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SUPPORTING VECTORS FOR THE �p–NORM

ALBERTO SÁNCHEZ-ALZOLA, SOLEDAD MORENO-PULIDO ∗ ,
ENRIQUE NARANJO-GUERRA AND FRANCISCO JAVIER GARCÍA-PACHECO

(Communicated by M. Krnić)

Abstract. Given a continuous linear operator T : X → Y between normed spaces X ,Y , the set
of supporting vectors of T is defined as suppv(T ) := {x ∈ X : ‖T (x)‖= ‖T‖ and ‖x‖ = 1} . The
supporting vectors of nontrivial projections and operators on �p , for p = 1,2,∞ , have already
been calculated in previous works. In this manuscript, we go on one step further and compute
the supporting vectors of operators T : �p → �q , where 1 < p,q < ∞ and 1

p + 1
q = 1 .

1. Introduction

The origin of this work partially relies on the Frobenius norm and the existence of
matrix norms which are not operator norms, that is, induced by vector norms [4, 7, 19].
For this kind of matrix norms, such as the Frobenius norm, it does not make sense to
compute the set of supporting vectors. However, in the first section of this manuscript,
we will establish some relationships between matrix norms and certain operator norms
whose supporting vectors “behave” in a similar way as if the matrix norm were an
operator norm.

As we have mentioned above, an operator norm is a norm induced by vector norms.
In other words, given two normed spaces X ,Y , the operator norm of a continuous linear
operator T : X → Y is defined as

‖T‖ := sup{‖T (x)‖ : ‖x‖ � 1},

that is, the sup of ‖T (x)‖ when x ranges the closed unit ball of X , BX := {x ∈ X :
‖x‖� 1} . It is an elementary exercise to check that, if the above sup is attained at some
x ∈ BX , then ‖x‖ = 1.

The concept of supporting vector was formerly introduced for the first time in
[6], although it appeared implicitly and scattered throughout the literature of Banach
Space Theory (see, for instance, [1, 2, 3, 10, 13, 14]). A vector x in the unit sphere
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SX := {x ∈ X : ‖x‖ = 1} of X is said to be a supporting vector of T provided that
‖T (x)‖ = ‖T‖ . The set of supporting vectors of T is denoted by suppv(T ) , thus,

suppv(T ) := {x ∈ SX : ‖T (x)‖ = ‖T‖}.
We refer the reader to [8, 11] for a topological and geometrical study of the set of

supporting vectors of a continuous linear operator. Supporting vectors were success-
fully applied to solve multiobjective optimization problems that typically arise in Bio-
engineering, Physics and Statistics (see [5, 9, 17, 18, 20]), improving considerably the
results obtained by means of other techniques, such as Heuristic methods [15, 16, 21].

In [9, 22], the supporting vectors of continuous linear operators T : �p → �p ,
for p = 1,2,∞ , were fully characterized in an infinite dimensional setting and fully
computed in a final dimensional setting. This manuscript is a continuation of the pre-
vious two works, where we consider a continuous linear operator T : �p → �q with
1 < p,q < ∞ and 1

p + 1
q = 1.

2. Operator norms

Throughout this section, X ,Y will stand for normed spaces over the real or com-
plex field, and L (X ,Y ) will denote the vector space of (non-necessarily continuous)
linear operators from X to Y .

DEFINITION 1. Let X be a vector space, Y a normed space and A ⊆ L (X ,Y ) a
vector space of linear operators from X to Y . Let ‖ ·‖A be a norm on A . We define the
norm of a vector x ∈ X induced by ‖ · ‖A as

‖x‖a := sup{‖T (x)‖ : T ∈ A, ‖T‖A � 1}. (1)

Observe that, in the previous definition, ‖ · ‖A plays the role of a matrix norm
which is not necessarily an operator norm, such as the Frobenius norm.

Recall that a subset of linear operators A ⊆ L (X ,Y ) is said to separate points of
X provided that for all x,y ∈ X with x �= y , there exists T ∈ A such that T (x) �= T (y) .
Notice that A separates points of X if and only if A is not simultaneously zero on X ,
that is,

⋂
T∈A ker(T ) = {0} .

PROPOSITION 1. Let X be a vector space, Y a normed space and A ⊆ L (X ,Y )
a vector space of linear operators from X to Y . Let ‖ · ‖A be a norm on A. Equation
(1) defines a seminorm on XA := {x ∈ X : ‖x‖a < ∞} . This seminorm is a norm if and
only if A is not simultaneously zero on XA .

Proof. Note that ‖0‖a = sup{‖T (0)‖ : T ∈ A, ‖T‖A � 1}= 0. On the other hand,
for each x,y ∈ XA and each λ ∈ K , we have

‖λx‖a = sup{‖T (λx)‖ : T ∈ A, ‖T‖A � 1}
= sup{|λ |‖T (x)‖ : T ∈ A, ‖T‖A � 1}
= |λ |sup{‖T (x)‖ : T ∈ A, ‖T‖A � 1}
= |λ |‖x‖a.
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and

‖x+ y‖a = sup{‖T (x+ y)‖ : T ∈ A, ‖T‖A � 1}
� sup{‖T (x)‖+‖T(y)‖ : T ∈ A, ‖T‖A � 1}
� sup{‖T (x)‖ : T ∈ A, ‖T‖A � 1}+ sup{‖T (y)‖ : T ∈ A, ‖T‖A � 1}
= ‖x‖a +‖y‖a.

All of these show that XA is a vector subspace of X and (1) defines a seminorm on X .
Suppose now that this seminorm is, in fact, a norm. Fix an arbitrary x ∈ XA \ {0} . By
assumption, ‖x‖a > 0, so there exists T ∈ A with ‖T‖A � 1 such that 0 < ‖T (x)‖ �
‖x‖a . This implies that T (x) �= 0 because Y is normed. As a consequence, A is not
simultaneously zero on XA , or equivalently, A separates points of XA . Conversely,
assume that A separates points of XA . Fix an arbitrary x ∈ XA \ {0} . There exists
T ∈ A such that T (x) �= 0. Since ‖ · ‖A is a norm on A , ‖T‖A > 0. Also, ‖T (x)‖ > 0

because Y is normed. Finally, T̂ := T
‖T‖A

∈ A ,
∥∥∥T̂∥∥∥

A
= 1 and

‖x‖a = sup{‖S(x)‖ : S ∈ A, ‖S‖A � 1} �
∥∥∥T̂ (x)

∥∥∥
A

=
‖T (x)‖
‖T‖A

> 0.

This shows that Equation (1) defines a norm on XA . �

REMARK 1. Under the settings of Proposition 1, it is trivial that A is not simulta-
neously zero on X \XA even if ‖ ·‖a is not a norm on XA . Indeed, for every x ∈ X \XA ,
‖x‖a = ∞ , so for every K > 0 there exists T ∈ A with ‖T‖A � 1 such that ‖T (x)‖� K ,
so in particular, T (x) �= 0.

According to Proposition 1, if A ⊆ L (X ,Y ) is a vector space of linear operators
that separates points of XA , then Equation (1) defines a norm on XA . The following
result shows examples where XA �= X . However, we will first recall an elementary
remark.

REMARK 2. Let X be a vector space. If C ⊆ X is a generator system of X , that
is, span(C) = X , and L ⊆ C is a linearly independent set, then there exists a Hamel
basis B of X such that L ⊆ B ⊆ C . This is a direct consequence of Zorn’s Lemma.
On the other hand, every Hamel basis B = {bi : i ∈ I} of X defines a norm on X . For
instance,

‖x‖ := |λ1|+ · · ·+ ∣∣λp
∣∣ ,

where
x = λ1bi1 + · · ·+ λpbip

is the unique linear decomposition of T with respect to B . Note that ‖b‖ = 1 for all
b ∈ B .

PROPOSITION 2. Let X be an infinite dimensional vector space and Y an infinite
dimensional normed space. There exists a vector subspace A⊆L (X ,Y ) that separates
points of X and a norm ‖ · ‖A on A such that XA � X .
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Proof. For every x∗ ∈ X∗ (the algebraic dual of X ) and every y ∈ Y , define

Tx∗,y : X → Y
x �→ Tx∗,y(x) := x∗(x)y.

Define
A := span

{
Tx∗,y : x∗ ∈ X∗,y ∈ Y

}
.

It is trivial that A separates points of X . Next, observe that, by relying on Zorn’s
Lemma, we can extract a Hamel basis of A from

{
Tx∗,y : x∗ ∈ X∗,y ∈ Y

}
. In fact, we

will extract a Hamel basis in a different way. Notice that if WY ⊆ Y is a Hamel basis

for Y and x∗0 ∈ X∗ \{0} , then
{

Tx∗0,y : y ∈WY

}
is a linearly independent set, which can

be enlarged to a Hamel basis of A inside
{
Tx∗,y : x∗ ∈ X∗,y ∈ Y

}
in view of Remark 2.

So, let us take a Hamel basis WY ⊆ Y of Y in such a way that there exists a sequence
(yn)n∈N ⊆ WY with ‖yn‖ → ∞ as n → ∞ . Let us denote the enlarged Hamel basis of{

Tx∗0,y : y ∈WY

}
by

B :=
{

Tx∗i ,yi : i ∈ I
}

.

For every T ∈ A , we can define

‖T‖A := |λ1|+ · · ·+ ∣∣λp
∣∣ ,

where
T = λ1Tx∗i1 ,yi1

+ · · ·+ λpTx∗ip ,yip

is the unique linear decomposition of T with respect to B . Notice that∥∥∥Tx∗i ,yi

∥∥∥= 1

for all i ∈ I . In particular, ∥∥∥Tx∗0,yn

∥∥∥= 1

for all n ∈ N since (yn)n∈N ⊆WY and
{

Tx∗0,y : y ∈WY

}
⊆ B . It only remains to show

that XA �= X . Since x∗0 �= 0, we can find x0 ∈ X such that x∗0(x0) �= 0. Then∥∥∥Tx∗0,yn(x0)
∥∥∥= ‖x∗0(x0)yn‖ = |x∗0(x0)| ‖yn‖ n→∞−→ ∞.

As a consequence,

‖x0‖a := sup{‖T (x0)‖ : T ∈ A,‖T‖A � 1} = ∞. �

DEFINITION 2. Let X be a vector space, Y a normed space and A ⊆ L (X ,Y ) a
vector space of linear operators from X to Y that separates points of X . A norm ‖ · ‖A

on A is said to be faithful if XA = X .
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LEMMA 1. Let X be a vector space, Y a normed space and A ⊆ L (X ,Y ) a
vector space of linear operators from X to Y that separates points of X . If ‖ · ‖A is
a faithful norm on A and ‖| · |‖A is an equivalent norm on A to ‖ · ‖A , then ‖| · |‖A is
faithful as well.

Proof. Indeed, let M,N > 0 such that M‖ ·‖A � ‖| · |‖A � N‖ ·‖A . Then for every
x ∈ X and every T ∈ A , if ‖|T |‖A � 1, then ‖MT‖A � 1, thus ‖MT (x)‖ � ‖x‖a , so
‖T (x)‖ � 1

M ‖x‖a . As a consequence,

‖|x|‖a := sup{‖T (x)‖ : T ∈ A,‖|T |‖A � 1} � 1
M
‖x‖a < ∞,

for every x ∈ X . �
Under the settings of the previous definition, we have that X is a normed space

endowed with ‖ ·‖a . Thus, we can consider the vector space of continuous linear oper-
ators from X to Y , CL (X ,Y ) , and the corresponding operator norm on CL (X ,Y ) ,
which is

‖T‖(A) := sup{‖T(x)‖ : ‖x‖a � 1} for all T ∈ CL (X ,Y ). (2)

The following theorem relates ‖T‖(A) with ‖T‖A .

THEOREM 1. Let X be a vector space, Y a normed space and A ⊆ L (X ,Y ) a
vector space of linear operators from X to Y that separates points of X . Let ‖ · ‖A be
a faithful norm on A. Then:

1. A ⊆ CL (X ,Y ) and ‖T‖(A) � ‖T‖A for all T ∈ A. Thus, BA ⊆ A∩BCL (X ,Y ) ,
where BA := {T ∈ A : ‖T‖A � 1} and BCL (X ,Y ) := {T ∈ C L (X ,Y ) : ‖T‖(A) �
1} .

2. If there exists x0 ∈ X \ {0} such that the sup in Equation (1) is attained at some
T0 ∈ BA , then ‖T0‖A = ‖T0‖(A) = 1 and x0

‖x0‖a
∈ suppv(T0) .

Proof.

1. Fix an arbitrary T ∈ A \ {0} . Since T̂ := T
‖T‖A

∈ A and
∥∥∥T̂∥∥∥

A
= 1, for every

‖x‖a � 1,

‖T (x)‖
‖T‖A

=
∥∥∥T̂ (x)

∥∥∥
A

� sup{‖S(x)‖ : S ∈ A, ‖S‖A � 1} = ‖x‖a � 1.

Therefore, ‖T (x)‖ � ‖T‖A . This proves that T ∈ CL (X ,Y ) and ‖T‖(A) �
‖T‖A .

2. Suppose that there exists x0 ∈X \{0} such that the sup in Equation (1) is attained
at some T0 ∈BA . Notice that, according to Theorem 1(1), T0 ∈C L (X ,Y ) . Then
‖T0(x0)‖ = ‖x0‖a > 0, thus

1 =
∥∥∥∥T0

(
x0

‖x0‖a

)∥∥∥∥� ‖T0‖(A) � ‖T0‖A � 1,
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so ‖T0‖(A) = ‖T0‖A = 1. This also shows that x0
‖x0‖a

∈ suppv(T0) . �

The following corollary is a direct consequence of Theorem 1(2).

COROLLARY 1. Let X be a vector space, Y a normed space and A⊆ L (X ,Y ) a
vector space of linear operators from X to Y that separates points of X . Let ‖ · ‖A be
a faithful norm on A. Let x ∈ X be thought of as a linear operator from A to Y ,

x : A → Y
T �→ x(T ) := T (x).

Then
suppv(x) ⊆ {T ∈ A : ‖T‖(A) = ‖T‖A = 1

}
.

Proof. It simply suffices to observe that ‖x‖a is precisely the operator norm of x
when A is endowed with ‖ · ‖A . �

Theorem 1 will allow to define the concept of supporting vector for matrix norms
which are not necessarily operator norms.

DEFINITION 3. Let X be a vector space, Y a normed space and A ⊆ L (X ,Y ) a
vector space of linear operators from X to Y that separates points of X . Let ‖ · ‖A be
a faithful norm on A . For every T ∈ A , the set of supporting vectors of T is defined as
the usual set of supporting vectors of T when X is endowed with the induced norm by
‖ · ‖A as in Equation (1). In other words,

suppv(T ) :=
{
x ∈ X : ‖x‖a = 1 and ‖T (x)‖ = ‖T‖(A)

}
.

In the upcoming results, we will assume that X is already endowed with a norm.

LEMMA 2. Let X ,Y be normed spaces. Then A := C L (X ,Y ) separates points
of X and its operator norm is faithful. Hence, Equation (1) defines a norm ‖ · ‖a on X
such that ‖x‖a � ‖x‖ for every x ∈ X .

Proof. We will prove first that A is not simultaneously zero on X . Let x0 ∈ X \
{0} . In virtue of the Hahn-Banach Theorem, we can find x∗0 ∈ SX∗ satisfying that
x∗0(x0) = ‖x0‖ > 0. Consider the continuous linear operator given by

T0 : X → Y
x �→ T0(x) := x∗0(x)y0,

where y0 is a fixed element of SY . Observe that T0(x0) = x∗(x0)y0 �= 0. It only remains
to show that the operator norm of A := CL (X ,Y ) is faithful. Indeed, for every x ∈ X
and every T ∈ A := CL (X ,Y ) with ‖T‖ � 1, ‖T (x)‖ � ‖T‖‖x‖ � ‖x‖ , therefore

‖x‖a := sup{‖T (x)‖ : T ∈ CL (X ,Y ),‖T‖ � 1} � ‖x‖ < ∞. �
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In the last result of this section, we will prove that, by bearing in mind Lemma
2, an equivalent norm on A := CL (X ,Y ) induces an equivalent norm on X . Notice
that this latter fact is precisely the converse of a well known result, compiled in the
following remark.

REMARK 3. Let X ,Y be normed spaces. If ‖ · ‖0 is an equivalent norm on X ,
then ‖ · ‖0 trivially induces an equivalent norm on C L (X ,Y ) .

THEOREM 2. Let X ,Y be normed spaces. Let ‖ · ‖A be an equivalent norm on
A := CL (X ,Y ) . Then:

1. ‖ · ‖A is faithful and its induced norm ‖ · ‖a as in Equation (1) defines an equiv-
alent norm on X .

2. The induced norm ‖ ·‖(A) on A := CL (X ,Y ) by ‖ ·‖a is equivalent to the orig-
inal operator norm of A := CL (X ,Y ) .

3. ‖ · ‖(A) is also equivalent to ‖ · ‖A .

Proof. Consider constants c,d > 0 such that c‖T‖ � ‖T‖A � d‖T‖ for all T ∈
CL (X ,Y ) .

1. In the first place, in view of Lemma 2, the original operator norm on CL (X ,Y )
is faithful. By applying Lemma 1, ‖ ·‖A is faithful as well. Let us prove now that
induced norm ‖ · ‖a by ‖ · ‖A as in Equation (1) defines an equivalent norm on
X . Fix an arbitrary x ∈ X . For every T ∈ A with ‖T‖A � 1,

‖T (x)‖ � ‖T‖‖x‖ � 1
c
‖T‖A‖x‖ � 1

c
‖x‖.

Thus, ‖x‖a � 1
c‖x‖ , that is, c‖x‖a � ‖x‖ . Next, if we look at the proof of Lemma

2, then we can construct a continuous linear operator T0 ∈ A such that ‖T0‖ = 1
and ‖T0(x)‖ = ‖x‖ . Notice that∥∥∥∥1

d
T0

∥∥∥∥
A

� ‖T0‖ = 1,

therefore,

‖x‖a �
∥∥∥∥1

d
T0(x)

∥∥∥∥=
1
d
‖x‖.

In other words,
1
d
‖x‖ � ‖x‖a � 1

c
‖x‖.

2. In accordance with Remark 3, since ‖ · ‖a is equivalent to the original norm of
X , the induced operator norm ‖ · ‖(A) on A := CL (X ,Y ) by ‖ · ‖a is equivalent
to the original operator norm of CL (X ,Y ) .

3. In view of Theorem 2(2), ‖ · ‖(A) is equivalent to the original operator norm of
C L (X ,Y ) , which is equivalent, by hypothesis, to ‖ · ‖A . As a consequence,
‖ · ‖A and ‖ · ‖(A) are equivalent. �
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3. Entrywise sup norm is an operator norm, that is, induced by vector norms

The purpose of this section is to show that the entrywise sup norm of a matrix
A ∈ Rm×n ,

‖A‖(∞) := max
{∣∣ai j

∣∣ : 1 � i � m,1 � j � m
}

,

is an operator norm, in other words, it is induced by vector norms. In the first place, let
us observe that

‖A‖(∞) = max{‖Aei‖∞ : 1 � i � m} ,

where ei is the ith -canonical column vector. This observation allows to generalize
this situation as follows: Let X be a Banach space with a normalized Schauder basis
(en)n∈N ⊆ SX . For every continuous linear operator T : X → �∞ , we can define

‖T‖(∞) := sup{‖T (en)‖∞ : n ∈ N} .

Since the Schauder basis is normalized, ‖T‖(∞) � ‖T‖ .
The next remark is crucial towards the development of the proof of the following

theorem.

REMARK 4. Let X a Banach space and A ⊆ X . The absolutely convex hull of A
is defined as the intersection of all absolutely convex subsets of X containing A . The
absolutely convex hull of A is usually denoted as aco(A) . It is well-known folklore
that

aco(A) =

{
k

∑
i=1

tiai : k ∈ N, ∀i = 1, · · · ,k ti ∈ K, ai ∈ A,
k

∑
i=1

|ti| � 1

}
.

The closed absolutely convex hull of A is defined as the intersection of all closed ab-
solutely convex subsets of X containing A . The closed absolutely convex hull of A is
usually denoted as aco(A) . It is well-known folklore that

aco(A) = cl(aco(A)) .

THEOREM 3. Let X be a Banach space with a normalized Schauder basis (en)n∈N

⊆ SX . For every continuous linear operator T : X → �∞ ,

‖T‖(∞) = sup{‖T (x)‖∞ : ‖x‖E � 1} ,

where ‖·‖E is the norm on X induced, through the Minkowski functional, by the closed
absolutely convex hull of {en : n ∈ N} .

Proof. Let E := aco({en : n ∈ N}) denote the closed absolutely convex hull of
{en : n ∈ N} . Since en ∈ E for all n ∈ N , we have that

‖T (en)‖∞ � sup{‖T (x)‖∞ : ‖x‖E � 1}
for all n ∈ N . As a consequence,

‖T‖(∞) := sup{‖T (en)‖∞ : n ∈ N} � sup{‖T (x)‖∞ : ‖x‖E � 1} .
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On the other hand, if x ∈ aco({en : n ∈ N}) , there exist λ1, · · · ,λk ∈ K and n1, · · · ,nk ∈
N such that |λ1|+ · · ·+ |λk| � 1 and x = λ1en1 + · · ·+ λkenk . Then

‖T (x)‖∞ �
k

∑
i=1

|λi|‖T (eni)‖ � sup{‖T (en)‖∞ : n ∈ N} = ‖T‖(∞).

Finally, notice that

sup{‖T (x)‖∞ : ‖x‖E � 1} = sup{‖T (x)‖∞ : x ∈ E}
= sup{‖T (x)‖∞ : x ∈ aco({en : n ∈ N})}
= sup{‖T (x)‖∞ : x ∈ aco({en : n ∈ N})}
� ‖T‖(∞). �

4. Supporting vectors of operators on �p

Recall that a Schauder basis (en)n∈N on a Banach space is called binormalized pro-
vided that (en)n∈N ⊆ SX and (e∗n)n∈N ⊆ SX∗ . Any Banach space admitting a Schauder
basis can be equivalently renormed to turn the basis into a binormalized basis (see [12]).

LEMMA 3. Let X be a Banach space with a binormalized Schauder basis (en)n∈N .
For every x ∈ X , (e∗n(x))n∈N is bounded and the linear operator

X → �∞
x �→ (e∗n(x))n∈N

(3)

is continuous. As a consequence, if (xk)k∈N ⊆ X is a sequence converging to x ∈ X ,
then ((e∗n(xk))n∈N)k∈N converges uniformly on n ∈ N to (e∗n(x))n∈N .

Proof. First off, keep in mind that, since (en)n∈N is binormalized, (en)n∈N ⊆ SX

and (e∗n)n∈N ⊆ SX∗ . Notice that |e∗n(x)| � ‖e∗n‖‖x‖ = ‖x‖ for all n ∈ N and all x ∈ X .
Therefore,

‖(e∗n(x))n∈N‖∞ � ‖x‖
for all x∈ X , hence the linear operator (3) is continuous and has norm less than or equal
to 1. In fact, (3) maps (en)n∈N to the canonical basis of �∞ , therefore, (3) has norm
1. Finally, if (xk)k∈N ⊆ X is a sequence converging to x ∈ X , then ((e∗n(xk))n∈N)k∈N

converges to (e∗n(x))n∈N in the sup norm of �∞ , therefore, ((e∗n(xk))n∈N)k∈N converges
uniformly on n ∈ N to (e∗n(x))n∈N . �

By bearing in mind Lemma 3, from now on, whenever X is endowed with a bi-
normalized Schauder basis (en)n∈N , if x ∈ X , then we will define

‖x‖∞ := ‖(e∗n(x))n∈N‖∞ = sup
n∈N

|e∗n(x)| .

In virtue of Lemma 3, ‖x‖∞ � ‖x‖ for each x ∈ X .
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LEMMA 4. Let X ,Y be Banach spaces admitting binormalized Schauder bases
(en)n∈N ⊆ X ,(ui)i∈N ⊆ Y , respectively. T : X → Y be a nonzero continuous linear
operator. For every x ∈ X ,

T (x) =
∞

∑
i=1

(
∞

∑
n=1

e∗n(x)u
∗
i (T (en))

)
ui.

Proof. Fix an arbitrary x∈ X and observe that x =
∞

∑
n=1

e∗n(x)en . In view of Lemma

3, ‖x‖∞ � ‖x‖ . For every k ∈ N , let xk :=
k

∑
n=1

e∗n(x)en . Observe that (xk)k∈N converges

to x by definition of Schauder basis. For each k ∈ N ,

T (xk) = T

(
k

∑
n=1

e∗n(x)en

)

=
k

∑
n=1

e∗n(x)T (en)

=
k

∑
n=1

e∗n(x)
∞

∑
i=1

u∗i (T (en))ui

=
∞

∑
i=1

(
k

∑
n=1

e∗n(x)u
∗
i (T (en))

)
ui.

Thus,

u∗i (T (xk)) =
k

∑
n=1

e∗n(x)u
∗
i (T (en))

for all k, i ∈ N . Since (xk)k∈N converges to x , we have that (T (xk))k∈N converges
to T (x) , hence (T (xk))k∈N converges to T (x) in the sup norm of c0 , so in particular
(u∗i (T (xk)))k∈N converges to u∗i (T (x)) uniformly for all i ∈ N . Then

u∗i (T (x)) =
∞

∑
n=1

e∗n(x)u
∗
i (T (xk))

for all i ∈ N . Finally,

T (x) =
∞

∑
i=1

u∗i (T (x))ui =
∞

∑
i=1

(
∞

∑
n=1

e∗n(x)u
∗
i (T (en))

)
ui. �

We will rely on Lemma 4 to characterize the supporting vectors of continuous
linear operators from �p to �q . In the upcoming theorem, if x ∈ �p , then

xk := (x(1),x(2), · · · ,x(k),0, · · · ,0, · · ·) .

It is well known that (xk)k∈N converges to x in the �p -norm, and since ‖ · ‖∞ � ‖ · ‖p ,
(xk(n))k∈N converges uniformly on n ∈ N to x(n) .
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THEOREM 4. Let T : �p → �q be a nonzero continuous linear operator, where
1
p + 1

q = 1 . Then:

1. For every x ∈ �p ,

T (x) =
∞

∑
i=1

(
∞

∑
n=1

x(n)T (en)(i)

)
ei, ‖T (x)‖q =

(
∞

∑
i=1

∣∣∣∣∣ ∞

∑
n=1

x(n)T (en)(i)

∣∣∣∣∣
q) 1

q

and

‖T (x)‖q
q � ‖x‖q

p

∞

∑
i=1

∞

∑
n=1

|T (en)(i)|q.

2. If (‖T (en)‖q)n∈N ∈ �q , then

‖T‖ �
∥∥(‖T (en)‖q)n∈N

∥∥
q
=

(
∞

∑
n=1

‖T (en)‖q
q

) 1
q

.

3. If there exists a sequence (yk)k∈N ⊆ B�p such that yk(n) = 0 for all n > k and∣∣∣∣∣ k

∑
n=1

yk(n)T (en)(i)

∣∣∣∣∣
q

�
k

∑
n=1

|T (en)(i)|q ∀i ∈ N ∀k ∈ N,

then (‖T (en)‖q)n∈N ∈ �q ,

‖T‖ =
∥∥(‖T (en)‖q)n∈N

∥∥
q
=

(
∞

∑
n=1

‖T (en)‖q
q

) 1
q

and suppv(T ) ⊇W , where

W :=

{
x ∈ B�p :

∣∣∣∣∣ k

∑
n=1

x(n)T (en)(i)

∣∣∣∣∣
q

�
k

∑
n=1

|T (en)(i)|q ∀i ∈ N ∀k ∈ N

}
.

Proof.

1. Fix an arbitrary x ∈ �p . According to Lemma 4,

T (x) =
∞

∑
i=1

(
∞

∑
n=1

x(n)T (en)(i)

)
ei.

By definition of ‖ · ‖q in �q ,

‖T (x)‖q =

(
∞

∑
i=1

∣∣∣∣∣ ∞

∑
n=1

x(n)T (en)(i)

∣∣∣∣∣
q) 1

q

.
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Next, attending to Hölder’s inequality,

‖T (x)‖q
q =

∞

∑
i=1

∣∣∣∣∣ ∞

∑
n=1

x(n)T (en)(i)

∣∣∣∣∣
q

�
∞

∑
i=1

(
∞

∑
n=1

|x(n)T (en)(i)|
)q

�
∞

∑
i=1

⎛⎝( ∞

∑
n=1

|x(n)|p
) 1

p
(

∞

∑
n=1

|T (en)(i)|q
) 1

q
⎞⎠q

= ‖x‖q
p

∞

∑
i=1

∞

∑
n=1

|T (en)(i)|q.

2. For every x ∈ B�p and every k ∈ N , following the previous chain of inequalities,
we have that

‖T (xk)‖q
q � ‖xk‖q

p

∞

∑
i=1

k

∑
n=1

|T (en)(i)|q �
∞

∑
i=1

k

∑
n=1

|T (en)(i)|q

=
k

∑
n=1

∞

∑
i=1

|T (en)(i)|q =
k

∑
n=1

‖T (en)‖q
q

�
∞

∑
n=1

‖T (en)‖q
q =

∥∥(‖T (en)‖q)n∈N

∥∥q
q
,

thus
‖T (xk)‖q �

∥∥(‖T (en)‖q)n∈N

∥∥
q
.

Since (xk)k∈N converges to x in the �p -norm and T is continuous, we have
that (T (xk))k∈N converges to T (x) in the �q -norm. In particular, (‖T (xk)‖q)k∈N

converges to ‖T (x)‖q , hence

‖T (x)‖q �
∥∥(‖T (en)‖q)n∈N

∥∥
q
.

The arbitrariness of x ∈ B�p shows that

‖T‖ �
∥∥(‖T (en)‖q)n∈N

∥∥
q
=

(
∞

∑
n=1

‖T (en)‖q
q

) 1
q

.

3. Notice that, for all k ∈ N ,

‖T‖q � ‖T (yk)‖q
q =

∞

∑
i=1

∣∣∣∣∣ k

∑
n=1

yk(n)T (en)(i)

∣∣∣∣∣
q

�
∞

∑
i=1

k

∑
n=1

|T (en)(i)|q =
k

∑
n=1

∞

∑
i=1

|T (en)(i)|q

=
k

∑
n=1

‖T (en)‖q
q,
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thus
k

∑
n=1

‖T (en)‖q
q is convergent and

∥∥(‖T (en)‖q)n∈N

∥∥q
q
=

∞

∑
n=1

‖T (en)‖q
q � ‖T‖q,

so ∥∥(‖T (en)‖q)n∈N

∥∥
q
=

(
∞

∑
n=1

‖T (en)‖q
q

) 1
q

� ‖T‖.

As a consequence, in view of the previous item,

‖T‖ =
∥∥(‖T (en)‖q)n∈N

∥∥
q
=

(
∞

∑
n=1

|T (en)|q
) 1

q

.

Finally, let us show that suppv(T ) ⊇W . Note that, if x ∈W , then x ∈ B�p and∣∣∣∣∣ k

∑
n=1

x(n)T (en)(i)

∣∣∣∣∣
q

�
k

∑
n=1

|T (en)(i)|q ∀i ∈ N ∀k ∈ N,

then, by reproducing the chain of inequalities right above, we obtain that

‖T‖q � ‖T (xk)‖q
q

=
∞

∑
i=1

∣∣∣∣∣ k

∑
n=1

xk(n)T (en)(i)

∣∣∣∣∣
q

=
∞

∑
i=1

∣∣∣∣∣ k

∑
n=1

x(n)T (en)(i)

∣∣∣∣∣
q

�
∞

∑
i=1

k

∑
n=1

|T (en)(i)|q

=
k

∑
n=1

∞

∑
i=1

|T (en)(i)|q

=
k

∑
n=1

‖T (en)‖q
q

for all k ∈ N . Since (xk)k∈N converges to x in the �p -norm and T is continu-
ous, we have that (T (xk))k∈N converges to T (x) in the �q -norm. In particular,
(‖T (xk)‖q)k∈N converges to ‖T (x)‖q , hence

‖T‖q � ‖T (x)‖q
q �

∞

∑
n=1

‖T (en)‖q
q =

∥∥(‖T (en)‖q)n∈N

∥∥q
q
= ‖T‖q.

In other words, ‖T (x)‖q = ‖T‖ , so x ∈ suppv(T ) . �



1618 SÁNCHEZ-ALZOLA, MORENO-PULIDO, NARANJO-GUERRA AND GARCÍA-PACHECO

Following the proof of Theorem 4, we immediately obtain the following corollary
that covers the finite dimensional setting.

COROLLARY 2. Let A = (ai j) ∈ Mm×n(R) such that ai j � 0 for all i = 1, . . . ,m
and all j = 1, . . . ,n. If x ∈ Rn satisfies that x j � 0 for all j = 1, . . . ,n, ∑n

j=1 xp
j = 1

and (
n

∑
j=1

x jai j

)q

�
n

∑
j=1

aq
i j ∀i = 1, . . . ,m,

then x ∈ suppv(A) when A is seen as a linear operator between �n
p := (Rn,‖ · ‖p) and

�m
q := (Rm,‖ · ‖q) .

We will conclude this section and the manuscript with an example in two dimen-
sions that illustrates the results of Theorem 4 and Corollary 2.

EXAMPLE 1. Denote �2
p :=

(
R2,‖ · ‖p

)
and �2

q :=
(
R2,‖ · ‖q

)
, with 1 < p,q < ∞

and 1
p + 1

q = 1. Consider

T : �2
p → �2

q
(x,y) �→ T (x,y) := (x+ y,2x+2y).

Notice that the matrix associated to T with respect to the canonical basis of R2 is(
1 1
2 2

)
.

Also, T (e1) = T (1,0) = (1,2) and T (e2) = T (0,1) = (1,2) . On the one hand,

2

∑
n=1

|T (en)(i)|q =
{

2 if i = 1,
2q+1 if i = 2.

Let us take now x :=
(
2

−1
p ,2

−1
p

)
∈ S�2

p
. On the other hand,

∣∣∣∣∣ 2

∑
n=1

x(n)T (en)(i)

∣∣∣∣∣
q

=

⎧⎨⎩
(
2

−1
p +2

−1
p

)q
if i = 1,(

2 ·2−1
p +2 ·2−1

p

)q
if i = 2.

Then ∣∣∣∣∣ 2

∑
n=1

x(n)T (en)(1)

∣∣∣∣∣
q

=
(
2

−1
p +2

−1
p

)q
=
(
2 ·2−1

p

)q

=
(
21− 1

p

)q
=
(
2

1
q

)q

= 2 �
2

∑
n=1

|T (en)(1)|q,
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and ∣∣∣∣∣ 2

∑
n=1

x(n)T (en)(2)

∣∣∣∣∣
q

=
(
2 ·2−1

p +2 ·2−1
p

)q
=
(
22− 1

p

)q

=
(
21+ 1

q

)q
= 2q+1

�
2

∑
n=1

|T (en)(2)|q.

As a consequence, in view of Corollary 2,

x :=
(
2

−1
p ,2

−1
p

)
∈ suppv(T ).
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OLOZÁBAL, AND DAVID BLANCO-NAVARRO, Novel TMS coils designed using an inverse bound-
ary element method, Physics in Medicine and Biology, 62 (1), 73–90, dec 2016.
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