ2,ϕ fr j )
′′(z)|

� |( f − fr j)(ϕ(0))|+ |( f − fr j )
′(ϕ(0))|+ |( f − fr j )

′′(ϕ(0))|︸ ︷︷ ︸
E0

+ sup
z∈D

μ(z)|( f − fr j)(ϕ(z))A0(z)|︸ ︷︷ ︸
E1

+ sup
|ϕ(z)|�rN

μ(z)
3

∑
l=1

|( f − fr j)
(l)(ϕ(z))Al(z)|

︸ ︷︷ ︸
E2

+ sup
|ϕ(z)|>rN

μ(z)
3

∑
l=1

|( f − fr j )
(l)(ϕ(z))Al(z)|

︸ ︷︷ ︸
E3

, (14)

where N ∈ N such that r j � 2
3 for all j � N . Moreover, for any nonnegative integer s ,

( f − fr j )
(s) → 0 uniformly on compact subsets of D as j → ∞ . Theorem 1 now implies

limsup
j→∞

E0 = limsup
j→∞

E2 = 0. (15)

From Lemma 4,

lim
j→∞

E1 � lim
j→∞

sup
z∈D

|( f − fr j)(z)| = 0, (16)

where we used the condition (2). Finally, we estimate E3 .

E3 �
3

∑
l=1

sup
|ϕ(z)|>rN

μ(z)| f (l)(ϕ(z))Al(z)|
︸ ︷︷ ︸

Fl

+
3

∑
l=1

sup
|ϕ(z)|>rN

μ(z)|rl
j f

(l)(r jϕ(z))Al(z)|
︸ ︷︷ ︸

Gl

. (17)

For each l ∈ {1,2,3} , from Lemma 1, (7) and (8) it follows that

Fl = sup
|ϕ(z)|>rN

(1−|ϕ(z)|2)l| f (l)(ϕ(z))|
|ϕ(z)|l

μ(z)|Al(z)||ϕ(z)|l
(1−|ϕ(z)|2)l

� ‖ f‖B1 sup
|ϕ(z)|>rN

‖Tψ1,ψ2,ϕgl,ϕ(z)‖Zμ

�
3

∑
j=0

sup
|w|>rN

‖Tψ1,ψ2,ϕ f j+1,w‖Zμ . (18)
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On the other hand,

Fl = sup
|ϕ(z)|>rN

(1−|ϕ(z)|2)l | f (l)(ϕ(z))| μ(z)|Al(z)|
(1−|ϕ(z)|2)l

� ‖ f‖B1 sup
|ϕ(z)|>rN

μ(z)|Al(z)|
(1−|ϕ(z)|2)l . (19)

Taking the limits as N → ∞ in (18) and (19), we obtain

limsup
j→∞

Fl �
3

∑
j=0

limsup
|w|→1

‖Tψ1,ψ2,ϕ f j+1,w‖Zμ � max{ρi}3
i=0, (20)

and

limsup
j→∞

Fl � max{τl}3
l=1. (21)

Similarly, we have

limsup
j→∞

Gl � max{ρi}3
i=0 and limsup

j→∞
Gl � max{τl}3

l=1. (22)

Therefore, by (14)–(17) and (20)–(22), we get

limsup
j→∞

‖Tψ1,ψ2,ϕ −Tψ1,ψ2,ϕKrj‖B1→Zμ = limsup
j→∞

sup
‖ f‖B1

�1
‖(Tψ1,ψ2,ϕ −Tψ1,ψ2,ϕKrj ) f‖Zμ

� min
{

max{ρi}3
i=0,max{τl}3

l=1

}
.

That is, (13) holds. The proof is completed. �
From Theorem 3, we immediately obtain the following corollary, which charac-

terizes the compactness of Tψ1,ψ2,ϕ : B1 → Zμ .

COROLLARY 1. Let ψ1,ψ2 ∈ H(D) , ϕ ∈ S(D) and μ be a radial weight such
that Tψ1,ψ2,ϕ : B1 → Zμ is bounded. Then the following statements are equivalent.

(i) The operator Tψ1,ψ2,ϕ : B1 → Zμ is compact.
(ii) For each i ∈ {0,1,2,3} ,

limsup
|w|→1

‖Tψ1,ψ2,ϕ fi+1,w‖Zμ = 0.

(iii) For each l ∈ {1,2,3} ,

limsup
|ϕ(z)|→1

μ(z)|Al(z)|
(1−|ϕ(z)|2)l = 0.

THEOREM 4. Let ψ1,ψ2 ∈ H(D) , ϕ ∈ S(D) and μ be a radial weight. Then the
operator Tψ1,ψ2,ϕ : B1 → Zμ,0 is compact if and only if for each i ∈ {0,1,2,3},

limsup
|z|→1

μ(z)|Ai(z)|
(1−|ϕ(z)|2)i = 0. (23)
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Proof. Suppose that Tψ1,ψ2,ϕ : B1 →Zμ,0 is compact, then Tψ1,ψ2,ϕ : B1 →Zμ is
compact and Tψ1,ψ2,ϕ : B1 →Zμ,0 is bounded, which yields that lim|z|→1 μ(z)|A0(z)|=
0 by Theorem 2, that is, (23) holds for i = 0. Moreover, for any ε > 0, there exists
η ∈ (0,1) such that

μ(z)|Al(z)| < ε, l ∈ {1,2,3}, (24)

for η < |z| < 1. From Corollary 1, for any ε > 0, there exists δ ∈ (0,1) such that

μ(z)|Al(z)|
(1−|ϕ(z)|2)l

< ε, l ∈ {1,2,3}, (25)

for δ < |ϕ(z)| < 1. Therefore, when δ < |ϕ(z)| < 1 and η < |z| < 1, we have (25)
holds. When |ϕ(z)| � δ and η < |z| < 1, by using (24) we obtain

μ(z)|Al(z)|
(1−|ϕ(z)|2)l � ε

(1− δ 2)l � ε, l ∈ {1,2,3}. (26)

Along with (25) and (26), by the arbitrariness of ε , we can see that (23) holds.
Conversely, assume that (23) holds. It is evident that Tψ1,ψ2,ϕ : B1 → Zμ,0 is

bounded by Theorem 1. Taking the supremum in (8) over all f ∈B1 such that ‖ f‖B1 �
1 and letting |z| → 1, we get

lim
|z|→1

sup
‖ f‖B1

�1
μ(z)|(Tψ1,ψ2,ϕ f )′′(z)| = 0.

From Lemma 5 it follows that Tψ1,ψ2,ϕ : B1 → Zμ,0 is compact. �
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[21] Y. LIU, Y. YU, On Stević-Sharma type operator from the Besov spaces into the weighted-type space
H∞

μ , Math. Inequal. Appl. 22, 3 (2019), 1037–1053.
[22] K. MADIGAN, A. MATHESON, Compact composition operators on the Bloch space, Trans. Amer.

Math. Soc. 347, 7 (1995), 2679–2687.
[23] S. OHNO, Weighted composition operators on the minimal Möbius invariant space, Bull. Korean
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