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Abstract. In the article, we prove that λ1 = 0 , μ1 = 5/8 , λ2 = −1/8 , μ2 = 0 , λ3 = −1 and
μ3 = −7/8 are the best possible parameters such that the double inequalities

Lλ1
(a,b) < T3(a,b) < Lμ1 (a,b),

Lλ2
(a,b) < T1(a,b) < Lμ2 (a,b),

Lλ3
(a,b) < T−1(a,b) < Lμ3 (a,b)

hold for a,b > 0 with a �= b , and provide new bounds for the complete elliptic integral of the

second kind E (r) =
∫ π/2
0 (1− r2 sin2 θ )1/2dθ on the interval (0,1) , where Lp(a,b) = (ap+1 +

bp+1)/(ap +bp) is the p -th Lehmer mean and Tn(a,b) =
(

2
π
∫ π/2
0

√
an cos2 θ +bn sin2 θdθ

)2/n

is the n th power-type Toader mean.

1. Introduction

Let p ∈ R and a,b > 0. Then the p -th Lehmer mean [1] is defined by

Lp(a,b) =
ap+1 +bp+1

ap +bp , (1.1)

and it is also called Gini means Gp+1,p(a,b) [2], where

Gp,q(a,b) =

⎧⎪⎨
⎪⎩
(

ap+bp

aq+bq

)1/(p−q)
, p �= q,

exp
(

ap lna+bp lnb
ap+bp

)
, p = q.

As special case of Gini means, it is easy to see that Lp(a,b) is continuous and strictly
increasing with respect to p ∈ R for fixed a,b > 0 with a �= b .

Another one-parametermean considered in this paper is the n th power-typeToader
mean, which is defined as

Tn(a,b) :=
[
T
(
an/2,bn/2

)]2/n
=
(

2
π

∫ π/2

0

√
an cos2 θ +bn sin2 θdθ

)2/n
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for n ∈ Z
∗ = Z\{0} , where T (a,b) is the Toader mean [3] defined by

T (a,b) =
2
π

∫ π/2

0

√
a2 cos2 θ +b2 sin2 θdθ .

This is also called n/2-modification of Toader mean introduced in [4], in which
the authors study the t -modification of arithmetic-geometric mean AGM(a,b) [5, 6].
In particular, some well-known means are the p -modification of the classical means,
such as the power mean [7, 8, 9], which is given by

Mp(a,b) =

⎧⎨
⎩
(

ap+bp

2

)1/p
, p �= 0,

√
ab, p = 0.

(1.2)

Many classical two variable means are the special means of Lehmer mean and
power mean, for example, L0(a,b) = M1(a,b) = A(a,b) is the arithmetic mean,
L−1/2(a,b)= M0(a,b)= G(a,b) is the geometricmean, L−1(a,b)= M−1(a,b)= H(a,b)
is the Harmonic mean, and L1(a,b) = C(a,b) is the contraharmonic mean.

Clearly, Tn(a,b) can be rewritten by

Tn(a,b) =

⎧⎪⎨
⎪⎩

a
[

2
π E
(√

1− (b/a)n
)]2/n

, an � bn,

b
[

2
π E
(√

1− (a/b)n
)]2/n

, an < bn,

(1.3)

where ⎧⎨
⎩

E (r) =
∫ π/2
0

(
1− r2 sin2 θ

)1/2
dθ = π

2 2F1
(− 1

2 , 1
2 ;1;r2

)
,

E (0+) = π/2, E (1−) = 1

is the complete elliptic integral of the second kind [10, 11, 12, 13] and the Gaussian
hypergeometric function [14, 15, 16, 17, 18] is given by

2F1(a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
.

Here (a)n = Γ(a + n)/Γ(a) and Γ(u) =
∫ ∞
0 xu−1e−xdx is the Euler gamma function

[19, 20, 21].
Throughout this paper, we denote s =

√
1− r2 for r ∈ (0,1) and N0 = N∪{0} .

Recall the Gauss identity [6]

AGM(1,r)K (s) =
π
2

(1.4)

for r ∈ (0,1) , where K (r) is the complete elliptic integral of the first kind [22, 23, 24,
25, 26] defined by⎧⎨
⎩K (r) =

∫ π/2
0

(
1− r2 sin2 θ

)−1/2
dθ = π

2 2F1
(

1
2 , 1

2 ;1;r2
)

= ∑∞
n=0

[( 1
2 )n]2

(n!)2 r2n,

K (0+) = π
2 , K (1−) = ∞.

Legendre complete elliptic integrals and Gaussian hypergeometric function play
very important roles in many branches of modern mathematics such as classical anal-
ysis, number theory, geometric function theory, and conformal and quasi-conformal
mappings [27, 28, 29, 30, 31, 32, 33].
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Barnard, Pearce and Richards [34], and Alzer and Qiu [35] proved that λ = 3/2
and μ = log2/(logπ − log2) = 1.5349 · · · are the best possible parameters such that
the double inequality

Mλ (a,b) < T2(a,b) < Mμ(a,b) (1.5)

holds for all a,b > 0 with a �= b .
Chu and Wang [36] proved that the double inequality

Lp(a,b) < T2(a,b) < Lq(a,b) (1.6)

holds for all a,b > 0 with a �= b if and only if p � 0 and q � 1/4.

In [37], Qian and Chu proved that λ =
(

1−
√

1− (2
√

2/π)4/p

)
/2 and μ =

1/2−√
p/(4p) are the best possible parameters such that the double inequality

Gp(λa+(1−λ )b,λb+(1−λ )a
)
A1−p(a,b) < T1(a,b)

< Gp(μa+(1− μ)b,μb+(1−μ)a
)
A1−p(a,b) (1.7)

holds for all p ∈ [1,∞) and a,b > 0 with a �= b .
Recently, Chu et al. [12] showed that the double inequality

C[αa+(1− pα)b,αb+(1−α)a] < T3(a,b) <C[βa+(1−β )b,βb+(1−β )a] (1.8)

holds for all a,b > 0 with a �= b if and only if α �
(√

2 3
√

4/π2−1+1

)
/2 and

β � 1/2+
√

10/8. Moreover, Li and Zhao [38] gave the sharp generalized Seiffert
mean bounds for T4(a,b) , that is the two-sided inequality

Sp0(a,b) < T4(a,b) < S√3/2(a,b) (1.9)

holds for all a > b > 0 with the best possible constants p0 and
√

3/2, where p0 =
0.81366 · · · is the unique positive solution of the equation p/arctan(2p) =

√
2/π and

Sp(a,b) is defined by

Sp(a,b) =
p(a−b)

arctan[2p(a−b)/(a+b)]
(p �= 0), S0(a,b) =

a+b
2

.

Motivated by inequalities (1.5)–(1.9), the main purpose of the article is to provide
the sharp Lehmer mean bounds for T−1(a,b) , T1(a,b) and T3(a,b) , specifically, to find
the best possible parameters λi , μi ( i = 1,2,3) such that the double inequalities

Lλ1
(a,b) < T3(a,b) < Lμ1(a,b),

Lλ2
(a,b) < T1(a,b) < Lμ2(a,b),

Lλ3
(a,b) < T−1(a,b) < Lμ3(a,b)

hold for all a,b > 0 with a �= b . As consequences, we also provide new bounds for
complete elliptic integral of the second kind.
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2. Lemmas

In order to prove our main results, we need several lemmas which we present in
this section.

By substituting a = 1 and b = s =
√

1− r2 into (1.2) and (1.3), the following
lemma can be derived immediately from (1.5).

LEMMA 2.1. The double inequality(
1+ sλ

2

)1/λ

<
2
π

E (r) <

(
1+ sμ

2

)1/μ

holds for all r∈ (0,1) if and only if λ � 3/2 and μ � log2/(logπ− log2)= 1.5349 · · ·.

LEMMA 2.2. (See [33, Lemmas 2.1 and 2.4]). Let f1(r) = (1− r)2 +4
√

r(1+ r)
and f2(r) = (1+

√
r)2 +2

√
2(1+ r)

√
r . Then

2
π

E (s) <
f1(r)
f2(r)

<
1+ r5/4

1+ r1/4

for all r ∈ (0,1) .

LEMMA 2.3. (See [6, (3.22)]). Let a0 = 1 , b0 = r ∈ (0,1) , d0 = 2 and an+1 =
(an +bn)/2 , bn+1 =

√
anbn , dn+1 = dn−2n(a2

n−b2
n) for n ∈ N0 . Then

lim
n→∞

an = lim
n→∞

bn = AGM(1,r) and lim
n→∞

dn =
2E (s)
K (s)

.

LEMMA 2.4. Let the sequences {an}∞
n=0 , {bn}∞

n=0 and {dn}∞
n=0 be defined as in

Lemma 2.3. Then the following statements are true:
(1) dn > 2n(an−bn)(2an +bn) for n ∈ N0 ;
(2) The sequence {dn+1/an}∞

n=0 is positive, strictly increasing and

lim
n→∞

dn+1

an
=

4
π

E (s). (2.1)

Proof. (1) Let en = 2n(an − bn)(2an + bn) . Then we can prove that dn > en for
n = 0,1,2, · · · by mathematical induction. Firstly, it is easy to verify that d0 = 2 >
2− r− r2 = e0 and d1 = 1+ r2 > 1+ r2−√

r(1+ r) = e1.
We assume that dn > en for n = 0,1, · · · ,k (k � 1) , then

dk+1− ek+1

= dk −2k(a2
k −b2

k)−2k+1(ak+1−bk+1)(2ak+1 +bk+1)

> 2k(ak −bk)(2ak +bk)−2k(a2
k −b2

k)−2k(ak +bk−2
√

akbk)(ak +bk +
√

akbk)

= 2k
√

bk(ak +bk)(
√

ak −
√

bk) > 0.
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(2) From the definitions of {an}∞
n=0 and {bn}∞

n=0 , we clearly see that an > bn > 0
for n∈N0 . This in conjunction with part (1) implies that dn > 0 for n∈N0 . Therefore,
dn+1/an > 0 for all n ∈ N0 .

Moreover, it follows from part (1) that

dn+2

an+1
− dn+1

an
=

andn+2−an+1dn+1

anan+1

=
an
[
dn+1−2n+1(a2

n+1−b2
n+1)

]−dn+1(an +bn)/2

anan+1

=
dn+1(an−bn)/2−2n+1an(a2

n+1−b2
n+1)

anan+1

=
(an−bn) [dn−2n(an−bn)(2an +bn)]

2anan+1
> 0. (2.2)

Therefore, the increasingness of the sequence {dn+1/an}∞
n=0 follows from (2.2)

and equation (2.1) can be derived from (1.4) and Lemma 2.3. �

LEMMA 2.5. Let f2(r) be defined as in Lemma 2.2, g1(r) = (1+
√

r)2(1−6
√

r+
r+4

√
2(1+ r)

√
r) and g2(r) = 2 f2(r) . Then

2
π

E (s) >
g1(r)
g2(r)

for all r ∈ (0,1) .

Proof. Let the sequences {an}∞
n=0 , {bn}∞

n=0 and {dn}∞
n=0 be defined as in Lemma

2.3. Then it is easy to verify that

d4 =
1
8
g1(r) (2.3)

and

a3 =
1
16

g2(r). (2.4)

Therefore, Lemma 2.5 follows from (2.3) and (2.4) together with Lemma 2.4(2). �

LEMMA 2.6. Let f1(r) and f2(r) be defined as in Lemma 2.2. Then[
f1(r3/2)
f2(r3/2)

]2/3

<
1+ r13/8

1+ r5/8
(2.5)

for all r ∈ (0,1) .

Proof. According to the second inequality of Lemma 2.2, it suffices to prove the
inequality (

1+ r15/8

1+ r3/8

)2/3

<
1+ r13/8

1+ r5/8
(2.6)
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for all r ∈ (0,1) instead of (2.5).
Let u = r1/8 ∈ (0,1) . Then it is easy to see that inequality (2.6) is equivalent to

(1+u15)2(1+u5)3 − (1+u13)3(1+u3)2

= −u3(1−u)4(1+u)5(1+u2)(1−u+u2)2(1+u+u2)(1+u3 +u6)σ(u)
< 0, (2.7)

where

σ(u) = 2+u2−3u3 +2u4 +4u6−3u7−u8−3u9 +4u10 +2u12−3u13 +u14 +2u16.

More precisely,

σ(u) = 2+u2−3u3 +2u4 +4u6−3u7−u8−3u9 +3u10

+u10 [(1−u3)+2u2(1−u)
]
+u14 +2u16

> 2+u2−3u3 +2u4 +4u6−3u7−u8−3u9 +3u10

= 1+u2(1−2u+2u2)+ (1−u)(1+u+u2−3u9)+u6(1−u)(u+4)> 0

for all u ∈ (0,1) . This gives the positive answer of inequality (2.7). �

LEMMA 2.7. Let g1(r) and g2(r) be defined as in Lemma 2.5. Then[
g1(

√
r)

g2(
√

r)

]2

>
1+ r7/8

1+ r−1/8
(2.8)

for all r ∈ (0,1) .

Proof. Let u = r1/8 ∈ (0,1) . Then it is easy to see that inequality (2.8) is equiva-
lent to

(1+u)g2
1(u

4)− (u+u8)g2
2(u

4) > 0 (2.9)

for all u ∈ (0,1) . Elaborated computations lead to

(1+u)g2
1(u

4)− (u+u8)g2
2(u

4) = a(u)+8
√

2u(1+u)(1+u2)2b(u)
√

1+u4, (2.10)

where

a(u) = 1−3u+24u2−24u3 +124u4 +100u5 +296u6 +248u7 +386u8 +386u9

+248u10 +296u11 +100u12 +124u13−24u14 +24u15−3u16 +u17,

b(u) = 1−2u−2u2−2u3−8u4−2u5−2u6−2u7 +u8.

Moreover, we have

a(u) > 3

(
1
3
−u

)
+24u2(1−u)+18u4

= 2+
23
3

(
u− 1

3

)
+12

(
u− 1

3

)2

+18

(
u− 1

3

)4

, (2.11)

b′(u) = −2[1+2u+3u2+16u3 +5u4 +6u5 +3u6 +4u6(1−u) < 0. (2.12)

It follows easily from (2.11) that a(u) > 0 for u ∈ (0,1/3) and a(u) > 0 for
u ∈ [1/3,1) .
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Inequality (2.12) together with b(3/10) = 9451021/100000000 > 0 and b(1) =
−18 < 0 leads to the conclusion that there exists u0 ∈ (3/10,1) such that b(u) > 0 for
u ∈ (0,u0) and b(u) < 0 for u ∈ (u0,1) .

Combining (2.10) with the sign of a(u) and b(u) on the interval (0,1) , it remains
to prove that the inequality (2.9) holds for u ∈ (u0,1) . For u ∈ (u0,1) , elaborated
computations give
a2(u)−128u2(1+u)2(1+u2)4(1+u4)b2(u)

= (1−u)4(1+u)2
(
1−4u−78u2−100u3 +1091u4 +1720u5 +13540u6 +19448u7

+59969u8+75364u9 +156494u10+169988u11+270459u12+249680u13

+324152u14+249680u15+270459u16+169988u17+156494u18+75364u19

+59969u20+19448u21+13540u22+1720u23

+1091u24−100u25−78u26−4u27 +u28
)

> (1−u)4(1+u)2(1−4u−78u2−100u3 +1091u4 +1720u5)
= (1−u)4(1+u)2

[
30967
10000

+
13711
125

(
u− 3

10

)
+

44277
50

(
u− 3

10

)2

+
13786

5

(
u− 3

10

)3

+3671

(
u− 3

10

)4

+1720

(
u− 3

10

)5
]

> 0. �

3. Main results

THEOREM 3.1. The inequality L0(a,b) < T3(a,b) < L5/8(a,b) holds for all a,b
> 0 with a �= b, where L0(a,b) and L5/8(a,b) are the best possible lower and upper
Lehmer mean bounds for T3(a,b) .

Proof. By homogeneity it suffices to prove that the inequality in Theorem 3.1
holds only for a = 1 and 0 < b < 1.

Let a = 1 and b = s2/3 ∈ (0,1) . Then Lemma 2.1 and (1.3) enable us to give

T3(a,b) =
[

2
π

E (r)
]2/3

>
1+ s2/3

2
>

1+ s
2

= L0(a,b).

Next we prove that
T3(a,b) < L5/8(a,b) (3.1)

for all a,b > 0 with a �= b .
We now assume that a = 1 and b = r ∈ (0,1) . Then it follows form (1.1) and (1.3)

that

T3(a,b)−L5/8(a,b) =
[

2
π

E (
√

1− r3)
]2/3

− 1+ r13/8

1+ r5/8

=
[

2
π

E (
√

1− r3)
]2/3

−
[

f1(r3/2)
f2(r3/2)

]2/3

+

[
f1(r3/2)
f2(r3/2)

]2/3

− 1+ r13/8

1+ r5/8
, (3.2)
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where f1(r) and f2(r) are defined as in Lemma 2.2.
Therefore, inequality (3.1) follows from Lemmas 2.2 and 2.6 together with (3.2).
It remains to show that L0(a,b) and L5/8(a,b) are the best possible lower and

upper Lehmer mean bounds for T3(a,b) .
Let 0 < p < 5/8. Then (1.1) and (1.3) lead to

lim
r→0+

[
T3(1,r)−Lp(1,r)

]
=
(

2
π

)2/3

−1 < 0, (3.3)

lim
r→1−

T3(1,r)−Lp(1,r)
(r−1)2 =

1
4

(
5
8
− p

)
> 0. (3.4)

Inequalities (3.3) and (3.4) lead to the conclusion that there exist small enough
τ1,τ2 ∈ (0,1) such that T3(1,r) < Lp(1,r) for r ∈ (0,τ1) and T3(1,r) > Lp(1,r) for
r ∈ (1− τ2,1) . �

THEOREM 3.2. The inequality L−1/8(a,b)< T1(a,b)< L0(a,b) holds for all a,b >
0 with a �= b, where L−1/8(a,b) and L0(a,b) are the best possible lower and upper
Lehmer mean bounds for T1(a,b) .

Proof. Since T1(a,b) and Lp(a,b) are symmetric and homogeneous of degree 1
with respect to a and b , it suffices to prove that the inequality T1(a,b) < L0(a,b) holds
only for a = 1 and b = s2 ∈ (0,1) . It follows from (1.3) and Lemma 2.1 that

T1(a,b) =
[

2
π

E (r)
]2

<

(
1+ sμ

2

)2/μ
<

1+ s2

2
= L0(a,b),

where the last inequality follows from the monotonicity of power mean with respect to
p and μ is defined as in Lemma 2.1.

Next we prove that
T1(a,b) > L−1/8(a,b) (3.5)

for all a,b > 0 with a �= b . We now assume that a = 1 and b = r ∈ (0,1) . Then it
follows from (1.1) and (1.3) that

T1(a,b)−L−1/8(a,b) =
[

2
π

E (
√

1− r)
]2

− 1+ r7/8

1+ r−1/8

=
[

2
π

E (
√

1− r)
]2

−
[
g1(

√
r)

g2(
√

r)

]2

+
[
g1(

√
r)

g2(
√

r)

]2

− 1+ r7/8

1+ r−1/8
, (3.6)

where g1(r) and g2(r) are defined as in Lemma 2.5.
Therefore, inequality (3.5) follows from Lemmas 2.5 and 2.7 together with (3.6).
In the end, we prove that L−1/8(a,b) and L0(a,b) are the best possible lower and

upper Lehmer mean bounds for T1(a,b) .
Let −1/8 < p < 0 and 0 < r < 1. Then from (1.1) and (1.3) we get

lim
r→0+

[
T1(1,r)−Lp(1,r)

]
=

4
π2 > 0, (3.7)

lim
r→1−

T1(1,r)−Lp(1,r)
(r−1)2 = −1

4

(
1
8

+ p

)
< 0. (3.8)
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Inequalities (3.7) and (3.8) lead to the conclusion that there exist small enough
τ3,τ4 ∈ (0,1) such that T1(1,r) > Lp(1,r) for r ∈ (0,τ3) and T1(1,r) < Lp(1,r) for
r ∈ (1− τ4,1) . �

THEOREM 3.3. The inequality L−1(a,b) < T−1(a,b) < L−7/8(a,b) holds for all
a,b > 0 with a �= b, where L−1(a,b) and L−7/8(a,b) are the best possible lower and
upper Lehmer mean bounds for T−1(a,b) .

Proof. By the same argument as above, we only need to prove the inequality
L−1(a,b) < T−1(a,b) holds for a = 1 and b = s2 ∈ (0,1) . From (1.3) and Lemma
2.1 we clearly see that

T−1(a,b) = s2
[

2
π

E (r)
]−2

> s2
(

1+ sμ

2

)−2/μ
> s2

(
1+ s2

2

)−1

= L−1(a,b),

where the last inequality follows from the monotonicity of power mean with respect to
p and μ is defined as in Lemma 2.1.

Next we prove that
T−1(a,b) < L−7/8(a,b) (3.9)

for all a,b > 0 with a �= b . We now assume that a = 1 and b = r ∈ (0,1) . Then it
follows from (1.1) and (1.3) that

T−1(a,b)−L−7/8(a,b) = r

[
2
π

E (
√

1− r)
]−2

− 1+ r1/8

1+ r−7/8

= r

[
2
π

E (
√

1− r)
]−2

− r

[
g1(

√
r)

g2(
√

r)

]−2

+ r

[
g1(

√
r)

g2(
√

r)

]−2

− 1+ r1/8

1+ r−7/8
, (3.10)

where g1(r) and g2(r) are defined as in Lemma 2.5.
From Lemma 2.7, we clearly see that

r

[
g1(

√
r)

g2(
√

r)

]−2

< r · 1+ r−1/8

1+ r7/8
=

1+ r1/8

1+ r−7/8
(3.11)

for r ∈ (0,1) .
Therefore, inequality (3.9) follows from Lemma 2.5, (3.10) and (3.11).
Finally, we prove that L−1(a,b) and L−7/8(a,b) are the best possible lower and

upper Lehmer mean bounds for T−1(a,b) .
For −1 < p < −7/8 and 0 < r < 1, we clearly see from (1.1) and (1.3) that

lim
r→0+

rp
[
T−1(1,r)−Lp(1,r)

]

= lim
r→0+

(
rp+1

[
2
π

E (
√

1− r)
]−2

− 1+ rp+1

1+ r−p

)
= −1 < 0, (3.12)

lim
r→1−

T−1(1,r)−Lp(1,r)
(r−1)2 = −1

4

(
7
8

+ p

)
> 0. (3.13)

Inequalities (3.12) and (3.13) lead to the conclusion that there exist small enough
τ5,τ6 ∈ (0,1) such that T−1(1,r) < Lp(1,r) for r ∈ (0,τ5) and T−1(1,r) > Lp(1,r) for
r ∈ (1− τ6,1) . �
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Table 1: Comparison of E (r) with L(r) and U(r) for some r ∈ (0,1)
r L(r) E (r) U(r)

0.05 1.56981411841636 · · · 1.56981411841639 · · · 1.56981411841641 · · ·
0.1 1.566861942013 · · · 1.566861942021 · · · 1.566861942027 · · ·
0.2 1.554968544 · · · 1.554968546 · · · 1.554968547 · · ·
0.3 1.534833405 · · · 1.534833464 · · · 1.534833511 · · ·
0.4 1.5059409 · · · 1.5059416 · · · 1.5059421 · · ·
0.5 1.467457 · · · 1.467462 · · · 1.467466 · · ·
0.6 1.418056 · · · 1.418083 · · · 1.418104 · · ·
0.7 1.355530 · · · 1.355661 · · · 1.355764 · · ·
0.8 1.27572 · · · 1.27634 · · · 1.27684 · · ·

By the virtue of Theorem 3.1 and Theorem 3.2, new lower and upper bounds for
the complete elliptic integral E (r) of the second kind are given as follows.

COROLLARY 3.4. The double inequality

π
2

[
1+(1− r2)7/8

1+(1− r2)−1/8

]1/2

< E (r) <
π
2

[
1+(1− r2)13/24

1+(1− r2)5/24

]3/2

holds for all r ∈ (0,1) .

REMARK 3.5. Let

L(r) =
π
2

[
1+(1− r2)7/8

1+(1− r2)−1/8

]1/2

and U(r) =
π
2

[
1+(1− r2)13/24

1+(1− r2)5/24

]3/2

.

Computational and numerical experiments show that the lower bound L(r) and upper
bound U(r) are very accurate for some r ∈ (0,1) , refer to Table 1.
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balanced generalized complete elliptic integrals, Comput. Methods Funct. Theory, 2021, 21 (3), 413–
426.

[17] T.-H. ZHAO, W.-M. QIAN AND Y.-M. CHU, On approximating the arc lemniscate functions, Indian
J. Pure Appl. Math., 2021, https://doi.org/10.1007/s13226-021-00016-9 .

[18] H.-Z. XU, W.-M. QIAN AND Y.-M. CHU, Sharp bounds for the lemniscatic mean by the one-
parameter geometric and quadratic means, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RAC-
SAM, 2022, 116 (1), paper no. 21, 15 pages.

[19] F. QI, Bounds for the ratio of two gamma functions, J. Inequal. Appl., 2010, 2010, Article ID 493058,
84 pages.

[20] T.-H. ZHAO, M.-K. WANG, G.-J. HAI AND Y.-M. CHU, Landen inequalities for Gaussian hyperge-
ometric function, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM, 2022, 116 (1), paper
no. 53, 23 pages.

[21] T.-H. ZHAO, L. SHI AND Y.-M. CHU, Convexity and concavity of the modified Bessel functions of the
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