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THE LAI LAW FOR WEIGHTED SUMS

XIANGDONG LIU ∗ , LANHUI ZHANG AND JINXUAN ZUO

(Communicated by N. Elezović)

Abstract. Let {X ,Xn,n � 1} be a sequence of independent and identically distributed random
variables with partial sums Sn = ∑n

k=1 Xk , n � 1 . Lai law states that

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn}
{

< ∞, if ε >
√

r−1,

= ∞, if ε <
√

r−1

if and only if EX = 0 , EX2 = 1 and E(X2/ log |X |)r < ∞ , where r > 1 . The paper will extend
the result to the weighted sums under some conditions both on the weights and the moment.

1. Introduction and the main result

The following theorem, related to the law of single logarithm, is well-known.

THEOREM A. Let r > 1 and {X ,Xn,n � 1} be a sequence of independent and
identically distributed random variables with partial sums Sn = ∑n

k=1 Xk , n � 1 . Sup-
pose that

EX = 0, EX2 = 1 and E(X2/ log |X |)r < ∞, (1.1)

where, and in the following, logx = loge max{x,e},x > 0 . Then for all ε >
√

r−1 ,

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn} < ∞. (1.2)

Conversely, if (1.2) holds for some ε > 0 , then EX = 0 and E(X2/ log |X |)r < ∞ .

One can label the result as the Lai law which was first established by Lai [10].
Chen and Wang [4] extended it to the moving processes partly, and furthermore showed
that

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn} = ∞, for all ε <
√

r−1.

Combining the results of Lai [10] and Chen and Wang [4],

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn}
{

< ∞, if ε >
√

r−1,

= ∞, if ε <
√

r−1
(1.3)
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if and only if (1.1) holds.
Recently, Liu and Meng [11] extended (1.3) to the case when {Xn,n � 1} are no

longer identically distributed, but rather their distributions come from a finite set of
distributions. When r = 1, an analog of (1.3) is discussed by Chen and Qi [3].

Due to the estimation of least squares regression coefficients in linear regression
and the non-parametric curve estimation, it is very interesting and meaningful to study
the topic of the limiting behaviors for the weighted sums of random variables.

In this paper, we will focus on the array weights {ank,1 � k � n,n � 1} of real
numbers satisfying

n

∑
k=1

|ank|α = O(n) (1.4)

for some α > 0.

In fact, under condition (1.4), many authors have studied the strong laws of large
numbers and the law of single logarithm for weighted sums of independent and iden-
tically distributed random variables. For example, Chow [5] proved the Kolmogorov
strong law of large numbers for weighted sums, and Cuzick [7] generalized the result
of Chow [5]. Bai and Cheng [1] proved the Marcinkiewicz-Zygmund strong law of
large numbers and the law of single logarithm for weighted sums, and Chen and Gan
[2] improved the result of Bai and Cheng [1] by giving the optimal moment condition
for the law of single logarithm. The limiting behavior are also obtained for dependent
random variables, one can refer to Wu and Wang [15] and their references for more
detail.

For an array {ank,1 � k � n,n � 1} of constants, set

ρ = inf

{
u :

∞

∑
n=1

nr−2 exp

(
− un logn

∑n
k=1 a2

nk

)
< ∞

}
. (1.5)

If (1.4) holds for α = 2, it is easy to show that

ρ ∈
[
(r−1) liminf

n→∞

1
n

n

∑
k=1

a2
nk,(r−1) limsup

n→∞

1
n

n

∑
k=1

a2
nk

]
⊂ [0,+∞),

and

ρ = (r−1) lim
n→∞

1
n

n

∑
k=1

a2
nk

if the limit exists. In particular, ρ = r−1 if an1 = · · · = ann = 1.
We now state the main results. Some preliminary lemmas and the proof of the

main result will be detailed in the next section.

THEOREM 1.1. Let r > 1 , α > 0,β > 0 with 1/α + 1/β = 1/2 . Let {ank,1 �
k � n,n � 1} be an array of constants satisfying (1.4) , and let {X ,Xn,n � 1} be a
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sequence of independent and identically distributed random variables. Suppose that

EX = 0, EX2 = 1 and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
( |X |

log1/2 |X |

)(r−1)β
< ∞, if α < 2r,

E|X |(r−1)β < ∞, if α = 2r,

E
( |X |

log1/2 |X |

)2r
< ∞, if α > 2r.

(1.6)

Then
∞

∑
n=1

nr−2P{|
n

∑
k=1

ankXk| > ε
√

2n logn}
{

< ∞, if ε >
√ρ ,

= ∞, if ε <
√ρ ,

(1.7)

where ρ is defined by (1.5) .
Conversely, if

∞

∑
n=1

nr−2P{|
n

∑
k=1

ankXk| > ε
√

2n logn} < ∞ (1.8)

holds for some ε > 0 and for any array {ank,1 � k � n,n � 1} satisfying (1.4) , then
EX = 0 , E(X2/ log |X |)r < ∞ and E(X2/ log |X |)(r−1)β/2 < ∞ .

REMARK 1.1. By the Hölder inequality, (1.4) implies

n

∑
k=1

|ank|s = O(n)

holds for all 0 < s � α .

REMARK 1.2. Suppose that r > 1, α > 0, β > 0 with 1/α +1/β = 1/2. Then
the case α < 2r is equivalent to the case 2r < (r− 1)β , and in this case, α < 2r <
(r− 1)β . The case α = 2r is equivalent to the case 2r = (r− 1)β , and in this case,
α = 2r = (r− 1)β . The case α > 2r is equivalent to the case 2r > (r− 1)β , and in
this case, α > 2r > (r−1)β .

REMARK 1.3. In two cases α > 2r and α < 2r , the moment conditions

E(X2/ log |X |)r < ∞ and E(X2/ log |X |)(r−1)β/2 < ∞

are necessary and sufficient, respectively. But in the case α = 2r , the moment condition
E|X |(r−1)β < ∞ is only sufficient for (1.7). It may be difficult to prove (1.7) under the
necessary moment condition E(X2/ log |X |)(r−1)β/2 < ∞ .

By Theorem 1.1 and the Borel-Cantelli lemma, we have the following single law
of logarithm at once.

THEOREM 1.2. Let α > 0 , β > 0 with 1/α + 1/β = 1/2 . Let {ank,1 � k �
n,n � 1} be an array of constants satisfying (1.4) , and let {X ,Xnk,1 � k � n,n � 1}
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be an array of independent and identically distributed random variables. Suppose that

EX = 0, EX2 = 1 and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E
( |X |

log1/2 |X |

)β
< ∞, if α < 4,

E|X |β < ∞, if α = 4,

E
( |X |

log1/2 |X |

)4
< ∞, if α > 4.

Then

limsup
n→∞

|∑n
k=1 ankXnk|√
2n logn

=
√

ρ a.s., (1.9)

where ρ is defined by (1.5) when r = 2 .

Throughout this paper, C always stands for a positive constant which may differ
from one place to another. For events A and B , we denote I(A,B) = I(A∩B) , where
I(A) is the indicator function of an event A .

2. Lemmas and proof of main result

The main tool in the proof of the main result is from the invariance principle’ way
to estimate the rate of convergence (see Sakhanenko [12, 13, 14]), which is powerful in
the field of limit theory (for example, see Csörgo, Szyszkowicz and Wu [6], Jiang and
Zhang [9], Chen and Wang [4], Liu and Meng [11], etc.) and is listed as the following
lemma.

LEMMA 2.1. For any q > 2 , there exists B = B(q) > 0 satisfying that for any se-
quence of independent random variables {ξk,1 � k � n} with mean zero and E|ξk|q <
∞,1 � k � n, there is a sequence {ηk,1 � k � n} of independent normal random vari-
ables with Eηk = 0 , Eη2

k = Eξ 2
k and for all y > 0 ,

P

{
max

1�m�n
|

m

∑
k=1

ξk −
m

∑
k=1

ηk| > y

}
� By−q

n

∑
k=1

E|ξk|q. (2.1)

In the following, we always set an =
√

n logn , bn = n1/β√logn , n � 1, a0 = b0 =
0.

LEMMA 2.2. Let r > 1 , α > 0 , β > 0 with 1/α + 1/β = 1/2 , and X be a
random variable. Let {ank,1 � k � n,n � 1} be an array of constants satisfying (1.4).
Then

∞

∑
n=1

nr−2
n

∑
k=1

P{|ankX | > an} �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CE
( |X |

log1/2 |X |

)(r−1)β
, if α < 2r,

CE|X |(r−1)β , if α = 2r,

CE
( |X |

log1/2 |X |

)2r
, if α > 2r.

(2.2)
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Proof. Case 1: α � 2r . We observe by the Markov inequality that, for any s > 0,

P{|ankX | > an} = P{|ankX | > an, |X | > bn}+P{|ankXk| > an, |X | � bn}
� a−α

n |ank|αE|X |αI(|X | > bn)+a−s
n |ank|sE|X |sI(|X | � bn). (2.3)

It is easy to show that

∞

∑
n=1

nr−2 ·a−α
n

(
n

∑
k=1

|ank|α
)

E|X |αI(|X | > bn)

� C
∞

∑
n=1

nr−1−α/2(logn)−α/2E|X |α I(|X | > bn)

= C
∞

∑
n=1

nr−1−α/2(logn)−α/2
∞

∑
k=n

E|X |α I(bk < |X | � bk+1)

= C
∞

∑
k=1

E|X |αI(bk < |X | � bk+1)
k

∑
n=1

nr−1−α/2(logn)−α/2

�

⎧⎨
⎩

C∑∞
k=1 kr−α/2(logk)−α/2E|X |αI(bk < |X | � bk+1), if α < 2r,

C∑∞
k=1 E|X |αI(bk < |X | � bk+1), if α = 2r

�

⎧⎨
⎩E

( |X |
log1/2 |X |

)(r−1)β
, if α < 2r,

E|X |(r−1)β , if α = 2r.
(2.4)

Taking s > max{α,(r−1)β} , we have that

∞

∑
n=1

nr−2 ·a−s
n

(
n

∑
k=1

|ank|s
)

E|X |sI(|X | � bn)

� C
∞

∑
n=1

nr−2−s/2+s/α(logn)−s/2E|X |sI(|X | � bn)

= C
∞

∑
n=1

nr−2−s/2+s/α(logn)−s/2
n

∑
k=1

E|X |sI(bk−1 < |X | � bk)

= C
∞

∑
k=1

E|X |sI(bk−1 < |X | � bk)
∞

∑
n=k

nr−2−s/2+s/α(logn)−s/2

� C
∞

∑
k=1

kr−1−s/2+s/α(logk)−s/2E|X |sI(bk−1 < |X | � bk)

� CE

(
|X |

log1/2 |X |

)(r−1)β

, (2.5)

since s > (r−1)β . Then (2.2) holds by (2.3)–(2.5).
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Case 2: α > 2r . The proof is similar to that of Case 1. However, we use a different
truncation for X . We observe by the Markov inequality that, for any t > 0,

P{|ankX | > an} = P{|ankX | > an, |X | > an}+P{|ankXk| > an, |X | � an}
� a−t

n |ank|tE|X |t I(|X | > an)+a−α
n |ank|αE|X |α I(|X | � an). (2.6)

Taking 0 < t < 2r , we have that

∞

∑
n=1

nr−2 ·a−t
n

(
n

∑
k=1

|ank|t
)

E|X |t I(|X | > an)

� C
∞

∑
n=1

nr−1−t/2(logn)−t/2E|X |t I(|X | > an)

� C
∞

∑
n=1

nr−t/2(logn)−t/2E|X |t I(an < |X | � an+1)

� CE

(
|X |

log1/2 |X |

)2r

. (2.7)

By the same argument as (2.4),

∞

∑
n=1

nr−2 ·a−α
n

(
n

∑
k=1

|ank|α
)

E|X |α I(|X | � an)

� C
∞

∑
n=1

nr−1−α/2(logn)−α/2E|X |α I(|X | � an)

� CE

(
|X |

log1/2 |X |

)2r

, (2.8)

since α > 2r . Then (2.2) holds by (2.6)–(2.8). �

LEMMA 2.3. Let r > 1 , α > 0 , β > 0 with 1/α + 1/β = 1/2 , and let X be a
random variable. Let {ank,1 � k � n,n � 1} be an array of constants satisfying (1.4) .
Then for any s > max{α,(r−1)β} ,

∞

∑
n=1

nr−2 ·a−s
n

n

∑
k=1

E|ankX |sI(|ankX | � an) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
( |X |

log1/2 |X |

)(r−1)β
, if α < 2r,

E|X |(r−1)β , if α = 2r,

E
( |X |

log1/2 |X |

)2r
, if α > 2r.

(2.9)
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Proof. Case 1: α � 2r . By (2.4) and (2.5) we get that

∞

∑
n=1

nr−2 ·a−s
n

n

∑
k=1

E|ankX |sI(|ankX | � an)

=
∞

∑
n=1

nr−2 ·a−s
n

n

∑
k=1

E|ankX |sI(|ankX | � an, |X | > bn)

+
∞

∑
n=1

nr−2 ·a−s
n

n

∑
k=1

E|ankX |sI(|ankX | � an, |X | � bn)

�
∞

∑
n=1

nr−2 ·a−α
n

(
n

∑
k=1

|ank|α
)

E|X |α I(|X | > bn)

+
∞

∑
n=1

nr−2 ·a−s
n

(
n

∑
k=1

|ank|s
)

E|X |sI(|X | � bn)

�

⎧⎨
⎩CE

( |X |
log1/2 |X |

)(r−1)β
, if α < 2r,

CE|X |(r−1)β , if α = 2r.

Case 2: α > 2r . Taking 0 < t < 2r , we have by (2.7) and (2.8) that

∞

∑
n=1

nr−2 ·a−s
n

n

∑
k=1

E|ankX |sI(|ankX | � an)

=
∞

∑
n=1

nr−2 ·a−s
n

n

∑
k=1

E|ankX |sI(|ankX | � an, |X | > an)

+
∞

∑
n=1

nr−2 ·a−s
n

n

∑
k=1

E|ankX |sI(|ankX | � an, |X | � an)

�
∞

∑
n=1

nr−2 ·a−t
n

(
n

∑
k=1

|ank|t
)

E|X |t I(|X | > an)

+
∞

∑
n=1

nr−2 ·a−α
n

(
n

∑
k=1

|ank|α
)

E|X |αI(|X | � bn)

� CE

(
|X |

log1/2 |X |

)2r

.

Therefore (2.9) holds. �

LEMMA 2.4. Let X be a random variable, let {ank,1 � k � n,n � 1} be an array
of constants satisfying (1.4) for some α � 2 . If E|X |2 < ∞ , then

a−1
n

n

∑
k=1

E|ankX |I(|ankX | > an) → 0 (2.10)
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as n → ∞ , and hence, in addition, if EX = 0 , then

a−1
n

∣∣∣∣∣
n

∑
k=1

ankEXI(|ankX | � an)

∣∣∣∣∣→ 0 (2.11)

as n → ∞ .

Proof. Note that

a−1
n

n

∑
k=1

E|ankX |I(|ankX | > an) � a−2
n

n

∑
k=1

E|ankX |2I(|ankX | > an)

� a−2
n

n

∑
k=1

E|ankX |2

� (logn)−1 ·
(

n−1
n

∑
k=1

|ank|2
)
·EX2

→ 0

as n → ∞ .Hence (2.10) holds. If, in addition, EX = 0, then we get by (2.10) that

a−1
n

∣∣∣∣∣
n

∑
k=1

ankEXI(|ankX | � an)

∣∣∣∣∣= a−1
n

∣∣∣∣∣
n

∑
k=1

ankEXI(|ankX | > an)

∣∣∣∣∣
� a−1

n

n

∑
k=1

E|ankX |I(|ankX | > an) → 0

as n → ∞ . Hence (2.11) holds. �

Proof of Theorem 1.1. Sufficiency. Set

Sn =
n

∑
k=1

ankXk,Tn =
n

∑
k=1

ankXkI(|ankXk| � an).

We first prove that

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn} < ∞, ∀ ε >
√

ρ . (2.12)

Note that

{|Sn| > ε
√

2n logn} ⊂ { max
1�k�n

|ankXk| > an}∪
{
|Tn| > ε

√
2n logn

}
,

and by Lemma 2.2,

∞

∑
n=1

nr−2P{ max
1�k�n

|ankXk| > an} �
∞

∑
n=1

n

∑
k=1

P{|ankX | > an} < ∞, (2.13)
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and by Lemma 2.4,
1
an

|ETn| → 0 (2.14)

as n → ∞ . Hence to prove (2.12), it is enough to prove that

∞

∑
n=1

nr−2P
{
|Tn−ETn| > ε

√
2n logn

}
< ∞, ∀ ε >

√
ρ . (2.15)

We can get from Lemma 2.1 that for any n � 1, there exists independent normal random
variables Znk with EZnk = 0 and EZ2

nk = E(ankXkI(|ankXk| � an)−EankXkI(|ankXk|�
an))2 , 1 � k � n , such that for any q > 2 and all y > 0

P

{
|(Tn−ETn)−

n

∑
k=1

Znk| > y

}

� Ay−q
n

∑
k=1

E|ankXkI(|ankXk| � an)−EankXkI(|ankXk| � an)|q. (2.16)

Note that

{
|Tn−ETn| > ε

√
2n logn

}
⊂
{
|(Tn −ETn)−

k

∑
k=1

Znk| > ε1

√
2n logn

}

∪
{
|

n

∑
k=1

Znk| > ε2

√
2n logn

}
,

where ε1 > 0,ε2 >
√ρ with ε = ε1 + ε2 . Hence

∞

∑
n=1

nr−2P
{
|Tn−ETn| > ε

√
2n logn

}

�
∞

∑
n=1

nr−2P

{
|(Tn −ETn)−

n

∑
k=1

Znk| > ε1

√
2n logn

}

+
∞

∑
n=1

nr−2P

{
|

n

∑
k=1

Znk| > ε2

√
2n logn

}

= I1 + I2.

By (2.16) and Lemma 2.3 we can derive that for q > max{α,(r−1)β}

I1 � C
∞

∑
n=1

nr−2

aq
n

n

∑
k=1

E|ankXkI(|ankXk| � an)−EankXkI(|ankXk| � an)|q

� C
∞

∑
n=1

nr−2

aq
n

n

∑
k=1

E|ankXk|qI(|ankXk| � an)

< ∞.
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Let N be a standard normal random variable. Note that

EZ2
nk = E(ankXkI(|ankXk| � an)−EankXkI(|ankXk| � an))2 � a2

nk

for all 1 � k � n and n � 1 since EX2 = 1, and P{|N|> x}∼√2/π x−1e−x2/2 . Hence
for large enough n ,

P

{
|

n

∑
k=1

Znk| > ε2

√
2n logn

}
= P

⎧⎨
⎩|N| > ε2

√
2n logn√

∑n
k=1 EZ2

nk

⎫⎬
⎭� Cexp

{
−ε2

2n logn

∑n
k=1 a2

nk

}
.

Then I2 < ∞ since ε2
2 > ρ .

Now we prove that
∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn} = ∞, (2.17)

holds for any ε <
√ρ . If ε � 0, (2.17) holds trivially. So we can assume that ε > 0

and ρ > 0. Note that

{|Tn| > ε
√

2n logn} ⊂ { max
1�k�n

|ankXk| > an}∪
{
|Sn| > ε

√
2n logn

}
Hence, by (2.13) and (2.14), to prove (2.17) it suffices to prove that

∞

∑
n=1

nr−2P
{
|Tn−ETn| > ε

√
2n logn

}
= ∞, ∀ ε <

√
ρ . (2.18)

Note that for any 0 < ε <
√ρ , if we take ε3 > 0 and 0 < ε4 <

√ρ with ε4 = ε3 + ε ,
then {

|
n

∑
k=1

Znk| > ε4

√
2n logn

}
⊂
{
|(Tn −ETn)−

n

∑
k=1

Znk| > ε3

√
2n logn

}

∪
{
|Tn −ETn| > ε

√
2n logn

}
,

Then by I1 < ∞ , to prove (2.18), it is enough to show that

∞

∑
n=1

nr−2P

{
|

n

∑
k=1

Znk| > ε4

√
2n logn

}
= ∞. (2.19)

Set A = supn�1(n
−1 ∑n

k=1 a2
nk)

1/2 , then |ank|� A
√

n . Note that by EX = 0 and EX2 =
1,

1 � ∑n
k=1 E|ankXk|2I(|ankXk| � an)−∑n

k=1(EankXkI(|ankXk| � an))2

∑n
k=1 a2

nk

= 1− ∑n
k=1 E|ankXk|2I(|ankXk| > an)+ ∑n

k=1(EankXkI(|ankXk| > an))2

∑n
k=1 a2

nk

� 1− 2∑n
k=1 E|ankXk|2I(|ankXk| > an)

∑n
k=1 a2

nk

� 1− 2∑n
k=1 E|ankXk|2I(|A

√
nXk| > an)

∑n
k=1 a2

nk

= 1−2EX2I(|AX |>
√

logn) → 1



THE LAI LAW FOR WEIGHTED SUMS 1631

as n → ∞ . Then there exists δ < 1 close to 1 enough with u1 = ε2
4/δ < ρ such that

n

∑
k=1

EZ2
nk =

n

∑
k=1

E|ankXk|2I(|ankXk| � an)−
n

∑
k=1

(EankXkI(|ankXk| � an))2 � δ
n

∑
k=1

a2
nk

for n large enough. Using P{|N| > x} ∼√2/π x−1e−x2/2 again,

P

{
|

n

∑
k=1

Znk| > ε4

√
2n logn

}
= P

⎧⎨
⎩|N| > ε4

√
2n logn√

∑n
k=1 EZ2

nk

⎫⎬
⎭� P

⎧⎨
⎩|N| > ε4

√
2n logn√

δ ∑n
k=1 a2

nk

⎫⎬
⎭

∼
√

δ
πε2

4

·
√

∑n
k=1 a2

nk

n logn
exp

{
−u1n logn

∑n
k=1 a2

nk

}
.

Taking u2 ∈ (u1,ρ) , then√
∑n

k=1 a2
nk

n logn
exp

{
−u1n logn

∑n
k=1 a2

nk

}/
exp

{
−u2n logn

∑n
k=1 a2

nk

}

=

√
∑n

k=1 a2
nk

n logn
exp

{
(u2−u1)n logn

∑n
k=1 a2

nk

}
→ ∞

as n → ∞ . Therefore (2.19) holds by the fact that the series

∞

∑
n=1

nr−2 exp

{
−u2n logn

∑n
k=1 a2

nk

}
= ∞.

Necessary. Set ank = 1 for all 1 � k � n and n � 1. Then (1.8) can be rewritten
as

∞

∑
n=1

nr−2P{|
n

∑
k=1

ankXnk| > ε
√

2n logn} < ∞

for some ε > 0. Then by Lai [10], EX = 0, and E(X2/ log |X |)r < ∞ . Set ank = 0 if
1 � k � n−1 and ann = n1/α , Then (1.8) can be rewritten as

∞

∑
n=1

nr−2P{|n1/αXn| > ε
√

2n logn} < ∞

for some ε > 0, which is equivalent to E(X2/ log |X |)(r−1)β/2 < ∞ . The proof is com-
pleted. �
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