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Abstract. First, we correct the proof presented in [Sharp Lp Hardy type and uncertainty principle
inequalities on the sphere, Journal of Mathematical Inequalities, 13, 4 (2019), 1011–1022] and
obtain a sharp version of an Lp Hardy inequality on the sphere S

n for all 2 � p < n . Secondly,
we prove sharp critical exponent Ln inequalities on the sphere S

n in R
n , n � 2 . The singularity

in this problem is the geodesic distance from an arbitrary point on the sphere. Moreover, we
prove that neither the Lp Hardy inequality has a nontrivial maximizer in W 1,p(Sn) for any 2 �
p < n , nor does the limiting case Ln Hardy inequality have a nontrivial maximizer in W 1,n(Sn) .

1. Introduction

To our best knowledge, the first successful attempt to adapt the ideas introduced
in [4] to obtain inequalities of Hardy type on the n -dimensional sphere was that of
Xiao’s in [8]. He obtained sharp L2 Hardy inequalities on the Euclidean sphere S

n ,
n � 3. Later, sharp critical case L2 results were proved in [2] on the sphere S

2 in R
3 .

Another extension was presented in [7] where subcritical optimal Lp inequalities were
proved. The authors in [2, 7, 8] considered the geodesic distance from the pole. In this
case, the geodesic distance is precisely the angular variable. Very recently, the author in
[9] improved the L2 results in [8] by taking the singularity to be the geodesic distance
from an arbitrary point on the sphere. This was followed by an attempt to obtain the
corresponding sharp Lp Hardy inequalities with the general geodesic distance in [1].
The author has proven in [3] various sharp Lp inequalities of Hardy type on the sphere
in both the subcritical and critical exponent cases. The way we prove sharpness of our
inequalities in [3] takes into account all the constants involved.

Let u∈C∞(Sn) , n � 3. Assume that d denotes the geodesic distance on the sphere
from an arbitrary point. It is claimed in ([1], Theorem 1) that the following inequality
holds for all 2 � p < n :(

n− p
p

)p ∫
Sn

|u|pdσn

| tand|p �
∫

Sn
|∇u|pdσn +

(
n− p

p

)p−1∫
Sn

|u|pdσn

sinp−2 d
. (1)
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The proof suggested in [1] is inaccurate. We point out a missing factor in that proof.
Once corrected, the proof no longer implies the inequality (1). Interestingly, we obtain
an optimal Lp inequality, the inequality (11) below, proved in [3] using the divergence
theorem, properties of the gradient and Laplacian of the geodesic distance, and Hölder
and Young inequalities. Nevertheless, we believe that the inequality (1) probably holds
true.

We also adapt Xiao’s method to obtain a sharp critical exponent Ln Hardy type
inequality on S

n , n � 2, with the general geodesic distance from an arbitrary point on
the sphere. See Theorem 1.

Finally, we prove the nonexistence of nontrivial maximizers in the Sobolev space
W 1,p(Sn) for the Lp inequality (11) for any 2 � p < n . We also show that the Ln

inequality (12) of Theorem 1 has no nontrivial maximizer in W 1,n(Sn) . See Theorem
2.

2. Preliminaries

Let n � 2 and let Θn := (θ j)n
j=1 ∈ [0,π ]n−1× [0,2π ] . We can assign to each point

on the unit sphere S
n in R

n+1 the spherical coordinates parametrization (xm(Θn))n+1
m=1 ,

where

xm(Θn) :=

⎧⎪⎨⎪⎩
cosθ1, m = 1;

∏m−1
j=1 sinθ j cosθm, 2 � m � n;

∏n
j=1 sinθ j, m = n+1.

With this representation, the surface gradient ∇Sn on the sphere S
n is defined by

∇Sn =
∂

∂θ1
θ̂1 +

1
sinθ1

∂
∂θ2

θ̂2 + · · ·+ 1
sinθ1 · · · sinθn−1

∂
∂θn

θ̂n,

where
{

θ̂ j

}
is an orthonormal set of tangential vectors with the vector θ̂ j pointing in

the direction of increase of θ j . In addition, the Laplace-Beltrami operator ΔSn takes
the form

Δ
Sn−1 =

1

sinn−2 θ1

∂
∂θ1

(
sinn−2 θ1

∂
∂θ1

)
+

1

sin2 θ1 sinn−3 θ2

∂
∂θ2

(
sinn−3 θ2

∂
∂θ2

)
+ . . .+

1

sin2 θ1 sin2 θ2 . . .sin2 θn−2 sinθn−1

∂
∂θn−1

(
sinθn−1

∂
∂θn−1

)
+

1

sin2 θ1 sin2 θ2 . . .sin2 θn−1

∂ 2

∂θ 2
n
.

Upon, identifying every point (xm(Θn−1))n+1
m=1 ∈S

n with its parameters Θn , the geodesic
distance d(Θn,Φn) from a point Φn ∈ S

n is defined by

d(Θn,Φn) = arccos

(
n+1

∑
m=1

xm(Θn)xm(Φn)

)
. (2)

The following properties of the geodesic distance on the sphere are proved in [3]:
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LEMMA 1. Suppose Φn is a point on the sphere S
n . Assume that d(.,Φn) : S

n →
[0,π ] is the geodesic distance from Φn on S

n defined in (2). Then

|∇
Sn−1d| = 1, (3)

Δ
Sn−1d = (n−1)

cosd
sind

. (4)

We will also need the following basic inequality that can be found in [5]:

|x+ y|p > |x|p + p|x|p−2〈x,y〉, x,y ∈ R
n, p > 1. (5)

An equality holds in (5) if and only if y = 0.

3. A correction of the proof in [1]

Let Φn ∈ S
n , n � 3, and let 2 � p < n . Let u ∈C∞(Sn) and write

u(Θn) = φα(Θn)ψ(Θn), (6)

where φ(Θn) := sind(Θn,Φn) , α = −(n− p)/p . Clearly ψ ∈ C∞ (Sn) . Since the
geodesic metric d(Θn,Φn) = 0 only if Θn = Φn and d(Θn,Φn) = π only if Θn,Φn are
antipodal, then 1/φ ∈ C∞ (Sn \ {±Φn}) . Taking the surface gradient of both sides of
(6), then employing the inequality (5), it follows that on S

n \ {±Φn} we have

|∇Snu|p =
∣∣αφα−1ψ∇Snφ + φα∇Snψ

∣∣p
� |α|p|φ |α p−p|ψ |p|∇Snφ |p

+ p|α|p−2|φ |(α−1)(p−2)|ψ |p−2|∇Snφ |p−2〈αφα−1ψ∇Snφ ,φα ∇Snψ〉
= |α|pφα p−p|ψ |p|∇Snφ |p

+ α|α|p−2φα p−p+1 (p|ψ |p−2ψ
) |∇Snφ |p−2〈∇Snφ ,∇Snψ〉, (7)

since φ > 0. So far, our proof is in accordance with that in [1]. Since p > 1, then |ψ |p
is differentiable and we have ∇Sn |ψ |p = p|ψ |p−2ψ∇Snψ . Also, since 1/φ is smooth
on on S

n \{±Φn} and α p− p+2 =−(n−2) �= 0, then we can write φα p−p+1∇Snφ =
1

α p−p+2∇Snφα p−p+2 . Using this in (7) implies

|∇Snu|p �|α|pφα p−p|ψ |p|∇Snφ |p

+
α|α|p−2

α p− p+2
|∇Snφ |p−2〈∇Snφα p−p+2,∇Sn |ψ |p〉. (8)

At this point, the factor |∇Snφ |p−2 went unjustifiably missing in [1]. Moreover, the
vector ∇Sn |ψ |p is confused with ∇Snψ p . The next main step in [1] is to write

〈∇Snφα p−p+2,∇Sn |ψ |p〉 = div
(|ψ |p∇Snφα p−p+2)−|ψ |pΔSnφα p−p+2,

then use the divergence theorem that yields
∫
Sn div

(|ψ |p∇Snφα p−p+2
)
dσn = 0.
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If the divergence theorem is to be used, it should rather be applied to |∇Snφ |p−2

div
(|ψ |p∇Snφα p−p+2

)
whose integral does not simply vanish.

Let us proceed from (8). Substituting for α , φ and ψ , then using (3), and inte-
grating both sides over S

n , we find

∫
Sn
|∇Snu|p dσn �

∫
Sn

(
n− p

p

)p |u|p
| tand|p dσn +

1
n−2

(
n− p

p

)p−1

In,p, (9)

where

In,p =
∫

Sn
|cosd|p−2

〈
∇Sn

1

sinn−2 d
,∇Sn

(|u|p sinn−p d
)〉

dσn.

Now, observe that, when p � 2, we can make sense of the gradient

∇Sn |cosd|p−2 cosd = −(p−1)|cosd|p−2 sind ∇Snd.

Therefore, using (4), we may simplify In,p by integration by parts on the compact
manifold S

n to obtain

In,p = (n−2)
∫

Sn
|u|p sinn−p d div

(
|cosd|p−2 cosd

∇Sn d

sinn−1 d

)
dσn

= −(n−2)(p−1)
∫

Sn
|u|p sinn−p d

|cosd|p−2

sinn−2 d
dσn

= −(n−2)(p−1)
∫

Sn

|u|p
| tand|p−2 dσn,

because, using (3) and (4), it turns out that〈
∇Sn

1

sinn−1 d
,∇Snd

〉
= − ΔSnd

sinn−1 d
, Θn �= ±Φn. (10)

Plugging the integral In,p into the inequality (9) we deduce the inequality

∫
Sn
|∇Snu|p dσn+(p−1)

(
n− p

p

)p−1∫
Sn

|u|p
| tand|p−2 dσn

�
(

n− p
p

)p ∫
Sn

|u|p
| tand|p dσn. (11)

REMARK 1. The inequality (11) is obtained using a different method in [3]. It is
also shown in [3] that all three coefficients in (11) are optimal for all 2 � p < n , using
optimizing sequences in the Sobolev space W 1,p(Sn) . By density, such functions can
be approximated by smooth functions to give optimizing sequences in C∞(Sn) .

REMARK 2. When p = 2, the inequality (11) reduces to the main inequality
proved in ([9], Theorem 1.1).
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4. Critical Ln(Sn) Hardy inequality

We show how to apply Xiao’s method [8] to prove an optimal critical exponent
Hardy inequality on S

n , n � 2, considering the geodesic distance d(.,Φn) defined in
(2) from an arbitrary point Φn ∈ S

n . We will certainly make use of the properties (3)
and (4).

THEOREM 1. Fix n � 2 and assume u ∈ C∞(Sn) . Let Φn be some point on the
sphere S

n and consider the geodesic distance (2) from Φn . Then∫
Sn
|∇Snu|n dσn+(n−1)

(
n−1

n

)n−1∫
Sn

|u|n
| tand|n−2

(
log e

sind

)n−1 dσn

�
(

n−1
n

)n ∫
Sn

|u|n
| tand|n (log e

sind

)n dσn. (12)

Proof. Suppose u ∈C∞(Sn) . Analogously to (6), we can write

u(Θn) = φα(Θn)ψ(Θn),

where ψ ∈C∞(Sn) , but we modify the definition of α and that of φ as follows:

φ(Θn) := log
e

sind(Θn,Φn)
, α =

n−1
n

.

We note here that φ ∈C1 (Sn \ {±Φn}) and we have

∇Snφ(Θn) = − 1
tand(Θn,Φn)

∇Snd(Θn,Φn), Θn �= ±Φn. (13)

Consequently, in the light of (3), we see that

|∇Snφ(Θn)| = 1
|tand(Θn,Φn)| . (14)

We pick up the proof at (8) with p = n . Substituting for α , φ and ψ , while using (13)
and (14), we get

|α|nφαn−n|ψ |n|∇Snφ |n =
(

n−1
n

)n |u|n
|tand|n (log e

sind

)n , Θn �= ±Φn, (15)

α|α|n−2

αn−n+2
|∇Snφ |n−2〈∇Snφαn−n+2,∇Sn |ψ |n〉

=
(

n−1
n

)n−1 1

|tand|n−2

〈
∇Sn

(
log

e
sind

)
,∇Sn |ψ |n

〉
= −

(
n−1

n

)n−1 1

|tand|n−2 tand
〈∇Snd,∇Sn |ψ |n〉 , Θn �= ±Φn.

(16)
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Taking into account the calculations (15) and (16), we integrate both sides of (8), with
p = n , over S

n . It follows that∫
Sn
|∇Snu|n dσn �

(
n−1

n

)n ∫
Sn

|u|n
| tand|n (log e

sind

)n dσn−
(

n−1
n

)n−1

Jn,p, (17)

where

Jn,p =
∫

Sn

|cosd|n−2 cosd

sinn−1 d
〈∇Snd,∇Sn |ψ |n〉dσn.

Invoking the divergence theorem, we see that

Jn,p = −
∫

Sn
|ψ |ndiv

(
|cosd|n−2 cosd

sinn−1 d
∇Snd

)
dσn

Using the identity (10), we immediately realize

Jn,p = −
∫

Sn

|u|n(
log e

sind(Θn,Φn)

)n−1

〈
∇Snd

sinn−1 d
,∇Sn |cosd|n−2 cosd

〉
dσn

= (n−1)
∫

Sn

|u|n(
log e

sind(Θn,Φn)

)n−1

1

|tand|n−2 dσn. (18)

The inequality (12) finally follows from (17) and (18). �

REMARK 3. The inequality (12) is derived in [3] using a different method. It is
noteworthy that all constants of (12) are optimal. This is also proved in [3] utilizing
optimizing sequences in the Sobolev space W 1,n(Sn) . The constants are therefore opti-
mal for smooth functions. For, arguing by contradiction, if a constant in (12) could be
improved for smooth functions, then the improved inequality would also be valid for
W 1,n(Sn) functions by density.

5. Nonexistence of maximizers

THEOREM 2. The inequality (11) does not have a nonzero maximizer in W 1,p(Sn)
for any 2 � p < n. Analogously, the inequality (12) does attain a nonzero maximizer
in W 1,n(Sn) .

Proof. With the exception of (7), equality persists throughout the proof of (11).
The inequality (7) is an application of (5) to the vectors x := αφα−1ψ∇Snφ and y :=
φα ∇Snψ . Observe that the inequality (5) is strict if and only if y �= 0. Indeed, when
y �= 0, (5) becomes a restating of the strict convexity of the mapping x �→ |x|p on R

n .
In other words, equality occurs in (5) if and only if y = 0. Hence equality holds in (7),
equivalently in (11), if and only if

φα ∇Snψ = 0. (19)
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Recall that φ(Θn) := sind(Θn,Φn) � 0 and notice that φ(Θn) = 0 if and only if Θn

lies in the negligible set {Θn ∈ S
n : Θn = ±Φn} . By (6), the equality (19) is equivalent

to
∇Snψ = ∇Sn

u
φα = 0 (20)

for almost every Θn ∈ S
n . Solving (20) for u �= 0 we find

u(Θn) =
c

sin
n−p

p d(Θn,Φn)
. (21)

Taking the surface gradient of (21) and using the identity (3) implies

|∇Snu(Θn)| = |c|n− p
p

|cosd(Θn,Φn)|
sin

n
p d(Θn,Φn)

.

Obviously |∇Snu(Θn)| is not essentially bounded. Furthermore, it follows from the

definition (2) that cosd(Θn,Φn) = Θn ·Φn and sind(Θn,Φn) =
√

1− (Θn ·Φn)
2 . So,

to investigate the integrability of |∇Snu| on S
n , we exploit the following change of

variables (see for example [6]):∫
Sn

f (ν ·Θn)dσn = Cn

∫ 1

−1
f (|ν|s)(1− s2) n−2

2 ds, (22)

where Cn is a constant that depends only on the dimension n . The identity (22) simpli-
fies the integration of functions of the form Θn �→ f (ν ·Θn) on the sphere S

n . Observe
that |∇Snu(Θn)| is a function of Φn ·Θn . Let cn,p := |c|p ((n− p)/p)p . Since |Φn|= 1
then using (22) yields∫

Sn
|∇Snu(Θn)|p dσn = cn,p

∫
Sn

|Θn ·Φn|p(
1− (Θn ·Φn)

2
) n

2
dσn = Cncn,p

∫ 1

−1

|s|p
1− s2 ds,

which diverges for every p . Therefore the only nonzero maximizer of (11) is not in
W 1,p(Sn) for any 1 � p � ∞ .

Next, an equality holds in (12) if and only if u = 0 or

u(Θn) = c

(
log

e
sind(Θn,Φn)

) n−1
n

Consequently, by the identity (3), we have

|∇Snu(Θn)|p = c̃n,p
|cosd(Θn,Φn)|p
sinp d(Θn,Φn)

(
log

e
sind(Θn,Φn)

)− p
n

= c̃n,p
|Θn ·Φn|p(

1− (Θn ·Φn)2
) p

2

⎛⎝log
e√

1− (Θn ·Φn)
2

⎞⎠− p
n

,
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with c̃n,p = |c |p ((n−1)/n)p . Using (22) we see that∫
Sn
|∇Snu(Θn)|p dσn = Cnc̃n,p

∫ 1

−1

|s|p

(1− s2)
p−n+2

2

ds,

which converges only if p < n . �
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