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(Communicated by J. Pecari¢)

Abstract. The purpose of this paper is to define and study, by the virtue of the g-Hardy-Littlewood
maximal function .#,(f) the so called L” -boundedness of the g-Littlewood-Paley g-function
when p € (1,2].

1. Introduction

The theory of Littlewood-Paley was developed by Stein in his book [19], which
remains the best reference in the study of this topic and has been an important impact
in harmonic analysis. It plays an important role in the study of many functional spaces
like the Hardy space, Lipshitz space, and BMO spaces. We point out that many authors
have studied the Littlewood-Paley g-function, for instance one can cite [1, 2, 18, 20].

The usual Littlewood-Paley g-function is defined in the n-dimensional Euclidean
space R" according to [19] by:

st = ([ [vP | rar)’,

where (P');~ is the usual Poisson semigroup defined by:

(L
Ptf(.x) - nil ) /I‘Qn ( tf(y) — dy

T P2+ x—y|?)T

d d
and V.= (8_)(1778_)("

The well-known results is that the mapping f —— g(f) is bounded from the
Lebesgue space LP(R",dx), p € (1,o0) into itself.

The aim of this work is to define and study the g-function using many intermediary
results in “Quantum calculus” or g-analogs, where the parameter g is supposed to be a
number from the interval (0, 1). Our interest in this paper is to prove one of well-known
results:

d
7£> is the gradient.
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MAIN THEOREM. For p € (1,2], there exit two constants A, 4 > 0 and Bp 4 > 0
such that for f € LP (R, )

By I f llr(y ) <IN ) o)< Apg L f oy, -

This theorem will be proved in the last section of this paper. The techniques used are
inspired in major part of the very interesting book of Stein [19].

This work is organized as follows. In the second section, we recall some g-
harmonic analysis results related to g-calculus. In the third section we will define
and study the Poisson kernel and Poisson integral and we present some technical lem-
mas that will be useful for the proof of the main result of this manuscript. The last
section will be devoted, by the virtue of the g-Hardy-Littlewood maximal function
My(f) to study the so called L”-boundedness of the g-Littlewood-Paley g-function
when p € (1,2].

2. Preliminaries

The aim of this section is to introduce some notions of functions theory in the g-
calculus. For a € C, the g-shifted factorial (a;q) is defined as a product of k factors

(a:q)0=1, (@;q)e =1 —a)(1—aq)...(1 —agd™"), k=1,2,...

This definition remains meaningful for k = o as a convergent infinite product

=

(@:9) = [](1 - aq").

k=0

We also write (ay,...,a,;q); for the product of r g-shifted factorials

(ar,--anq)k = (ai:qk-.-(ar @)k, k=1,2,... 0.

A g-hypergeometric series is a power series (for the moment still formal) in one com-
plex variable z with power series coefficients which depend, apart from ¢, on r com-
plex upper parameters ay,...,a, and s complex lower parameters by,...,bs as

- (ah"'»ar;‘l)k —z—k(kil) 1+s—r_k
¢(a17"'7a;b17"'7b;q7'x> = [(_l)q ] X
s ' : kg()(blaJ)Hq)k(q?q)k

where r,s =1,2,....

The g-derivative of a function f given on a subset of R or C is defined by
f(x) = flax)

(I—g)x

where x and gx should be in the domain of f. By continuity we set (D,f)(0) = f(0)
provided f(0) exists. For k=0,1,2,...

Dyxf(x) := x,q #0,

k _ Dk < i (4:9)x —(k=i)(k—i=1)/2 ¢( k—i
Dq,xf('x) - xk(l _q)k 1:20( 1) (q,q)l(q,q)k_lq f(q )C). (1)
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Moreover, for all n € N,

f'x) — f*(gx)

DaxF0) = =5 =i

Dy.f (¥) [sz “(g0)] 17 (@)Dgf (). @

n—1k—1

[ Z Z fl l < qu(qx)> (Dq,xf(x)>

k=0 i=
n—ln—k—2

+qY, Y, fax)f (gx)

k=0 =0

% (Dast@9) ] 2@+ [sz {0 D2f 0 (@) )

Note that when ¢ T 17, the equation (2) tends to nf"~!(x) f'(x) and the equation (3) to

nf" () " () +n(n = 1) f" 2 (x) £ (x).
We begin by putting

R, = {+d"keZ}, Ry+={dkeZ}, Rys={¢kez}u{o},

and Ay = A, where the g-shift operators is (A, ! f)(x) := f(¢"'x) and
49> q,x

q.x q)c7
Ay =0+ Ags, (x,1) €Ry xRy 1. (@)

For a > 0 and a function f given on (0,a] we define the g-integral by

oo

/ " f@)dgx = (1-q)a S, flaq")q".

n=0

The improper integral is defined in the following way

oo +o0
/ f)dgx:=(1-¢q) Y, f(q") q". (5)
0 k=—oc0
Note that for n € Z, we have

oo 1 0o a 1 aq"
| radg= 2 [ podee [ paedpe= 2 [ podgr

and if f and g are two suitable functions, the g-integration by parts is given by

[ Py = [10s] - [ @Dt ©

We denote by p the measure on R, ; given by

L4qy12
Q)= (7=0) TR (/20 =codpy )
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where the g-gamma function l"qz (see [10, 11], Section 1.3.) is defined by

Ty(z):= %(1—@”, gc(0,1), z#0,—1,-2,...

Let us now introduce some ¢-functional spaces which one will need in this work.
> Z.4(Ry) the space of even functions infinitely ¢-differentiable on R, with com-

pact support in R,. We equip this space with the topology of the uniform con-
vergence of the functions and their g-derivatives.

> €iq0(Ry) the space of even functions f defined on R, continuous at 0, and
satisfying
lim £(x) =0 and || f [, 4= sup [f(x)| < +eo

xERy

> LP(Rg+), p € [1,+], the space of functions f such that || f [|Lr(r, )< +e°,
where '

ot p
1 ey = | [ o] forp <o
where d,u(x) is given by (7) and for p = e

1S =@y )= sup | f(x) |-

XGqu,

Noting that

1 Norey)= sup | [ @], 1/p+1jm=1.
{he D qRe)illhllpmr,, =1} "0
®)

2.1. One-parameter family of g-exponential functions
The one-parameter family of g-exponential functions with ¢« € R has been con-
sidered in [9]

(@) . ¥ gonr/a(1=a)"
E = X", eR. 9
q (.X) ngoq (q,q)n X ( )

Two particular cases of this family with o« =0 and o« = 1 are well known: they are the
g-exponential
1 < (l — )n n
= = X 5
((1-g)x:q)- ,ZE) (4:9)n

and its reciprocal

(1-¢q)"
(@:9)n o

)

Eq(x) = et;l(x) :E{Sl)(_qfl/zx) = (—(1—g)x;q)e = z qn(nfl)/2
n=0
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respectively. Another particular example of (9) corresponds to the value o = % and is

- =g
& (x :E(1/2) X) = n2/2( q X (10)
Note that
Dq,szga)(x) _ qa/2Ea(qax), (11
and
lim &(q ") =, lim &y (—q ") = lim &(4") =0. (12)

2.2. g-even translation and ¢-cosine Fourier transform

Let f be a function in L! (Rg,+), the g-even translation operators 7, [7] are
defined by

Tyf )= [ £ED (200, (2),

where Dy(x,y,z) is defined for x and y in R, ¢ by

Dy(x,y,2) ::/0 cos(xt;¢%) cos(yt; %) cos(zt; ¢ )dgpu (1),

and the g-cosine function is given in [12] as a series of functions

cos(r:?) = 101 (0P P2) = 3 (1) L2 = S (1) (),

and we have lim cos(x;¢%) =0, forx =g' ™", n — co.
X—s00

1
(¢:47)%"

In [4], for f be an even function defined on R, such that x — D’,;x f(x) is contin-
uous at 0 for all k=1,2,..., the authors proved that the g-even translation T, can be
written in the following form

On R, these functions are bounded and there they satisfy ‘ cos(x; qz)‘ <

Ty f(x) Zb viq*)(1—q)*"q A} f(x). (13)

where

(2—n)n(,,. n (n—k)(n—k-1)/2
n q ‘Lq n n— q
N = L0 S (e

- ky). 14
Mg & GG 4 a9

The g-cosine Fourier transform .%, and the g-convolution product are defined for
suitable functions f,g as follows

ZiNR) = [ f(0)cos(ria®)du(e), (15)
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frag(®) / Ty f ()2 0)dgt ().

Note that, the g-translation operators and g-cosine Fourier transform satisfy the fol-
lowing properties

(P) L' — L -boundedness ([5], Proposition 5.1). For all f € L! (Rg4), F4(f) €
L”(R,+) and

1
[ Fa()l= @) < W”JCHU (Rgt)*

(Py) Inversion theorem ([12]). Let f € L'(R, ), such that Z,(f) € L'(R, ). Then

fx) =F(F4(f)(x), x€ERg..

(P3) Plancherel theorem ([8], Theorem 7.7.). The g-cosine Fourier transform %, ex-
tends uniquely to an isometric isomorphism of L? (Rg4,+) ontoitself. In particular,

qu(f)HLz(Rqu) = ||fHL2(Rq‘+)'

(Py) q-Gaussian function ([6], Proposition 6.2). The function G(x,¢;¢) given by

2
1 —__x _
G(x,t; 2y .= q(1+q)t
()C, q) A(t7q2)eq2
(— 1744, — 1447
where A(t,4%) = ¢ 2 (1 —q)? 11:’5 ’; o , 1 >0, satisfies
(—Trea — 14454

gl](G('7t;q2))()L) = eqz(_lﬂ?)'

(Ps) gq-Young condition [4]. Let p,q,r € [1,o] satisfy 1/p+1/g—1/r=1. Then the
map (f,g) — f*,g& extends to a continuous map from L (R, ) x LY(R, 1) to
L' (Ry,+) and we have

1f *q8llrrys) < W flleew, )18l Lar, )

Specially, we need the positivity of the g-even translation operator [7] for proving the
following inequality for f € L'(R, ),

1T f 1l gy < 121 Ry -

This positivity property holds if g € (0,qo], where gq is the first zero of the function
g+ 191(0:4:9,9).
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3. g-Poisson kernel and g-Poisson integral
DEFINITION 1. [16] Consider the functions P (x; qz) called Poisson kernel given
for t € Ry 4 by
1

PI(X;q2) ::P(I7X;q2) = dq 1 1
qZ(i)A(Wﬂlz)

where d, =

t
16
212 (16)
PROPOSITION 1. [16] For x,t € Ry 4, we have

2 e Eq_zqzu r 2
i) P(x; = G(x, :q°)d .
(i) Pi(x:q) 0 NG (x q(1+q)1u q)dpp(u)

(i) | G(.t:¢°) lprr,.)=1-
Furthermore, from (1), the Poisson kernel satisfies the following.
LEMMA 1.

X2 —qr?
(12 +x2)(q%% +x2)

and Dq,th(x;qz) _ —dq (14+g)1x

(i) Dy;Pi(x:q%) =d, TR

(ii)
(@+q’—q =D+ (1—g)
(12 +x2) (12 + ¢*x?) (¢°1> + x?)

>
t
AqePr(x:q%) = d lq_

and
(I+q)gt  (1—q)*+(q* —q ")¥*
l—q (242224 ¢°x?)(¢*1> +x2)

AgxPr(x; q)= —dy

(iii) Forall k€N, | Dk P(:q)||r=(w, ) < Cgt~ T

Proof. (1) and (ii) are obvious. (iii) follows from (1). [

DEFINITION 2. Let f € LP(Ry 1), p € [1,+o0], the g-Poisson integral of f de-
noted u(f)(x,t;4*) is defined by

u() (57 = (B(36%) v () = /0 CO)TP s dau(y). (A7)

Note that from Proposition 1(i), u(f)(x,#;¢*) can be written as

+ooE_zqzu 2
wf)erg) = [ T W pn )
where
T'f(x) = (G(,t/q(1+q)*:q%) % f) (%) (18)

satisfying from property (Ps) and Proposition 1(ii)

1T £ ) ey SIS ey - (19)
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LEMMA 2. The q-cosine Fourier transform of the q-Poisson kernel P;(x;q*) is
given by
Zy(P(3q)(A) = g (—q ' A1),

where &, (x) is given by (10) and 6y = Q(1,q) defined in [14] by

O(x,q) = i l

e xqm _|_x71q7m :

S |
Proof. Note that from (5), 6y = O(1,q9) = / md,{x. To prove the lemma,
0 X

'x) is the unique solution of the

we need to prove first that the function x — 6y (—q~
problem (P) given by

Agxt=u

(P) lim u(q"x) = 9()

n—oo

lim u(q"x)=0.

oo
We proceed in the same way as in [13, 15]. For fj(x) = é”qz(—q_lx) and fo(x) =
éoqz (q’lx), we can easily verified from (11) that they are solutions of the problem (P).
Thus, any solution can be written in the form u(x) = p;(x) fi (x) + p2(x) f2(x) , where p;
and p, are two periodic functions. Moreover, by (12) and the second initial condition,
we obtain that u(x) = p; (x)é”qz(—q_lx). So, by the first initial condition, we deduce
that p;(x) = 6y. Now, applying (15) and replacing P,(x;¢>) by its expansion (16), we
have by the substitution x = yt

=

<t 1
FuRGP)R) =dy [z eos(xa)gn(0) = d | s cos(Aryi ().

1

e cos(Aty;q*)dyu(y) verifies the
X

The result follows from the fact that Af — /
0
problem (P). [

PROPOSITION 2. Forall f € LP(Ry 1) and p € [1,90], we have
u(f)(x,1:q%) = 90/0 Sp(—qrt)cos(Ax;q”) Ty (f)(A)dgpt(2)
= dyt0 7, (62(~a)F,(N() )
Proof. Applying the g-cosine Fourier transform to both sides of the formula (17),

we get
Fau(£)(1:6°)(A) = Fo (B () () F4(£)(A).
So the result follows from property (P ) and Lemma 2. [

In the following, we give some technical lemmas concerning some properties of
the Poisson integral u(f)(x,t;¢*) and its g-derivatives.
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LEMMA 3. Let f € 2. 4(Ry) be a positive function and p € (1,00). Then
(i) u(f)(x,t:¢°) > 0.
(ii) Aqu(f)(x,1:67) = Agau()(x,13°) + Agau(f) (x,1:¢7) = 0
(iii) Forall k € N, there exists C4 > 0 such that D’;Ju(f)(x,t;qz) < thf(kﬂ).
Proof. The lemma follows directly from Lemma 1. [
LEMMA 4. Let f € 2. 4(R,) be a positive function and p € (1,00). Then, for x
large, there exist respectively Cy 4,Ca 4 > 0 such that
(i) u(F)(x1:07) < Crg(?+27) 112,
(ii) ’Dq,xu(f)(x,t;qz)’ <Crg(P422) 7!

Proof. (i) Since f € 2. 4(R,), there exists a € R, 1, such that supp(f) C [0,q].
Then from (13) and (14), we can write

oo _l)n—kq(n—k)(n—k—l)/2
T B(ud) = Y baly 2nn QQ)2n( P x:q?
whsd) ,726 k_E_nq s T P W O WAL e I
_ i qnyZn i (_l)n—kq(n—k)(n—k—l)/Z ¢
o S M (/47 ) LAY (/37 ) PRU S A R
_ iq”yZ"[i Y
n=0 i—1 (6D n+4(@@)n—x 124 g 2kx?

_|_

2 l)nfkq(nfk)(nfkfl)/2 i :|
k=0 (GDni( @ Dnrr 2+ g*2 ]

Thus

> n 1 1
T,4B( xq [ +
it 20 ; (q:9)n— k(q Dnix [P g2 12+ g2

n 2q74k
Z

(@:9)n— k(q Dnk 12+ g2k

< .
| q* — 1] 1 —qy*| 1> +x2
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Therefore by using the fact that 7 < (12 +x%)'/?, we obtain

W) = (B 20 ) = [ OV i) dgn()

2
< 40 su | fy )l (t2+x2)71/2
| q* =1 ,ej0.q | 1—ay* |

< Cl,q(tz +x2)—1/2.

Thus the first inequality is proven.
Now, we will prove the second inequality. By derivation under the ¢-integral sign

Dyt )5:1:07) = DB ) 50 N)5) = [ FOIDus TP (3262 g )

But from Lemma 1(i)

Dq,quth(y;qz)
= Y bu(y:6") DN (P (v:07))
n=0
oo 6] C[)2n (_l)n—kq(n—k)(n—k—l)/Z i
= > ba(v:¢? q“" D,.P(g*x:q
g’ ol ;;1" - (Gt @G Durx i )

i Z (_l)n—kq(n—k)(n—k—l)/2 Ix
= Pl (7 17) PY (7197) MRS (R S s S (R R R

then,

‘Dq,qu,th (y§612)

n 2k 1 1
2n

<rtlx q"y +

a g‘ ; (4:)n— k(q Dk [P +q27207 24 g0

D& kg s
n
< 2t x| Zq 2 (2 +q % 22)2

=

< 2f\x|2z n2n2q—6k 8

(12 +x2)
. 2611 t] x|
S l—g O 1—gy? | (2 +x2)*

In the same manner, by the fact that: 7 | x |< 1> 4 x>
2
@y L0
[ q* =1l e | 1 —ay* |
< C2,q(t +x ) )

Dg.u(f)(x.1;q%) < (24 2)!

which gives (ii). U
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LEMMA 5. Let f € 2, 4(Ry) be a positive function and p € (1,00). Then
(i) hm/ / A (6 (F) (x,))idtdgpt (x) / FP ) gt (x
(ii) hm/ / Ag (U (f)(x,1))tdgu(x)dyt = 0.

(i) [ [ 8w () ) ettt () =1 f e,

Proof. Let f € 2, 4(R,) be an even positive function and p € (1,0). To prove
(i), from (2) and g-integration by part formula (6), we get

[ dusta ()t = [ 2,0 ()50 0
0 g, \U x o= J, Par q q
R
= [Du (g )~ [ a1 )

—1
— R(:_zauk(f)(x,qlR)upk1(f)(x,R)>Dq,;u(f)(x,qlR)
—uP(f)(x,q'R) + f7(x).

//Aqt )(x,1))tdgtdgp(x)

=R [ (30 R0 R ) Dy ) 5™ R

Thus

[ a R + [ 0agm ),

From Lemma 3(iii), we get easily respectively

)/ ul(f)(x,q —1R R)dyu(x )) <Ci4yR’R=C 4R =(p=1) — 0,

R—co

and

R ,p=1
‘R/o (kgz)uk(f)(x?cl’lR)uP*kﬂ(f)(x?R))Dq’tu(f)(xﬂflR)dq”(x)

p—1
< C27qR2( Z R—kR—(p—k—l)>R—2
k=0

= pCrgR™ PV — 0,

R—oo

which leads to the result.
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(ii) From the fact that

p—1

— (T O (1) g R ) Dt (£)(00).

k=0

Thus, from Lemma 4 we get
R R
[ gt (1) )y ()|
R, ,p—1

S/ )(iuk(f)(q’lR,t)ul’*k*I(f)(q*IR,t)>Dwu(f)(q*lR,z)

0 " M=o
p—1

(X DO )0 R ) Dyt (£)(0,0) el
k=0

R
<2pCy R7P7! / tdgt
0

=C,R PV —0.

R—soo

This completes the proof of (ii). [

4. The g-Littlewood-Paley g-function

In this section, we define and study the so called L?-boundedness of the g-Lit-
tlewood-Paley g-function when p € (1,2]. For this, we need first use the g-Hardy-
Littlewood maximal .#,(f) function.

DEFINITION 3. Let f € %, 4(R,). The g-Hardy-Littlewood maximal .7, (f)
function is defined by

My(f)(x) = sup |u(f)(x.1) ], x€Ry.

ZERl]d’

PROPOSITION 3. Let f € P, 4(R,) and p € (1,%0). Then there exists Cp 4 > 0
such that

1-26(F) (%) lr @y )< Cog | f lr ey
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Proof. By changing variable y = % /u in Proposition 1(i), we obtain
Rwa) =12 [ o0/ ) (20)

where ¢(y) = 3/2E " and T” f(x) is given by (18).

We Verlfy easily that ¢(y) and yD,,¢(y) belong to L'(R, ;). Then by g-inte-
gration by part in (20) and relation (19) shows that

R | == [ ([ 770t ) Dy a3/ )
| [ (s [ st (3D0r0 a3/ ) a0
1y [ 7 s@de| (172 [ [0 /%) )aans) |

< sup
YERg 4

< C, sup l/y/Tt dt
YER, +

< Cq%qT(f)('x)a
where .27 (f)(x) = sup [1/y / i F )
YERg 4+ 0
So that .Z,(f)(x) < //qT(f)(x).
The result follows by the Hopf-Dunford-Schwartz ergodic theorem [7, Theorem
7,p.693]. O

DEFINITION 4. The g-Littlewood-Paley g-function for f € %, 4(RR,) is given by

1

N ENE 2

e = ([ |Vaulr) i) 1),

where u(f)(x,t) is the g-Poisson integral and V, is the g-gradient, defined by
Vou(f)(x,1:6°) := (Dgau(f) (x,1:47))* + (Dgu(f) (x,1:4%))

THEOREM 1. For p € (1,2], there exist two constants A, 4 > 0 and B, 4 > 0,
such that for f € LP(Ry 1),

By I f oy <I 8N ) oy, ) < Apg L f oy, -

We will go to prove the theorem. For this purpose, we will use the function g;(f)
given in [17] by

- 5 1/2
g f(ug?) = (/O qu,tu(f)(x,z;f)’ dqt> . FELP(R,).

Obviously, we have
&1(f)(x:q") <g(f)(xq). (1)

To prove the theorem, we need the following lemma
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LEMMA 6. For fi,f» € Ps4(Ry), there exist A; > 0, such that
| [ tu) ety ) i)ty () = A, [ i) o)yt ).
Proof. Let fi,f> € Z.4(Ry), we have by applying twice Holder’s inequality
/ / ‘Dqtu (f)(x,1:4%) HDqtu (f)(x,1:4°) ’d tdg1L(x)

< /0 () (g?)g(f2) (632 dgpt (x)
<1glh) e, ol 802 I, ) -

Then using Fubini, property ( P3) and Proposition 2, we obtain
| ] Dus) i D ) et g )
= [ [ 17 (DasttA)1:6%)) )7, (Dysr£2)136%) ) () dgn ()
= [ [ 142283~ 2, () M F B Wdardgn (2)
= A, | FAOFTR RGN, A= [ & (—u)dyu
=4 [ A0REGE). O

Proof of the Theorem 1. Let p € (1,2], itis clear that from the density of Z, 4(R)
in LP(R, +) ([8], Theorem 4.28), taken f € Z, 4(R,). Note that from (3), we have

Agulf [:Z;kZIf 7 @)- (Dot ) (Dt a5 ) )
43S 2f"<qvc>f—"<x>
k=0 i=0
< (Dgaf) ]2 [zf a7 @] WA ().

Thus, using Lemma 3(ii) we obtain

Ag(u(F)? (x.:6%))
—1k—1
= q{pz, Z u(f)i(q_lxvt;qz)f_i(x7t;q2)~ (Dq,xu(f)(xvt;qz)'Dq,x”(f)(q_1x7t;q2)
k=0 i=0
Dy F)(x,134) X Dyau(F)(x. "' 1:7) )
p—1lp—k-2

1Y Xl gnn ) wnsg) (Vs ) T2 ).

k=0 i=0
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So that from Lemma 3(i)
p—1p—k=-2

Ag(u(f)P (x,t:q7)) > 42[2 )y

k=0 =0

u(f) (sl (wg?)|

we deduce that

(Vaer®) <a?[ 23 u(rlaxndut) e
<[P () ) 156,

Now, from Lemma 4 (i) and the fact that f is positive, and the function x— u(f)(x,#;¢%)
is decreasing we deduce that

plpk2 _ -1
u(f) (g~ ()|
k=0 =0
p—1lp—k—-2 ) ) 1
< Y X u(f)’(qx,t;qz)u(f)_’(m;qz)]
“k=0 =0
p=lp—k=2 . _4 )
S 1 =
s k=0 i=0 } p(p—1)
we deduce that
V)t < 2l P 0 () i) 22)
’ ’ plp—1) !
Using (22), we obtain
2 202 oo
2] < (q_l) / W() 7 (YA () (. 136%) eyt
2q~
gp(p / Ag(u(f)P (x,1:4%))tdt

Thus observe that (2—p)/2+ p/2=1 and by Holder’s inequality, we get
| g(f)(x;qz) HZP(RW)

-2 / o B . /
< [p(zp‘l_l)]l’ 2/0 //;2 p)(p/z)(f)(x)[/o Aq(”(f)p(x»l;qz))tdqz]p 2dqu(x)

2g7% r/2 -
s [ﬁr Il (f )||L21’ 4 p/z {/0 Ag(u(f)P (x,1:0%) )tdgtdgp (x)

}P/2
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Due to Lemma 4(iii), we obtain

. 2% qr/2 (2— /2 /2

1@ e, < o] 14D 5@ 15
2

\cl,q[ﬁ}” 1715 HfH”z

< Al’vq ” f ”U’(Rq#) :

Proving now the left inequality. Computing relations (8), (21), Lemma 6 and Holder
inequality, we have

A—Iq‘/owf(x)h(x)dq‘u(x)) < /Owgl(f)(x;qz)gl(h)(x;qz)dq‘u(x)

< [l &1(f) ey o)l 8110 e, ), 1/p+1/m=1
< Cym | 81(f) HLI’(]R,I‘JF)
< Cym |l &(f) ||LP(R‘,,+) :

Which completes the proof of the theorem by taking the supremum. [
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