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A FRACTIONAL MAGNETIC HARDY–SOBOLEV

INEQUALITY WITH TWO VARIABLES

MIN LIU, DEYAN CHEN AND ZHENYU GUO ∗

(Communicated by J. Pečarić)

Abstract. A fractional magnetic Hardy-Sobolev inequality with two variables and critical expo-
nents is considered in this paper, and the achievement to the best constant correspongding to this
inequality is obtained.

1. Introduction

The magnetic relativistic Schrödinger operators corresponding to the classical rel-
ativistic Hamiltonian symbol with magnetic vector potential and electric scalar potential√

(ξ −A(x))2 +m2 +V (x), (ξ ,x) ∈ R
N ×R

N

have been discussed by Ichinose [9]. Here A(x) ∈ R
N is a magnetic vector potential, m

is the mass of a relativistic spinless particle, and V (x)∈R is an electric scalar potential.
Dependent on how to quantize the kinetic energy term

√
(ξ −A(x))2 +m2 , Ichinose

considered three magnetic relativistic Schrödinger operators with shape H := HA +V .
The first two quantized operators are defined by mean formulas, i.e., for any function
f ∈C∞

0 (RN ,C) ,

(H(1)
A f )(x) :=

1
(2π)N

∫
R2N

ei(x−y)·ξ
√(

ξ −A

(
x+ y

2

))2

+m2 f (y)dydξ ,

(H(2)
A f )(x) :=

1
(2π)N

∫
R2N

ei(x−y)·ξ
√(

ξ −
∫ 1

0
A((1−θ )x+ θy)dθ

)2

+m2 f (y)dydξ .

The third one is defined as the square root of the nonnegative selfadjoint operator
(−i∇−A(x))2 +m2 in L2(RN) :

H(3)
A :=

√
(−i∇−A(x))2 +m2.

Mathematics subject classification (2020): 35R11, 35B33.
Keywords and phrases: Magnetic field, fractional Hardy-Sobolev critical exponen, two variables.
Supported by NSFC (12101282), Mathematics Tianyuan Fund (12126334), NSFLN(2021-MS-275) and EFLN

(LJKQZ2021093, LJKZ0967).
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-16-14

181

http://dx.doi.org/10.7153/jmi-2022-16-14


182 M. LIU, D. CHEN AND Z. GUO

The operator H(1)
A is called the Weyl pseudo-differential operator defined with

mid-point prescription and well compatible with path integrals, but in general, it is not
covariant under gauge transformations, that is, there exists a real-valued function φ(x)
for which it fails to hold that H(1)

A+∇φ = eiφ H(1)
A e−iφ . H(2)

A is a gauge-covariant modifi-

cation of H(1)
A . H(3)

A is gauge-covariant and used in the description of the ‘stability of
matter’ in relativistic quantum mechanics.

Proposition 2.6 in [9] told us that H(1)
A , H(2)

A and H(3)
A are in general different.

About H(1)
A , d’Avenia and Squassina [4] investigated the existence of ground states and

established other useful estimates. For H(2)
A , Guo and Melgaard [8] studied a fractional

magnetic Sobolev inequality with two variables and critical exponents. About H(3)
A ,

Cingolani and Secchi [3] proved the existence of infinitely many intertwining solutions
by means of a new local realization of the square root of the magnetic laplacian to a
local elliptic operator with Neumann boundary condition on a half-space. Moreover,
they derived an existence result of a ground state intertwining solution for bounded
vector potentials.

Nonlocal magnetic problems have been investigated recently, such as [1, 2, 4, 5, 9].
The fractional magnetic Laplacian related to magnetic relativistic Schrödinger operator

H(1)
A is defned by

(−Δ)s
Au(x) = cN,s lim

ε→0+

∫
Bc

ε(x)

u(x)− ei(x−y)·A( x+y
2 )u(y)

|x− y|N+2s dy, x ∈ R
N ,

where 0 < s < 1,N > 4s , A : RN → RN is a magnetic vector potential and

cN,s :=
(∫

RN

1− cos(ζ1)
|ζ |N+2s dζ

)−1

.

(−Δ)s
A can be considered as a fractional counterpart of the magnetic Laplacian (∇−

iA)2 . For N = 3, the fractional magnetic Laplacian had been studied by d’Avenia
and Squassina [4]. Via variational methods and Ljusternick-Schnirelmann category,
Ambrosio and d’Avenia [1] studied a nonlinear fractional Schrödinger equation with
magnetic field and a subcritical nonlinearity, and obtained existence and multiplicity of
solutions for parameter small. Zhang, Squassina and Xia [2] studied a singularly per-
turbed fractional Schrödinger equations involving critical frequency and critical growth
in the presence of a magnetic field. Using variational methods, they obtained the exis-
tence of mountain pass solutions uε which tend to the trivial solution as ε → 0. Fis-
cella, Pinamonti and Vecchi [5] got the existence of multiple solutions for a boundary
value problem driven by the fractional magnetic Laplacian with a subcritical nonlinear
term. The motivations for this kind of problems rely essentially on the Lévy-Khintchine
formula for the generator of a semigroup associated to a general Lévy process, which is
more appropriate for some mathematical models in finance. For more details, we refer
readers to [4, 9].

In the present paper, we study a fractional magnetic Hardy-Sobolev inequality with
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two variables:

Λs,t,A

(∫
RN

(
μ1

|u|2∗s (t)
|x|t + μ2

|v|2∗s (t)
|x|t + λ

|u|α |v|β
|x|t

)
dx

) 2
2∗s (t)

�
∫

R2N

∣∣∣e−i(x−y)·A( x+y
2 )u(x)−u(y)

∣∣∣2
|x− y|N+2s dxdy

+
∫

R2N

∣∣∣e−i(x−y)·A( x+y
2 )v(x)− v(y)

∣∣∣2
|x− y|N+2s dxdy, ∀u,v ∈ Ds

A(RN ,C),

(1)

where 0 < s < 1, 0 < t < 2s < N , 2∗s (t) := 2(N−t)
N−2s is fractional Hardy-Sobolev critical

exponent, μ1,μ2,α,β ,γ > 0, α + β = 2∗s (t) , Λs,t,A is a constant, A : RN → RN is
a magnetic vector potential and continuous function with locally bounded gradient,
which ensures that C∞

c (RN ,C) is a subspace of Ds
A(RN ,C) (see Proposition of 2.2 in

[4]). Define Ds
A(RN ,C) by the completion of C∞

c (RN ,C) with respect to magnetic
Gagliardo seminorm [·]Ds

A
given by

[u]2Ds
A

:=
cN,s

2

∫
R2N

∣∣∣e−i(x−y)·A( x+y
2 )u(x)−u(y)

∣∣∣2
|x− y|N+2s dxdy.

The scalar product in Ds
A(RN ,C) is defined by

〈u,v〉Ds
A

:=
cN,s

2
Re
∫

R2N

(
e−i(x−y)·A( x+y

2 )u(x)−u(y)
)

|x− y|N+2s

·
(
e−i(x−y)·A( x+y

2 )v(x)− v(y)
)
dxdy.

By fractional magnetic Sobolev embeddings (see Lemma 3.5 in [4]), the seminorm [·]Ds
A

can be viewed as a norm ‖ · ‖Ds
A

:= [·]Ds
A

of space Ds
A(RN ,C) . Following Proposition

2.1 and 2.2 in [4], it can be verified that Ds
A(RN ,C) is a Hilbert space.

Denote |u|2∗s (t),t :=
(∫

RN
|u|2∗s (t)

|x|t dx

)1/2∗s (t)
and D s

A(RN ,C) := Ds
A(RN ,C)×Ds

A(RN ,C)

equiped with norm ‖(u,v)‖2
D s

A
:= ‖u‖2

Ds
A
+‖v‖2

Ds
A
. Letting SA := cN,sΛs,t,A/2, then the

inequality (1) is equivalent to the following minimization problem

SA = inf
(u,v)∈D s

A(RN ,C)
(u,v) 	=(0,0)

‖(u,v)‖2
D s

A(∫
RN

(
μ1

|u|2∗s (t)

|x|t + μ2
|v|2∗s (t)

|x|t + λ |u|α |v|β
|x|t

)
dx
) 2

2∗s (t)

. (2)

Equivalently, we can characterize SA as:

SA = inf
u∈J

‖(u,v)‖2
D s

A
, (3)
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where

J =

{
(u,v) ∈ D s

A(RN ,C) :
∫

RN

(
μ1

|u|2∗s (t)
|x|t + μ2

|v|2∗s (t)
|x|t + λ

|u|α |v|β
|x|t

)
dx = 1

}
.

(4)
For special case there is no magnetic field, that is, A ≡ 0, it has been proved in [7] that
S0 is attained by (U,V ) , which is radially symmetric decreasing.

To give our main result, we need the following lemmas.

LEMMA 1. (Diamagnetic inequality) (see Lemma 3.1 in [4]) For any u∈Ds
A(RN ,C) ,

we have ∣∣|u(x)|− |u(y)|∣∣� ∣∣∣e−i(x−y)·A( x+y
2 )u(x)−u(y)

∣∣∣ , for a.e. x,y ∈ R
N (5)

and ∥∥|u|∥∥Ds
0
� ‖u‖Ds

A
, (6)

which means |u| ∈ Ds
0(R

N ,R) .

LEMMA 2. (the Fractional magnetic Hardy-Sobolev embedding) (by Diamagnetic
inequality and Fractional Hardy-Sobolev embeddings, c.f. [6, 10]) The embedding

Ds
A(RN ,C) ↪→ L2∗s (t)

(
R

N ,
dx
|x|t
)

is continuous. That is, for any u ∈ Ds
A(RN ,C) , we have

(∫
RN

|u|2∗s (t)
|x|t dx

) 2
2∗s (t)

� C‖u‖2
Ds

A
.

2. Main result

Now we give our main result and its proof.

THEOREM 1. If 0 < s < 1 , 0 < t < 2s < N , μ1,μ2,α,β ,γ > 0 , α + β = 2∗s (t) ,
and A : RN → RN is a magnetic vector potential and a continuous function with lo-
cally bounded gradient, then SA is achieved by some nontrivial element (UA,VA) ∈
D s

A(RN ,C) .

Proof. Since S0 is achieved by nontrivial element (U,V ) ∈ D s
0(R

N ,R) , which is
proved in [7]. We only need to show that SA = S0 , which is inspired by Lemma 4.6 in
[4].

It follows from (3) and (4) that, for any ε > 0, there exist u,v ∈C∞
c (RN ,R) such

that

‖(u,v)‖2
D s

0
� S0 + ε,

∫
RN

(
μ1

|u|2∗s (t)
|x|t + μ2

|v|2∗s (t)
|x|t + λ

|u|α |v|β
|x|t

)
dx = 1. (7)
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For any ε > 0, denote

uε(x) := ε(2s−N)/2u
( x

ε

)
, vε(x) := ε(2s−N)/2v

( x
ε

)
, x ∈ R

N .

Direct computations yield that

‖uε‖2
Ds

A
=

cN,s

2

∫
R2N

∣∣∣e−iε(x−y)·A(ε x+y
2 )u(x)−u(y)

∣∣∣2
|x− y|N+2s dxdy.

According to invariance of scaling, we have

‖(uε ,vε)‖D s
0
= ‖(u,v)‖D s

0
,

|uε |2∗s (t),t = |u|2∗s (t),t ,
|vε |2∗s (t),t = |v|2∗s (t),t ,∫

RN

|uε |α |vε |β
|x|t dx =

∫
RN

|u|α |v|β
|x|t dx.

Hence, ∫
RN

(
μ1

|uε |2∗s (t)
|x|t + μ2

|vε |2∗s (t)
|x|t + λ

|uε |α |vε |β
|x|t

)
dx = 1.

Then we derive that

‖(uε ,vε )‖2
D s

A
−‖(u,v)‖2

D s
0

=
cN,s

2

∫
R2N

2Re
(
(1− e−iε(x−y)·A(ε x+y

2 ))u(x)u(y)
)

|x− y|N+2s dxdy

+
cN,s

2

∫
R2N

2Re
(
(1− e−iε(x−y)·A(ε x+y

2 ))v(x)v(y)
)

|x− y|N+2s dxdy

=cN,s

∫
R2N

[
1− cos

(
ε(x− y) ·A(ε x+y

2 )
)](

u(x)u(y)+ v(x)v(y)
)

|x− y|N+2s dxdy

= : cN,s

∫
R2N

Ξε(x,y)dxdy

=cN,s

∫
K×K

Ξε(x,y)dxdy,

where K is a compact support of |u|+ |v| . It is easy to see that Ξε(x,y) → 0 a.e. in
R2N as ε → 0. Since A is locally bounded, for x,y ∈ K and small ε > 0, we have

1− cos

(
ε(x− y) ·A

(
ε
x+ y

2

))
� C|x− y|2.

For x,y ∈ K , it follows from the boundedness of u and v that

|Ξε(x,y)| �
⎧⎨
⎩

C
|x−y|N−2+2s , if |x− y|< 1,

C
|x−y|N+2s , if |x− y|� 1.
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That is, there exists a suitable constant C > 0 satisfying

|Ξε(x,y)| � Cmin

{
1

|x− y|N−2+2s ,
1

|x− y|N+2s

}
=: b(x,y), x,y ∈ K.

Since

∫
K×K

b(x,y)dxdy

=
∫

(K×K)∩{|x−y|<1}
b(x,y)dxdy+

∫
(K×K)∩{|x−y|�1}

b(x,y)dxdy

=
∫
{|x−y|<1}

C
|x− y|N−2+2s dxdy+

∫
{|x−y|�1}

C
|x− y|N+2s dxdy

�C
∫
{|z|<1}

1
|z|N−2+2s dz+C

∫
{|z|�1}

1
|z|N+2s dz

<+ ∞,

we see that b ∈ L1(K ×K) . By the Lebsgue Dominated Convergence Theorem, we
have lim

ε→0
‖(uε ,vε)‖2

D s
A

= ‖(u,v)‖2
D s

0
. Then, it follows from (7) that

SA � lim
ε→0

‖(uε ,vε)‖2
D s

A

= ‖(u,v)‖2
D s

0
� S0 + ε,

which means that SA � S0 . The opposite inequality S0 � SA follows from Lemma 1.
This completes the proof. �
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pages 247–297, Birkhäuser/Springer Basel AG, Basel, 2013.

[10] J. YANG, Fractional Sobolev-Hardy inequality in RN , Nonlinear Anal., 119: 179–185, 2015.

(Received August 18, 2020) Min Liu
School of Mathematics

Liaoning Normal University
Dalian 116029, China

e-mail: min liu@yeah.net

Deyan Chen
School of Sciences

Liaoning Shihua University
Fushun 113001, China

e-mail: chendy0413@163.com

Zhenyu Guo
School of Mathematics

Liaoning Normal University
Dalian 116029, China

e-mail: guozy@163.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


