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Abstract. This paper deals with the so-called generalized power-type Toader mean which is
defined by

TTT n(a,b) =
(

2
π

∫ π/2

0

√
an cos2 θ +bn sin2 θdθ

)2/n

for a,b > 0 with non-zero integer n . In this study, we establish the following chain of inequal-
ities

HHH(a,b) < TTT−1(a,b) < GGG(a,b) < TTT 1(a,b) < AAA(a,b)

< TTT 2(a,b) < QQQ(a,b) < TTT 3(a,b) < TTT 4(a,b) < CCC(a,b)

for all a,b > 0 with a �= b , where HHH(a,b) = 2ab/(a + b) , GGG(a,b) =
√

ab , AAA(a,b) = (a +
b)/2 , QQQ(a,b) = [(a2 +b2)/2]1/2 and CCC(a,b) = (a2 +b2)/(a+b) are the harmonic, geometric,
arithmetic, quadratic and contra-harmonic means, respectively. Further, we provide sharp bounds
for TTT−1(a,b) and TTT 4(a,b) in terms of bivariate means mentioned above. As applications, new
bounds for complete elliptic integral of the second kind are established.

1. Introduction

Let a,b be positive real numbers and

rn(θ ) =

⎧⎨
⎩

(an cos2 θ +bn sin2 θ )1/n, n �= 0,

acos2 θ bsin2 θ , n = 0.

For a strictly monotonic function p : R
+ → R , the integral quasi-arithmetic mean

MMMp,n(a,b) [1] is defined by

MMMp,n(a,b) = p−1
(

1
2π

∫ 2π

0
p(rn(θ ))dθ

)
= p−1

(
2
π

∫ π/2

0
p(rn(θ ))dθ

)
,

where p−1 is the inverse function of p .
As was shown in [2, 3], the means MMMp,n can represent some known means for

special choices of p and n . For instance,
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• The Gaussian arithmetic-geometric mean [4] is

AAAGGG(a,b) =
π

2
∫ π/2

0 (a2 cos2 θ +b2 sin2 θ )−1/2dθ
:= MMM1/x,2(a,b),

which is also defined by the common limit of the sequences {an} and {bn}
satisfying

a0 = a, b0 = b, an+1 =
an +bn

2
, bn+1 =

√
anbn.

• The Toader mean [5] is

TTT (a,b) =
2
π

∫ π/2

0

√
a2 cos2 θ +b2 sin2 θdθ := MMMx,2(a,b). (1.1)

• The Toader-Qi mean [6] is

TTTQQQ(a,b) =
π
2

∫ π/2

0
acos2 θ bsin2 θ dθ := MMMx,0(a,b).

• A special quasi-arithmetic mean is defined by

EEE(a,b) =
(

2
π

∫ π/2

0

√
acos2 θ +bsin2 θdθ

)2

:= MMMx1/2,1(a,b), (1.2)

which was first treated in [7].

The eye-catching similarity between (1.1) and (1.2) allows us to raise the the fol-
lowing generalization

TTT n(a,b) := MMMxn/2,n(a,b) =
(

2
π

∫ π/2

0

√
an cos2 θ +bn sin2 θdθ

)2/n

(1.3)

for n ∈ Z
∗ = Z\{0} . The mean of the form (1.3) will be called generalized power-type

Toader mean. Actually, an alternative representation of TTTn(a,b) can be derived from
Toader mean

TTT n(a,b) =
[
TTT
(

an/2,bn/2
)]2/n

, (n �= 0). (1.4)

This is also called the n/2-modification of TTT (a,b) introduced in [8], where the authors
study a one-parameter mean AAAGGGt(a,b) = [AAAGGG(at ,bt)]1/t (that is called t -modification
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of AAAGGG(a,b)). In particular, some well-known means are the p -modification of the
classical means, such as the power mean, which is given by

MMMp(a,b) =

⎧⎨
⎩
(

ap+bp

2

)1/p
, p �= 0,

√
ab, p = 0.

(1.5)

As special cases we denote in this paper the arithmetic mean AAA = MMM1 , the harmonic
mean HHH = MMM−1 and the quadratic mean QQQ = MMM2 .

We recall the Gauss identity [9]

AAAGGG(1,r′)K (r) =
π
2

for r ∈ (0,1) where and in what follows r′ =
√

1− r2 , which shows that the Gauss
arithmetic-geometric mean can be expressed by the complete elliptic integral of the
first kind K . As usual, K and E denote the complete elliptic integrals of the first
and second kinds [10] given by

K (r) =
∫ π/2

0

(
1− r2 sin2 dθ

)−1/2
dθ ,

E (r) =
∫ π/2

0

(
1− r2 sin2 dθ

)1/2
dθ . (1.6)

In view of (1.3) and (1.6), TTT n(a,b) can be expressed by complete elliptic integrals
of the second kind

TTT n(a,b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a

[
2E
(√

1−(b/a)n
)

π

]2/n

, an � bn,

b

[
2E
(√

1−(a/b)n
)

π

]2/n

, an < bn,

(n �= 0). (1.7)

Legendre complete elliptic integrals have wide applications in the geometric func-
tion theory [11, 12, 13, 14, 15, 16, 17, 18, 19, 20], differential equation theory [21,
22, 23, 24, 25, 26], theory of mean values [27, 28, 29, 30] and many other fields
[31, 32, 33, 34, 35]. Due to their importance, in the past few years, estimating precise
bounds for the complete elliptic integrals of the first and second kinds and their general-
izations have attracted the attention of many mathematicians [36, 37, 38, 39, 40, 41, 42].

Recently, one way to study complete elliptic integrals is to be applied in the theory
of mean values, and present sharp bounds for the bivariate means related to complete
elliptic integrals (such as AAAGGG(a,b) and TTT (a,b)). As a consequence, several elegant
double inequalities for K (r) and E (r) were established in [43, 44, 45, 46]. Specifi-
cally, the authors in [8, 47, 48] proved the double inequality

LLL(a,b) < AAAGGG(a,b) <
π
2

LLL(a,b)
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for all a,b > 0 with a �= b , where LLL(a,b) = (b−a)/(logb− loga) is the logarithmic
mean of a and b .

Sándor [49, 50] proved that the double inequality

√
AAA(a,b)GGG(a,b) < AAAGGG(a,b) <

AAA(a,b)+GGG(a,b)
4

+
QQQ2(a,b)

√
HHH(a,b)

2CCC(a,b)
√

GGG(a,b)

holds true for all a,b > 0 with a �= b , where CCC(a,b) = (a2 + b2)/(a + b) is contra-
harmonic means of a and b .

Barnard, Pearce and Richards [36], and Alzer and Qiu [51] proved that the double
inequality

MMM3/2(a,b) < TTT (a,b) < MMMlog2/ log(π/2)(a,b) (1.8)

holds for all a,b > 0 with a �= b , where the parameters 3/2 and log2/ log(π/2) are
the best possible constants satisfying the inequality (1.8).

In [52], Qian and Chu proved that λ =
(

1−
√

1− (2
√

2/π)4/p

)
/2 and μ =

1/2−√
p/(4p) are the best possible parameters such that the double inequality

GGGp(λa+(1−λ )b,λb+(1−λ)a
)
AAA1−p(a,b) < EEE(a,b)

< GGGp(μa+(1− μ)b,μb+(1−μ)a
)
AAA1−p(a,b)

holds for all p ∈ [1,∞) and a > b > 0.
Very recently, Zhao et al. [53] proved that the double inequalities

α1

[
7CCC(a,b)

16
+

9HHH(a,b)
16

]
+(1−α1)

[
3AAA(a,b)

4
+

GGG(a,b)
4

]
< EEE(a,b)

< β1

[
7CCC(a,b)

16
+

9HHH(a,b)
16

]
+(1−β1)

[
3AAA(a,b)

4
+

GGG(a,b)
4

]
,

[
7CCC(a,b)

16
+

9HHH(a,b)
16

]α2
[

3AAA(a,b)
4

+
GGG(a,b)

4

]1−α2

< EEE(a,b)

<

[
7CCC(a,b)

16
+

9HHH(a,b)
16

]β2
[

3AAA(a,b)
4

+
GGG(a,b)

4

]1−β2

hold for all a,b > 0 with a �= b if and only if α1 � 3/16, β1 � 64/π2−6 = 0.4845 · · ·,
α2 � 3/16 and β2 � log[32/(3π2)]/ log(7/6) = 0.5038 · · ·.

The goal of this article is to establish the chain of inequalities

HHH(a,b) < TTT−1(a,b) < GGG(a,b) < TTT 1(a,b) < AAA(a,b)
< TTT 2(a,b) < QQQ(a,b) < TTT 3(a,b) < TTT 4(a,b) < CCC(a,b)

for all a,b > 0 with a �= b . Motived by this chain, it makes sense to ask what are sharp
linear bounds for TTT−1(a,b) and TTT 4(a,b) in terms of classical bivariate means HHH,GGG,AAA ,
QQQ and CCC . As applications, new bounds for complete elliptic integral of the second kind
E are given.
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2. The chain of inequalities for TTTn(a,b)

In order to prove our main results, we need several notations and technical lemmas
which we present in this section.

The following formulas for the complete elliptic integrals K and E can be found
in the literature [9],

dK

dr
=

E − r′2K
rr′2

,
dE

dr
=

E −K

r
,

and Landen identities

K

(
2
√

r
1+ r

)
= (1+ r)K , E

(
2
√

r
1+ r

)
=

2E − r′2K
1+ r

. (2.9)

A special value for E will be used later, which is given by

E
(√

2/2
)

=
4Γ(3/4)2 + Γ(1/4)2

8
√

π
= 1.35064388 · · ·,

where Γ(x) =
∫ x

0 tx−1e−t dt (x > 0) is the classical Euler gamma function [54].

LEMMA 2.1. The function

(i) r �→ r′cK is strictly decreasing from (0,1) onto (0,π/2) if c ∈ [1/2,∞);

(ii) r �→
(
E − r′2K

)
/
(
r2K

)
is strictly decreasing from (0,1) onto (0,1/2);

(iii) r �→ 2E − r′2K is strictly increasing from (0,1) onto (π/2,2);

(iv) r �→
[
2(2E − r′2K )/π −1− r2/4

]
/r4 is strictly increasing from (0,1) onto

(1/64,4/π−5/4) .

Proof. Parts (i) , (ii) and (iii) can be found in the literature [9, Theorem 3.21(7),
Exercises 3.43(13) and (46)] and part (iv) can be found in [55, Lemma 2.4]. �

The following lemma is derived from a consequence of (1.4) and (1.8).

LEMMA 2.2. Let p ∈ R and n ∈ Z
∗ . Then the following statements are true:

(i) If 2p log(π/2)/ log2 � n < 0 or n � max{4p/3,0} , then TTT n(a,b) > MMMp(a,b)
holds for all a,b > 0 with a �= b;

(ii) If n � min{4p/3,0} or 0 < n � 2p log(π/2)/ log2 , then TTTn(a,b) < MMMp(a,b)
holds for all a,b > 0 with a �= b.
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Proof. Parts (i) , (ii) and (iii) can be found in the literature [9, Theorem 3.21(7),
Exercises 3.43(13) and (46)] and part (iv) can be found in [55, Lemma 2.4]. �

The following lemma is derived from a consequence of (1.4) and (1.8).

LEMMA 2.2. Let p ∈ R and n ∈ Z
∗ . Then the following statements are true:

(i) If 2p log(π/2)/ log2 � n < 0 or n � max{4p/3,0} , then TTT n(a,b) > MMMp(a,b)
holds for all a,b > 0 with a �= b;

(ii) If n � min{4p/3,0} or 0 < n � 2p log(π/2)/ log2 , then TTTn(a,b) < MMMp(a,b)
holds for all a,b > 0 with a �= b.
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Proof. As shown in (1.4) and (1.5), it can be easily seen that

TTT n(a,b) =
[
TTT
(

an/2,bn/2
)]2/n

, MMMpn/2(a,b) =
[
MMMp

(
an/2,bn/2

)]2/n
.

Combining this with (1.8), it follows that

MMM 3n
4
(a,b) < TTT n(a,b) < MMM n log2

2 log(π/2)
(a,b) (2.10)

if n > 0 and
MMM n log2

2 log(π/2)
(a,b) < TTT n(a,b) < MMM 3n

4
(a,b) (2.11)

if n < 0.
It is well-known that p �→ MMMp(a,b) is strictly increasing for fixed a,b > 0 with

a �= b . Thus, if 2p log(π/2)/ log2 � n < 0, that is p � n log2/[2log(π/2)] and n < 0,
then from (2.11) we obtain

MMMp(a,b) � MMM n log2
2 log(π/2)

(a,b) < TTT n(a,b).

If n � max{4p/3,0} , namely, n > 0 and p � 3n/4, then it follows from (2.10) that

MMMp(a,b) � MMM 3n
4
(a,b) < TTTn(a,b).

This completes the proof of part (i) and similar for the proof of part (ii) . �

As special cases of MMMp(a,b) , Lemma 2.2 can derive the following Proposition 2.3.

PROPOSITION 2.3. The inequality

(1) TTTn(a,b) < HHH(a,b) holds for all a,b > 0 with a �= b if and only if n � −2 ;

(2) TTTn(a,b) < GGG(a,b) holds for all a,b > 0 with a �= b if and only if n � −1 ;

(3) TTTn(a,b) < AAA(a,b) holds for all a,b > 0 with a �= b if and only if n � 1 ;

(4) TTTn(a,b) < QQQ(a,b) holds for all a,b > 0 with a �= b if and only if n � 2 ;

(5) TTTn(a,b) < MMM3(a,b) holds for all a,b > 0 with a �= b if and only if n � 3 .

PROPOSITION 2.4. The inequality TTTn(a,b) < CCC(a,b) holds for all a,b > 0 with
a �= b if n � 4 . Moreover, neither TTT n(a,b) > CCC(a,b) nor TTTn(a,b) < CCC(a,b) for all
a,b > 0 with a �= b if n � 5 .

Proof. Without loss of generality, we may assume a > b > 0. A simple calculation

a3 +b3

2
−
(

a2 +b2

a+b

)3

= − (a−b)4
(
a2 +ab+b2

)
2(a+b)3 < 0
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gives MMM3(a,b) < CCC(a,b) . According to this and Proposition 2.3(5), the first half of
Proposition 2.4 will be proved if we can show TTT 4(a,b) < CCC(a,b) for all a,b > 0 with
a �= b .

Let us denote rn =
√

1− (b/a)n ∈ (0,1) for n > 0 in what follows. Then from
(1.7) we obtain

TTT 4(a,b)
CCC(a,b)

=
[

2
π

E (r4)
]1/2 1+

√
r′4

1+ r′4
. (2.12)

Due to 4/π −5/4 = 0.023239 · · ·< 1/40, Lemma 2.1(iv) enables us to know

2
π

(
2E − r′2K

)
< 1+

r2

4
+

r4

40
(2.13)

for r ∈ (0,1) .
Let r4 = 2

√
r/(1+ r) . Then (2.12) and (2.13) together with Landen identity (2.9)

lead to the conclusion that

TTT 4(a,b)
CCC(a,b)

=

[
2
π

(
2E − r′2K

)(√
1+ r+

√
1− r

2

)2
]1/2

<

⎡
⎢⎣
⎛
⎜⎝1+

1− r′2

4
+

(
1− r′2

)2

40

⎞
⎟⎠ · 1+ r′

2

⎤
⎥⎦

1/2

=

{
1− (1− r′)2

80

[
4(r′ +7)+ (1− r′)(1+4r′+ r′2)

]}1/2

< 1

for r ∈ (0,1) , which completes the proof of TTT n(a,b) < CCC(a,b) for n � 4.

For the second half of Proposition 2.4, we first prove that there exist a > b > 0
such that TTT n(a,b) <CCC(a,b) for each n � 5. For simplicity we denote σ = b/a∈ (0,1) .
As we know, the function r → E (r) is strictly decreasing from (0,1) onto (1,π/2) .
This in conjunction with (1.7) yields

TTT n(a,b)
CCC(a,b)

=
[

2
π

E
(√

1−σn
)]2/n 1+ σ

1+ σ2 �
[

2
π

E
(√

1−σ5
)]2/n 1+ σ

1+ σ2 (2.14)

for n � 5.
Note that

lim
σ→0+

{[
2
π

E
(√

1−σ5
)]2/n 1+ σ

1+ σ2

}
=
(

2
π

)2/n

< 1 (2.15)

for each n � 5.
Equation (2.14) and inequality (2.15) imply that there exists small enough εn ∈

(0,1) such that TTT n(a,b) < CCC(a,b) for b/a ∈ (0,εn) with each n � 5.
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Next, we prove that there exist a > b > 0 such that TTTn(a,b) > CCC(a,b) for each
n � 5. As in (2.12), for n � 5 we obtain

TTT n(a,b)
CCC(a,b)

=
[

2
π

E (rn)
]2/n 1+ r′n

2/n

1+ r′n
4/n

. (2.16)

Let b = a/ n
√

2 for n � 5. Then it is easy to see that rn =
√

2/2 and so r′n =
√

2/2.

Numerical experiment shows that log
[

2
π E

(√
2/2

)]
/ log(

√
2/2)= 0.435 · · ·< 11/25,

which gives
2
π

E
(√

2/2
)

>
(√

2/2
)11/25

= r′11/25
n . (2.17)

It follows from (2.16) and (2.17) that

TTTn(a,b)
CCC(a,b)

>
(

r′11/25
n

)2/n 1+ r′n
2/n

1+ r′n
4/n

:= ρ(r′2/n
n ), (2.18)

where

ρ(x) = x11/25 · 1+ x
1+ x2 .

Differentiating ρ(x) gives

ρ ′(x) =
ρ̂(x)

25x14/25(1+ x2)2
, (2.19)

where ρ̂(x) = 11+36x−39x2−14x3.
Simple calculations lead to

ρ̂(1/2) = 35/2, ρ̂(1) = −6, (2.20)

ρ̂ ′(x) = −3
2

[9+(2x−1)(33+14x)]< 0. (2.21)

Equations (2.19)–(2.21) lead to the conclusion that there exists x0 ∈ (1/2,1) such
that ρ(x) is strictly increasing on (1/2,x0) and strictly decreasing on (x0,1) . Accord-
ing to this and 1/ 5

√
2 = 0.87 · · · ∈ (1/2,1) , it follows that

ρ(x) � min{ρ(1/
5
√

2),ρ(1)} = 1 (2.22)

for x ∈ [1/ 5
√

2,1) .
Therefore, TTTn(a,b) >CCC(a,b) for each n � 5 and a,b > 0 with b = a/ n

√
2 follows

from (2.18) and (2.22) together with r′2/n
n ∈ [1/ 5

√
2,1) . �

We are now in a position to state our first Theorem.

THEOREM 2.5. The chain of inequalities

HHH(a,b) < TTT−1(a,b) < GGG(a,b) < TTT 1(a,b) < AAA(a,b)
< TTT 2(a,b) < QQQ(a,b) < TTT 3(a,b) < TTT 4(a,b) < CCC(a,b)

(2.23)

holds for all a,b > 0 with a �= b. Moreover, the sequence {TTTn(a,b)} is strictly in-
creasing for n ∈ [−43,43]∩Z

∗ and all a,b > 0 with a �= b.
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Proof. The chain (2.23) can be obtained from a consequence of Proposition 2.3
and Proposition 2.4. This makes reasonable to study the monotonicity of the sequence
{TTTn(a,b)} .

Let us first consider the sequence {TTTn(a,b)} for n � 1. Then the monotonicity is
valid if we can find a suitable number p = p(n) such that

TTTn(a,b) < MMMp(a,b) < TTTn+1(a,b) (2.24)

for all fixed a,b > 0 with a �= b .
Lemma 2.2 enables us to know that the inequality (2.24) holds for all a,b > 0 with

a �= b if

n � 2p log(π/2)
log2

, n+1 � 4p
3

,

which is equivalent to
n log2

2log(π/2)
� p � 3(n+1)

4
. (2.25)

The inequality (2.25) can hold only if

n log2
2log(π/2)

� 3(n+1)
4

⇔ n � 3(logπ − log2)
5log2−3logπ

= 42.9448 · · ·.

For 1 � n � 42, we can take

p := p(n) =
1
2

[
3(n+1)

4
+

n log2
2log(π/2)

]

to make inequality (2.25) hold and so is (2.24).
Similarly, for −42 � n � −1, numerical calculations show that

n � −3(logπ − log2)
5log2−3logπ

= −42.9448 · · · ⇔ n log2
2log(π/2)

� 3(n−1)
4

.

This allows us to take

p∗ := p∗(n) =
1
2

[
n log2

2log(π/2)
+

3(n−1)
4

]

such that

3(n−1)
4

� p∗ � n log2
2log(π/2)

⇔ n−1 � 4p∗

3
and

2log(π/2)p∗

log2
� n < 0.

According to this and Lemma 2.2, we obtain

TTTn−1(a,b) < MMMp(a,b) < TTT n(a,b) (2.26)

for all a,b > 0 with a �= b . This gives the monotonicity of TTT n(a,b) for −42 � n �−1.
Therefore, it can be easily seen from (2.24) and (2.26) together with TTT−1(a,b) <

TTT 1(a,b) that the sequence {TTTn(a,b)} is strictly increasing for n∈ [−43,43]∩Z
∗ . �

As AAAGGGt(a,b) and MMMp(a,b) mentioned in the introduction, their monotonicity cor-
responding to the parameter and Theorem 2.5 allow us to pose the following conjecture.
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CONJECTURE 2.6. The generalized power-type Toader mean sequence {TTTn(a,b)}
is strictly increasing for n ∈ Z

∗ and all fixed a,b > 0 with a �= b.

3. Sharp bounds for TTT−1(a,b) and TTT 4(a,b)

In this section, we will present several sharp bounds for TTT−1(a,b) and TTT 4(a,b)
by the convex combination of GGG,HHH,AAA,QQQ,CCC and a homotopy between AAA and CCC . The
proofs rely on the monotonicity of functions related to complete elliptic integrals.

THEOREM 3.1. The double inequality

α1GGG(a,b)+ (1−α1)HHH(a,b) < TTT−1(a,b) < β1GGG(a,b)+ (1−β1)HHH(a,b) (3.27)

holds for a,b > 0 with a �= b if and only if α1 � 0 and β1 � 1/4 .

Proof. Since HHH(a,b) , GGG(a,b) and TTT−1(a,b) are symmetric and homogeneous of
degree one, without loss of generality, we assume that a > b > 0. Let r =

√
1−b/a∈

(0,1) . Then it can be easily obtained from (1.7) that

TTT−1(a,b) = b

[
π

2E (r)

]2

, GGG(a,b) =
b
r′

, HHH(a,b) =
2b

1+ r′2
. (3.28)

Further, substituting x =
√

1− (b/a)2 into (1.7) and (1.8), we obtain

2
π

E (x) >

(
1+ x′3/2

2

)2/3

(3.29)

for x ∈ (0,1) .
It is obvious that the left-side of inequality (3.27) for α1 = 0 can be derived

from Theorem 2.5. Thus, Theorem 3.1 will be proved if we can show the right-
side of inequality (3.27) and the optimal constants satisfying the inequality (3.27) are
a1 = 0,β1 = 1/4.
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[

1
4

GGG(a,b)+
3
4

HHH(a,b)
]

= b

[(
π

2E (r)

)2

− 1
4r′

− 3

2
(
1+ r′2

)
]

< b

[(
2

1+ r′3/2

)4/3

− 1+6r′+ r′2

4r′
(
1+ r′2

)
]

:= b f (
√

r′), (3.30)

where

f (u) =
(

2
1+u3

)4/3

− 1+6u2 +u4

4u2 (1+u4)
.
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CONJECTURE 2.6. The generalized power-type Toader mean sequence {TTTn(a,b)}
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3. Sharp bounds for TTT−1(a,b) and TTT 4(a,b)

In this section, we will present several sharp bounds for TTT−1(a,b) and TTT 4(a,b)
by the convex combination of GGG,HHH,AAA,QQQ,CCC and a homotopy between AAA and CCC . The
proofs rely on the monotonicity of functions related to complete elliptic integrals.

THEOREM 3.1. The double inequality

α1GGG(a,b)+ (1−α1)HHH(a,b) < TTT−1(a,b) < β1GGG(a,b)+ (1−β1)HHH(a,b) (3.27)

holds for a,b > 0 with a �= b if and only if α1 � 0 and β1 � 1/4 .

Proof. Since HHH(a,b) , GGG(a,b) and TTT−1(a,b) are symmetric and homogeneous of
degree one, without loss of generality, we assume that a > b > 0. Let r =

√
1−b/a∈

(0,1) . Then it can be easily obtained from (1.7) that

TTT−1(a,b) = b

[
π

2E (r)

]2

, GGG(a,b) =
b
r′

, HHH(a,b) =
2b

1+ r′2
. (3.28)

Further, substituting x =
√

1− (b/a)2 into (1.7) and (1.8), we obtain

2
π

E (x) >

(
1+ x′3/2

2

)2/3

(3.29)

for x ∈ (0,1) .
It is obvious that the left-side of inequality (3.27) for α1 = 0 can be derived

from Theorem 2.5. Thus, Theorem 3.1 will be proved if we can show the right-
side of inequality (3.27) and the optimal constants satisfying the inequality (3.27) are
a1 = 0,β1 = 1/4.

Due to HHH(a,b) < GGG(a,b) , it follows that p �→ pGGG(a,b)+(1− p)HHH(a,b) is strictly
increasing with respect to p ∈ R . For p � 1/4, then (3.28) and (3.29) lead to

TTT−1(a,b)− [pGGG(a,b)+ (1− p)HHH(a,b)] � TTT−1(a,b)−
[

1
4

GGG(a,b)+
3
4

HHH(a,b)
]

= b

[(
π

2E (r)

)2

− 1
4r′

− 3

2
(
1+ r′2

)
]

< b

[(
2

1+ r′3/2

)4/3

− 1+6r′+ r′2

4r′
(
1+ r′2

)
]

:= b f (
√

r′), (3.30)

where

f (u) =
(

2
1+u3

)4/3

− 1+6u2 +u4

4u2 (1+u4)
.



ON THE GENERALIZED POWER-TYPE TOADER MEAN 257

In order to determine the sign of f (u) , it suffices to verify that

24 [4u2 (1+u4)]3 − (1+u3)4 (
1+6u2 +u4)3

= −(1−u)4 (1+4u+28u2+96u3 +342u4 +972u5 +1426u6 +1588u7

+1561u8 +2460u9 +3012u10 +2460u11 +1561u12 +1588u13 +1426u14

+972u15 +342u16 +96u17 +28u18 +4u19 +u20)< 0.

Therefore, TTT−1(a,b) < pGGG(a,b)+ (1− p)HHH(a,b) for p � 1/4 and all a,b > 0
with a �= b follows from (3.30) and f (u) < 0.

It remains to prove a1 = 0 and β1 = 1/4 are the best possible constants.
Let 0 < p < 1/4. Then from (3.28) we clearly see that

TTT−1(a,b)− [pGGG(a,b)+ (1− p)HHH(a,b)] = b

[(
π

2E (r)

)2

− p
r′
− 2(1− p)

1+ r′2

]
. (3.31)

As r → 0+ , by using of Taylor expansion and (3.31), we obtain

TTT−1(a,b)− [pGGG(a,b)+ (1− p)HHH(a,b)] =
1
8

(
1
4
− p

)
r4 +o

(
r4) ,

which in conjunction with p < 1/4 implies that there exists small enough δ1 ∈ (0,1)
such that TTT−1(a,b)< pGGG(a,b)+(1− p)HHH(a,b) for all a,b > 0 with (1−δ1)a < b < a .

On the other hand, if p > 0, then it is easy to see that

lim
r→1−

[(
π

2E (r)

)2

− p
r′
− 2(1− p)

1+ r′2

]
= −∞.

Combining this with (3.31) leads to the conclusion that there exists small enough δ2 ∈
(0,1) such that TTT−1(a,b) > pGGG(a,b)+ (1− p)HHH(a,b) for all a,b > 0 with 0 < b <
δ2a . �

THEOREM 3.2. The double inequality

α2CCC(a,b)+ (1−α2)AAA(a,b) < TTT 4(a,b) < β2CCC(a,b)+ (1−β2)AAA(a,b)

holds for all a,b > 0 with a �= b if and only if α2 �
√

8/π−1 = 0.5957 · · · and β2 � 1 .

Proof. Without loss of generality, we may assume that a = 1 and b =
√

1−r
1+r with

r ∈ (0,1) . Then it can be easily seen from (1.7) and Landen identity (2.9) that

TTT 4(a,b) =
[

2
π

E

(
2
√

r
1+ r

)]1/2

=

√
2
π

(
2E − r′2K

1+ r

)1/2

(3.32)

and

AAA(a,b) =
1+ r + r′

2(1+ r)
, CCC(a,b) =

2
1+ r + r′

. (3.33)
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π

E

(
2
√

r
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)]1/2

=

√
2
π

(
2E − r′2K

1+ r

)1/2

(3.32)

and

AAA(a,b) =
1+ r + r′

2(1+ r)
, CCC(a,b) =

2
1+ r + r′

. (3.33)
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Let p ∈ R . Then from (3.32) and (3.33) we obtain

TTT 2
4(a,b)− [pCCC(a,b)+ (1− p)AAA(a,b)]2

AAA2(a,b)

=
[

TTT 4(a,b)
AAA(a,b)

]2

−
[

p
CCC(a,b)
AAA(a,b)

+ (1− p)
]2

=
(4/π)(2E − r′2K )

1+ r′
−
(

2p
1+ r′

+1− p

)2

:=
gp(r)

(1+ r′)2 , (3.34)

where

gp(r) =
4
π
(
1+ r′

)(
2E − r′2K

)
− (1− p)2r′2 −2(1− p2)r′ − (1+ p)2.

Elaborated computations lead to

gp(0+) = 0, gp(1−) =
8
π
− (1+ p)2, (3.35)

g′p(r) =
4r
πr′

ĝp(r), (3.36)

where

ĝp(r) = −
(

2E − r′2K
)

+
r′ (1+ r′)(E − r′2K )

r2 +
π
2

(1− p)2(1+ r′)+ π p(1− p).

Moreover,

ĝp(0+) = π(1− p), ĝp(1−) =
π
2

(
1− p2)−2. (3.37)

We divide the proof into three cases.

Case 2.1 p =
√

8/π −1. Then from (3.35) and (3.37) we obtain

gp(0+) = gp(1−) = 0, (3.38)

ĝp(0+) = 2(π −
√

2π) = 1.269 · · · ĝp(1−) = 2(
√

2π −3) = −0.986 · · ·. (3.39)

Lemma 2.1 (i) , (ii) and (iii) enable us to know that the functions r �→ −(2E −
r′2K ) and r �→

[
r′(1+ r′)(E − r′2K )

]
/r2 are strictly decreasing on (0,1) , which

yields ĝp(r) is strictly decreasing on (0,1) . According to this with (3.39) and (3.36), it
follows that there exists r1 ∈ (0,1) such that gp(r) is strictly increasing on (0,r1) and
strictly decreasing on (r1,1) . We conclude that gp(r) > 0 for r ∈ (0,1) from (3.38)
and the piecewise monotonicity of gp(r) .

Therefore, the inequality TTT 4(a,b) >
(√

8/π −1
)

CCC(a,b)+
(

2−√8/π
)

AAA(a,b)
for all a,b > 0 with a �= b follows easily from (3.34) and gp(r) > 0.

Case 2.2 p = 1. Then the inequality TTT 4(a.b) <CCC(a,b) for all a,b > 0 with a �= b
follows directly from Proposition 2.4.

Case 2.3
√

8/π −1 < p < 1. Then from (3.35) and (3.37) we clearly see that

gp(1−) < 0 (3.40)
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ĝp(r) = −
(

2E − r′2K
)

+
r′ (1+ r′)(E − r′2K )

r2 +
π
2

(1− p)2(1+ r′)+ π p(1− p).

Moreover,
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and
ĝp(0+) > 0. (3.41)

Equations (3.34)–(3.36) and inequalities (3.40) and (3.41) lead to the conclu-
sion that there exist small enough δ3,δ4 ∈ (0,1) such that TTT 4(a,b) < pCCC(a,b)+ (1−
p)AAA(a,b) for all a,b > 0 with 0 < b < δ3a , and TTT 4(a,b) > pCCC(a,b)+ (1− p)AAA(a,b)
for all a,b > 0 with (1− δ4)a < b < a .

Therefore, Theorem 3.2 follows from Cases 2.1–2.3 and the monotonicity of p �→
pCCC(a,b)+ (1− p)AAA(a,b) . �

THEOREM 3.3. The double inequality

α3CCC(a,b)+ (1−α3)QQQ(a,b) < TTT 4(a,b) < β3CCC(a,b)+ (1−β3)QQQ(a,b)

holds for all a,b > 0 with a �= b if and only if α3 � (
√

2+1)(2/
√

π −1) = 0.3099 · · ·
and β2 � 1 .

Proof. Without loss of generality, we may assume that a = 1 and b =
√

1−r
1+r with

r ∈ (0,1) . Let p ∈ R . Then from (3.32) and (3.33) we obtain[
TTT 4(a,b)
AAA(a,b)

]2

−
[

p
CCC(a,b)
AAA(a,b)

+ (1− p)
QQQ(a,b)
AAA(a,b)

]2

=
(4/π)(2E − r′2K )

1+ r′
−
[

2p
1+ r′

+(1− p)

√
2

1+ r′

]2

:=
hp(r)
1+ r′

, (3.42)

where

hp(r) =
4
π

(2E − r′2K )− 4p2

1+ r′
− 4

√
2p(1− p)√

1+ r′
−2(1− p)2.

Simple calculations lead to

hp(0+) = 0, hp(1−) =
8
π
−2

[(√
2−1

)
p+1

]2
, (3.43)

h′p(r) =
r
r′

ĥp(r), (3.44)

where

ĥp(r) =
4
π

r′(E − r′2K )
r2 − 4p2

(1+ r′)2 −
2
√

2p(1− p)

(1+ r′)3/2
.

Moreover,
ĥp(0+) = 1− p, ĥp(1−) = −2

√
2p[(

√
2−1)p+1]. (3.45)

We divide the proof into three cases.

Case 3.1 p = (
√

2 + 1)(2/
√

π − 1) . Then it can be easily seen from (3.43) and
(3.45) that

hp(0+) = hp(1−) = 0, (3.46)

ĥp(0+) = 0.69006· · · > 0, ĥp(1−) = −0.9891 · · ·< 0. (3.47)
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Lemma 2.1 (i) and (ii) show that the function r �→
[
r′(E − r′2K )

]
/r2 is strictly

decreasing on (0,1) , which yields ĥ(r) is strictly decreasing on (0,1) . Combining this
with (3.44) and (3.47), we clearly see that there exists r2 ∈ (0,1) such that hp(r) is
strictly increasing on (0,r2) and strictly decreasing on (r2,1) .

Therefore, the inequality

TTT 4(a,b) >
(√

2+1
)(

2/
√

π −1
)
CCC(a,b)+

[
1− (

√
2+1)(2/

√
π −1)

]
QQQ(a,b)

for all a,b > 0 with a �= b follows easily from (3.42) and (3.46) together with the
piecewise monotonicity of hp(r) .

Case 3.2 p = 1. In this case, Theorem 3.3 is valid from Proposition 2.4.

Case 3.3 (
√

2+1)(2/
√

π −1) < p < 1. Then from (3.43) and (3.45) we obtain
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[1/2,1] such that CCCα4(a,b) < TTT 4(a,b) < CCCβ4
(a,b) for all a,b > 0 with a �= b . This
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where gp(r) is defined as in Theorem 3.2.
Therefore, Theorem 3.4 derives immediately from Theorem 3.2. �

The following corollary can be derived from Theorems 3.1–3.3.

COROLLARY 3.5. Let τ = (
√

2+1)(2/
√

π −1) = 0.3099 · · · and r′ =
√

1− r2 .
Then the inequality

max
r∈(0,1)

⎧⎨
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√
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2
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2
π
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{√
1+ r′2

2
,

(
1+ r′

1+
√

r′

)2
}
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2
π
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2
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√
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√

r′
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π
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τ
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√

r′
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√
1+ r′

2

]2

.

Thus, Corollary 3.5 will be proved if we can show

τ
1+u2

1+u
+(1− τ)

√
1+u2

2
� 2u+

√
2/π(1−u)2

1+u
(3.51)

for u ∈ (0,1) , where we denote u =
√

r′ .
In order to prove (3.51), it suffices to verify

τ
1+u2

1+u
+(1− τ)

√
1+u2

2
− 2u+

√
2/π(1−u)2

1+u

=

√
2(1− τ)(1+u)

√
1+u2−2

[
(
√

2/π − τ)(1−u)2 +2(1− τ)u
]

2(1+u)
� 0,

which is equivalent to[√
2(1− τ)(1+u)

√
1+u2

]2 −4
[
(
√

2/π − τ)(1−u)2 +2(1− τ)u
]2

=
8(π −2)2u(1−u)2

π(2+ π +2
√

2π)
> 0

for u ∈ (0,1) . �
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