
Journal of
Mathematical

Inequalities

Volume 16, Number 1 (2022), 211–217 doi:10.7153/jmi-2022-16-16

LOWER DIMENSIONAL ELLIPSOIDS OF

MAXIMAL VOLUME IN CONVEX BODIES

AI-JUN LI AND YAN-MIN ZHANG

Abstract. In this paper, we show that the volume of a k -dimensional ellipsoid in the convex
body formed by centered isotropic measures on the unit sphere is no large than that of a k -
dimensional Ball of radius

√
n(n+1)/k(k+1) . It generalizes the John theorem to the lower

dimensional cases.
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