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Abstract. In this work, we establish some new weakly singular Henry-Gronwall-Bihari type
inequalities that are generalized from some recent works. Unlike most previous papers, in this
work, we consider integral inequalities that include two integrals with doubly singular kernels,
and obtain the bounds by an exponential function. We apply the obtained results to investigate the
existence and uniqueness of solution of a fractional differential equation and a class of integral
equations with weakly singular sources.

1. Introduction

It is well known that Henry-Gronwall-Bihari type integral inequalities play a sig-
nificant role in the study of quantitative properties of solutions of differential and in-
tegral equations. There are numerous versions of Henry-Gronwall-Bihari inequalities
and their applications, we refer to [2, 3, 5, 8, 9, 11, 12, 13, 14, 15, 16, 21], and the
references therein.

In the last few decades, the integral inequalities with weakly singular kernels have
attracted the attention of many researchers due to its applications to various problems
related to fractional derivatives. Usually, the integrals involving this type of inequalities
have a singularity, but some problems of theory and practicality require us to solve
integral inequalities with doubly singularities (see e.g. [4, 5, 19, 20, 21]).

In the literature, integral inequalities with doubly singular kernels have been stud-
ied by many researchers. In fact, Henry [8] considered the following integral inequality

u(t) � p+q
∫ t

0
(t− τ)β−1τγ−1u(τ) dτ for β > 0, γ > 0, and β + γ > 1. (1)

Under an appropriate assumption, the author obtained the bounds by Mittag-Leffler
function. In 2019, Webb [21] extended the result of Henry by investigating the integral
inequality (1), found the bounds by an exponential function and applied it to study
fractional differential equations with weakly singular sources. Ma and Pecaric [11]
considered the following integral inequality

up(t) � p(t)+q(t)
∫ t

0
(tα − τα)β−1τγ−1 f (τ)uq(τ) dτ,
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obtained some bounds and applied them to study fractional differential and integral
equations. Medved [12] considered the integral inequality

u(t) � p(t)+
∫ t

0
(t− τ)α−1τγ−1 f (τ)ω(u(τ)) dτ.

To obtain the bounds, the author used the following restrictions α > 1/2, γ > 1/2,
or α = 1/(m+ 1) and γ = 1− 1/κ(m+ 2) for some m � 1, κ > 1. The author also
applied the obtained results to study semilinear evolution equations. With the above
restrictions, we emphasize that the problem can not discuss when γ � 1/2. Therefore,
in this work, we would like to relax the above restrictions.

For the case, the function u may be singular, Henry [8] considered a function u
belonging to L1[0,T ] and satisfies the following integral inequality

u(t) � at−α +b
∫ t

0
(t− τ)−β u(τ) dτ for α, β ∈ [0,1), a � 0, b > 0,

and proved that u(t) � Ct−α . The extension of the result of Henry was made by Webb
[21], beginning with the following integral inequality

u(t) � at−α +b+ c
∫ t

0
(t − τ)−β τ−γu(τ) dτ for a,b � 0, c > 0, α + β + γ < 1,

the author obtained the bounds by exponential function, and applied the obtained in-
equality to study a fractional differential equation involving the Riemann-Liouville
fractional derivative with a weakly singular source. Zhu [23] considered the integral
inequality

u(t) � at−α +bt−δ
∫ t

0
(t − τ)β−1l(τ)u(τ) dτ for a,b � 0, α > δ � 0.

Here the author used the assumptions t−α l(t) ∈ Lq
Loc[0,+∞) with q > 1/β and tαu(t)

a continuous and non-negative function on [0,+∞) .
Recently, integral inequalities for an appropriate function was proposed by Sousa

et al [17], in which the following integral inequality

u(t) � p(t)+
∫ t

a
ψ ′(τ)(ψ(t)−ψ(τ))α−1u(τ) dτ (2)

was considered. Under some appropriate assumptions, the authors found the bounds by
Mittag-Leffler function and applied it to study the Cauchy-type problem with ψ -Hilfer
operator. Very recently, Boulares et al [2] also considered the integral inequality (2) and
obtain the bounds by an exponential function. However, we can not find any paper deal
with Henry-Gronwall-Bihari type inequalities involving an appropriate function ψ and
doubly singular kernels.

Integral inequalities with two singular kernels were studied by Ding et al [6], start-
ing by considering the following integral inequality

u(t) � a(t)+b(t)
∫ t

0
(t− s)α−1Eα ,α (λ (t− s)α)u(s) ds+ c(t)

∫ t

0
(t− s)β−1u(s) ds,
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obtained the bounds as follows

u(t) � b(t)+
∞

∑
k=1

n

∑
i=1

C(k,n)
∫ t

0
(t− s)iα+(k−i)β−1Ei

β ,iα+(k−i)β

(
λ (t− s)β

)
a(s) ds,

where C(k,n) = k!(a(t))i(c(t)Γ(β ))n−i

i!(k−i)!
(Γ(β ))i

Γ(iβ+n−i) . In particular, for a(t) = A , b(t) = b ,

c(t) = c , the authors showed that u(t) � AEα(ctα)
(
1+ tβEβ ,β+1(b+ λ )tβ)

. In [3, 4],
we consider some integral inequalities with two singular kernel for an appropriate func-
tion and obtained the bounded by Mittag-Leffler function.

Motivated by the above analysis, we investigate some integral inequalities includ-
ing the sum of two integrals with doubly singular kernels. The main contributions of
our work are that:

• Establish some new generalized Henry-Gronwall-Bihari type inequalities involv-
ing an appropriate function ψ with doubly singular kernels. The results are gen-
eralized from the results of some previous works such as [3, 6, 8, 12, 21].

• Relax some restrictions of previous works.

• Apply our results to investigate the existence and uniqueness of solution of a frac-
tional differential equation and an integral equation with weakly singular sources.

The current paper is structured as follows. In section 2, we present the main results
of this paper. Section 3 is devoted to introducing some applications of our results.
Conclusions are given in section 4.

2. Weakly singular Henry-Gronwall-Bihari type inequalities

This section presents some new generalized Henry-Gronwall-Bihari type inequal-
ities with doubly singular kernels. Let us begin by giving some notations. For a,b∈ R ,
a < b , we denote R+ = {x ∈ R : x � 0} . For ϕ ∈ L∞[a,b] and p � 1, we define

ϕ∗(t) = ess sup
a�τ�t

|ϕ(τ)|, (3)

and

C1
+[a,b] =

{
ϕ : ϕ ∈ C1[a,b] and ϕ ′(t) > 0 for all t ∈ [a,b]

}
,

Lp
+[a,b] = {ϕ : ϕ ∈ Lp[a,b] and ϕ(t) � 0 a.e. t ∈ [a,b]} ,

L∞
+[a,b] = {ϕ : ϕ ∈ L∞[a,b] and ϕ(t) � 0 a.e. t ∈ [a,b]} .

For brevity, for x,y,z ∈ R , a � s < t � b , and ψ ∈C1
+[a,b] , let us define

Λx,y,z(s,t,ψ) = (ψ ′(s))x(ψ(t)−ψ(s))y−1(ψ(s)−ψ(a))−z.

From the above notations, we can state an essential lemma. Readers can find the
proof of this lemma in [4, Lemma 2.4].
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LEMMA 1. Let a,b∈ R , b > a, β > 0 , γ < 1 , and let ψ ∈C1
+[a,b] . For a � τ �

s � t � b, we put

ϒβ ,γ(τ,s,t,ψ) =
∫ s

τ
Λ1,β ,γ(ξ , t,ψ) dξ .

Then

ϒβ ,γ(τ,s,t,ψ) = (ψ(t)−ψ(a))β−γ
∫ ν(s)

ν(τ)
(1− y)β−1y−γ dy,

where ν(s)= (ψ(s)−ψ(a))/(ψ(t)−ψ(a)) . Consequently, lim|s−τ|→0 ϒβ ,γ (τ,s,t,ψ)=
0 . Moreover

ϒβ ,γ(a, t, t,ψ) = (ψ(t)−ψ(a))β−γB(β ,1− γ) for any t ∈ [a,b],

where B(·, ·) is the Beta function.

We now state and prove the main results of this section. We begin by presenting
some Henry-Gronwall type inequalities with weakly singular kernels.

THEOREM 1. Let a,b∈R with a < b, and let β > 0 , γ ∈R , and γ < min{1,β} .
Let p ∈ L∞

+[a,b] , and ψ ∈C1
+[a,b] . Suppose that u ∈ L∞

+[a,b] satisfies the inequality

u(t) � p(t)+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β−1(ψ(s)−ψ(a))−γk(s)u(s) ds. (4)

For ρ ∈ R such that 0 < ρ < min{1,1− γ} and β − γ −ρ � 0 , if k ∈ L1/ρ
+ [a,b] , then

u(t) �
(

P(t)+
∫ t

a
Q(s)P(s)exp

(∫ t

s
Q(τ) dτ

)
ds

)ρ
.

Moreover, we have

u(t) � 21−ρ p∗(t)exp

(
ρ

∫ t

a
Q(τ) dτ

)
,

where p∗ defined as in (3). In particular, if p = 0 a.e., then u = 0 a.e. on [a,b] . Herein

P(t) = 21/ρ−1p1/ρ(t) , and Q(t) = 21/ρ−1D1/ρψ ′(t)k1/ρ(t) with D = B1−ρ
(
(β −ρ)/

(1−ρ),(1− γ−ρ)/(1−ρ)
)
(ψ(b)−ψ(a))β−γ−ρ .

REMARK 1. It is worth noting that Henry [8] and Webb [21] considered the case
a = 0, b = T , ψ(t) = t , k(t) = C and required α,β ∈ (0,1) and γ < β < 1. Herein,
our results are general and hold for all β > 0. Besides, our proofs are new and different
from the proofs of previous works but easier.

Proof. Using the fact that

(ψ ′(s))ρ Λ1−ρ ,β ,γ(s,t,ψ) = ψ ′(s)(ψ(t)−ψ(s))β−1(ψ(s)−ψ(a))−γ ,
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and the Holder inequality, we have

u(t) � p(t)+
∫ t

a
(ψ ′(s))ρ Λ1−ρ ,β ,γ(s,t,ψ)k(s)u(s) ds

� p(t)+
(∫ t

a

(
Λ1−ρ ,β ,γ(s,t,ψ)

) 1
1−ρ ds

)1−ρ (∫ t

a

(
(ψ ′(s))ρk(s)u(s)

)1/ρ
ds

)ρ

= p(t)+
(∫ t

a
Λ

1,
β−ρ
1−ρ , γ

1−ρ
(s,t,ψ) ds

)1−ρ (∫ t

a
ψ ′(s)k1/ρ(s)u1/ρ(s) ds

)ρ
.

In view of Lemma 1 and direct computations, we obtain

u(t) � p(t)+D

(∫ t

a
ψ ′(s)k1/ρ (s)u1/ρ(s) ds

)ρ
,

where D = B1−ρ
(
(β −ρ)/(1−ρ),(1− γ −ρ)/(1−ρ)

)
(ψ(b)−ψ(a))β−γ−ρ . Apply-

ing the inequality (c+d)r � 2r−1(cr +dr) for any c,d > 0 and r � 1, one has

u1/ρ(t) � P(t)+
∫ t

a
Q(s)u1/ρ(s) ds,

where P(t) = 21/ρ−1p1/ρ(t) , and Q(t) = 21/ρ−1D1/ρ ψ ′(t)k1/ρ(t) . By virtue of the
Gronwall inequality, we get

u(t) �
(

P(t)+
∫ t

a
Q(s)P(s)exp

(∫ t

s
Q(τ) dτ

)
ds

)ρ
(5)

for a.e. t ∈ [a,b] . Moreover, if p ∈ L∞
+[a,b] then P∗(t) the non-decreasing function,

and P(t) � P∗(t) = 2(1−ρ)/ρ(p∗(t))1/ρ for all t ∈ [a,b] . Using the Gronwall inequality,
we have

u1/ρ(t) � P∗(t)exp

(∫ t

a
Q(τ) dτ

)
for a.e. t ∈ [a,b]. (6)

The latter inequality leads to

u(t) � 21−ρ p∗(t)exp

(
ρ

∫ t

a
Q(τ) dτ

)
.

Particularly, if p = 0 a.e. then P∗(t) = 0 a.e., and we have v = 0 a.e. on [a,b] .
Combining (5) and (6), we obtain the desired results of Theorem. �

THEOREM 2. Let a,b∈R with a < b, and let βi > 0 , γi ∈R , and γi < min{1,βi}
for i = 1,2 . Let ψ ∈C1

+[a,b] , and p ∈ L∞
+[a,b] . Suppose that u ∈ L∞

+[a,b] satisfies the
inequality

u(t) � p(t)+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β1−1(ψ(s)−ψ(a))−γ1k1(s)u(s) ds

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β2−1(ψ(s)−ψ(a))−γ2k2(s)u(s) ds. (7)
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For ρi ∈ R such that 0 < ρi < min{1,1− γi} and βi − γi − ρi � 0 with i = 1,2 , if

ki ∈ L1/ρi
+ [a,b] for i = 1,2 .

(i). Without lost of generality, we suppose further, that β1 � 1 and p the non-
decreasing function on [a,b] , then we have

u(t) � 22−ρ1−ρ2 p(t)exp

(∫ t

a
(ρ2Q2(τ)+ ρ1Q1(τ)) dτ

)
,

where Q2(t) = 21/ρ2−1D1/ρ2
2 ψ ′(t)k1/ρ2

2 (t) and Q1(t) = 21/ρ1−1D1/ρ1
1 ψ ′(t)h1/ρ1(t) with

Di = B1−ρi

(
(βi−ρi)/(1−ρi),(1− γi−ρi)/(1−ρi)

)
(ψ(b)−ψ(a))βi−γi−ρi , (i = 1,2)

and h(t) = 21−ρ2 exp
(

ρ2
∫ b
a Q2(τ) dτ

)
k1(t) .

(ii). If max{β1,β2}< 1 and max{γ1,γ2}<min{β1,β2} , we put η = min{β1,β2} ,
σ = max{γ1,γ2} , ϑ(t)= k1(t)(ψ(b)−ψ(a))β1+σ−η−γ1 +k2(t)(ψ(b)−ψ(a))β2+σ−η−γ2 .

We suppose further that ϑ ∈ L1/ρ
+ [a,b] for some 0< ρ < 1−σ such that η−σ −ρ � 0 ,

then

u(t) � 21−ρ p∗(t)exp

(
ρ

∫ t

a
Q(τ) dτ

)
,

where Q(t) = 21/ρ−1D1/ρψ ′(t)ϑ 1/ρ(t) with D = B1−ρ
(
(η − σ)/(1− σ),(1− η −

σ)/(1−σ)
)
(ψ(b)−ψ(a))η−σ−ρ , and p∗ defined as in (3).

REMARK 2. Note that the results of Theorem 2 seem to be new and still not study
in recently papers. In fact, Ding et al [6] only consider the case ψ(t) = t , γ1 = γ2 = 0
and k1(t) = C1,k2(t) = C2 with some constants C1,C2 > 0. In [3], we considered the
case k1(t) = C1,k2(t) = C2 and obtain the bounds by the Mittag-Leffler function.

Proof. (i). Let us define the following function

Su(t) = p(t)+
∫ t

a
ψ ′(τ)(ψ(t)−ψ(τ))β1−1(ψ(τ)−ψ(a))−γ1k1(τ)u(τ) dτ.

Then, we have Su the non-decreasing (with respect to t ) for β1 � 1. Indeed, for
a � s < t � b , we have (ψ(t)−ψ(τ))β1−1− (ψ(s)−ψ(τ))β1−1 � 0. This gives

Su(t)−Su(s) = (p(t)− p(s))+
∫ s

a
ψ ′(τ)

(
(ψ(t)−ψ(τ))β1−1− (ψ(s)−ψ(τ))β1−1

)
× (ψ(τ)−ψ(a))−γ1k1(τ)u(τ) dτ

+
∫ t

s
ψ ′(τ)(ψ(t)−ψ(τ))β1−1(ψ(τ)−ψ(a))−γ1k1(τ)u(τ) dτ � 0.
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This gives (Su)∗(t) = Su(t) . Applying Theorem 1, we get

u(t) � 21−ρ2Su(t)exp

(
ρ2

∫ t

a
Q2(τ) dτ

)

� 21−ρ2 p(t)exp

(
ρ2

∫ t

a
Q2(τ) dτ

)

+
∫ t

a
ψ ′(τ)(ψ(t)−ψ(τ))β−1(ψ(τ)−ψ(a))−γh(τ)u(τ) dτ, (8)

where Q2(t) = 21/ρ2−1D1/ρ2
2 ψ ′(t)k1/ρ2

2 (t) with D2 = B1−ρ2

(
(β2 −ρ2)/(1−ρ2),(1−

γ2−ρ2)/(1−ρ2)
)
(ψ(b)−ψ(a))β2−γ2−ρ2 , and h(t)= 21−ρ2 exp

(
ρ2

∫ b
a Q2(τ) dτ

)
k1(t) .

It is clear to see that Q(t) = 21−ρ2 p(t)exp
(

ρ2
∫ t
a Q2(τ) dτ

)
is a non-decreasing func-

tion. Thus, we can apply Theorem 1 for the inequality (8) to obtain the result of part
(i).

(ii). Let us put η = min{β1,β2} and σ = max{γ1,γ2} . By elementary computa-
tions, we can verify that

(ψ(t)−ψ(τ))β1−1 � (ψ(b)−ψ(a))β1−η (ψ(t)−ψ(τ))η−1,

(ψ(t)−ψ(τ))β2−1 � (ψ(b)−ψ(a))β2−η (ψ(t)−ψ(τ))η−1,

(ψ(τ)−ψ(a))−γ1 � (ψ(b)−ψ(a))σ−γ1(ψ(τ)−ψ(a))−σ ,

(ψ(τ)−ψ(a))−γ2 � (ψ(b)−ψ(a))σ−γ2(ψ(τ)−ψ(a))−σ

for any a � τ < t . Pushing the above inequalities into (7), we get

u(t) � p(t)+
∫ t

a
ψ ′(τ)(ψ(t)−ψ(τ))η−1(ψ(τ)−ψ(a))−σ ϑ(τ)u(τ) dτ,

where ϑ(t) = k1(t)(ψ(b)−ψ(a))β1+σ−η−γ1 + k2(t)(ψ(b)−ψ(a))β2+σ−η−γ2 . Apply-
ing the result of Theorem 1, we obtain the result of part (ii). This completes the proof
of Theorem. �

Now, we present some Henry-Gronwall type inequalities in which the function u
may be singular.

THEOREM 3. Let a,b∈R with a < b, and let α � 0 , β > 0 , γ ∈R , and α +γ <
min{1,β} . Let p ∈ L∞

+[a,b] , and ψ ∈ C1
+[a,b] . Suppose that (ψ(.)−ψ(a))αu ∈

L∞
+[a,b] satisfies the inequality

u(t) � (ψ(t)−ψ(a))−α p(t)

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β−1(ψ(s)−ψ(a))−γκ(s)u(s) ds. (9)

For ρ ∈ R such that 0 < ρ < min{1,1−α − γ} and β − γ − (α + 1)ρ � 0 , if κ ∈
L1/ρ

+ [a,b] , then

u(t) � (ψ(t)−ψ(a))−α
(

P(t)+
∫ t

a
Q(s)P(s)exp

(∫ t

s
Q(τ) dτ

)
ds

)ρ
.
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Moreover, we have

u(t) � 21−ρ p∗(t)(ψ(t)−ψ(a))−α exp

(
ρ

∫ t

a
Q(τ) dτ

)
.

In particular, if p = 0 a.e., then u = 0 a.e. on [a,b] . Herein P(t) = 21/ρ−1p1/ρ(t) ,
and Q(t) = 21/ρ−1D1/ρ ψ ′(t)κ1/ρ(t) with D = B1−ρ

(
(β − ρ)/(1− ρ),(1−α − γ −

ρ)/(1−ρ)
)
(ψ(b)−ψ(a))β−γ−(α+1)ρ .

REMARK 3. We emphasize that Henry [8] and Webb [21] considered the case
a = 0,b = T , ψ(t) = t , κ(t) = C and required α,β ∈ (0,1) and α + γ < β < 1. Zhu
[23] also used the condition β ∈ (0,1) . Our results require α + γ < min{1,β} and
β > 0.

Proof. Let us put
v(t) = (ψ(t)−ψ(a))αu(t). (10)

It is obvious to see that

Λ1,β ,γ(s, t,ψ)u(s) = Λ1,β ,α+γ(s,t,ψ)(ψ(s)−ψ(a))αu(s) = Λ1,β ,α+γ(s, t,ψ)v(s).

Thus, the inequality (9) gives

v(t) � p(t)+ (ψ(t)−ψ(a))α
∫ t

a
Λ1,β ,α+γ(s,t,ψ)κ(s)v(s) ds

� p(t)+ (ψ(b)−ψ(a))α
∫ t

a
Λ1,β ,α+γ(s,t,ψ)κ(s)v(s) ds.

Applying Theorem 1 with γ := α + γ and k(t) = (ψ(b)−ψ(a))ακ(t) , we have

v(t) �
(

P(t)+
∫ t

a
Q(s)P(s)exp

(∫ t

s
Q(τ) dτ

)
ds

)ρ
. (11)

We also have

v(t) �
(

P∗(t)exp

(∫ t

a
Q(τ) dτ

))ρ
. (12)

where P(t)= 21/ρ−1p1/ρ(t) , and Q(t)= 21/ρ−1D1/ρψ ′(t)κ1/ρ(t) with D = B1−ρ
(
(β −

ρ)/(1−ρ),(1−α−γ−ρ)/(1−ρ)
)
(ψ(b)−ψ(a))β−γ−(α+1)ρ . Pushing (10) into (11)

and (12), we obtain the results of Theorem. �

THEOREM 4. Let a,b ∈ R with a < b, and let βi > 0 , γi ∈ R , and γi + α <
min{1,βi} for i = 1,2 . Let ψ ∈C1

+[a,b] , and p∈ L∞
+[a,b] the non-decreasing function
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on [a,b] . Suppose that u ∈ L∞
+[a,b] satisfies the inequality

u(t) � p(t)(ψ(t)−ψ(a))−α

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β1−1(ψ(s)−ψ(a))−γ1k1(s)u(s) ds

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β2−1(ψ(s)−ψ(a))−γ2k2(s)u(s) ds.

For ρi ∈R such that 0 < ρi < min{1,1−α−γi} and βi−α −γi−ρi � 0 with i = 1,2 ,

if ki ∈ L1/ρi
+ [a,b] for i = 1,2 .

(i). Without lost of generality, we suppose further, that β1 � 1 , then we have

u(t) � 22−ρ1−ρ2 p(t)(ψ(t)−ψ(a))−α exp

(∫ t

a
(ρ2Q2(τ)+ ρ1Q1(τ)) dτ

)
,

where Q2(t) = 21/ρ2−1D1/ρ2
2 ψ ′(t)g1/ρ2(t) and Q1(t) = 21/ρ1−1D1/ρ1

1 ψ ′(t)h1/ρ1(t) with

Di = B1−ρi

(
(βi −ρi)/(1−ρi),(1− γi−ρi)/(1−ρi)

)
(ψ(b)−ψ(a))βi−γi−ρi (i = 1,2) ,

g(t)= (ψ(b)−ψ(a))αk2(t) and h(t)= 21−ρ2 exp
(

ρ2
∫ b
a Q2(τ) dτ

)
(ψ(b)−ψ(a))αk1(t) .

(ii). If max{β1,β2}< 1 and α +max{γ1,γ2}< min{β1,β2} , we put η = min{β1,β2} ,
σ = α +max{γ1,γ2} and

ϑ(t) = k1(t)(ψ(b)−ψ(a))β1+σ−η−γ1 + k2(t)(ψ(b)−ψ(a))β2+σ−η−γ2 .

We suppose further that ϑ ∈ L1/ρ
+ [a,b] for some 0< ρ < 1−σ such that η−σ −ρ � 0 ,

then

u(t) � 21−ρ p(t)exp

(
ρ

∫ t

a
Q(τ) dτ

)
,

where Q(t) = 21/ρ−1D1/ρψ ′(t)ϑ 1/ρ(t) with D = B1−ρ
(
(η − σ)/(1− σ),(1− η −

σ)/(1−σ)
)
(ψ(b)−ψ(a))η−σ−ρ .

Proof. We put
v(t) = (ψ(t)−ψ(a))αu(t).

Similar the proof of Theorem 2 and by direct computation, we obtain the desired results
of Theorem. We omit to perform it in detail here. �

We now establish some Bihari-type inequalities with doubly singular kernels. Firs-
tly, we have the following result.

THEOREM 5. Let a,b ∈ R with a < b, and let β > 0 , γ < min{1,β} . Let p ∈
L∞

+[a,b] , and ψ ∈C1
+[a,b] . Suppose that u ∈ L∞

+[a,b] satisfies the inequality

u(t) � p(t)+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β−1(ψ(s)−ψ(a))−γk(s)H(u(s)) ds,
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where H : R+ → R+ is a continuous and non-decreasing function. For ρ ∈ R such
that 0 < ρ < min{1,1− γ} and β − γ −ρ � 0 , we define

G(t) =
∫ t

t0

ds

H1/ρ(sρ )
, t0 � 0.

If k ∈ L1/ρ
+ [a,b] , then

u(t) �
(

G−1
(

G(P(t))+
∫ t

a
Q(s) ds

))ρ
for all t ∈ [a,T ],

where P(t)= 21/ρ−1p1/ρ(t) , and Q(t) = 21/ρ−1C1/ρψ ′(t)k1/ρ(t) with C =B1−ρ
(
(β −

ρ)/(1−ρ),(1−γ−ρ)/(1−ρ)
)
(ψ(b)−ψ(a))β−γ−ρ , and G−1 is the inverse function

of G and T > a is chosen so that G(P(t))+
∫ t
a Q(s) ds∈Dom

(
G−1

)
for any t ∈ [a,T ] .

REMARK 4. Medved [12] considered the case a = 0,b = T , ψ(t) = t , and re-
quired β > 1/2 and γ < 1/2, or β = 1/(m+1) and γ < 1/κ(m+2) for some κ > 1.
Our result is generalized and relaxed the above restrictions.

Proof. By the same method of the proof of Theorem 1, we can verify that

u1/ρ(t) � P(t)+
∫ t

a
Q(s)H1/ρ(u(s)) ds := L(t), (13)

where P(t) = 21/ρ−1p1/ρ(t) , and Q(t) = 21/ρ−1C1/ρψ ′(t)k1/ρ(t) with

C = B1−ρ
(
(β −ρ)/(1−ρ),(1− γ−ρ)/(1−ρ)

)
(ψ(b)−ψ(a))β−γ−ρ .

From (13), we find that G1/ρ(u(t)) � G1/ρ (Lρ(t)) . Therefore, we get

(G(L(t)))′ =
L′(t)

H1/ρ (Lρ(t))
=

P′(t)+Q(t)H1/ρ (u(t))
H1/ρ (Lρ(t))

� P′(t)
H1/ρ (Pρ(t))

+Q(t) = (G(P(t))′ +Q(t)

due to P(t) � L(t) for any t ∈ [a,b] . By integrating both side the last inequality on
[a,t] , we get

G
(
u1/ρ(t)

)
� G(L(t)) � G(P(t))+

∫ t

a
Q(s) ds.

The latter inequality leads to the desired result of Theorem. �

To close this section, we propose a Bihari-type inequality, in which the function u
may be singular. The result can be stated as follows.
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THEOREM 6. Let a,b∈ R with a < b, and let α � 0 , β > 0 , γ < min{1,β} . Let
p ∈ L∞

+[a,b] , and ψ ∈C1
+[a,b] . Suppose that (ψ(.)−ψ(a))αu ∈ L∞

+[a,b] satisfies the
inequality

u(t) � (ψ(t)−ψ(a))−α p(t)

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β−1(ψ(s)−ψ(a))−γκ(s)W (s,ψ ,u(s)) ds, (14)

where W : [a,b]×∈C1
+[a,b]×R+ → R+ .

If κ ∈ L1/ρ
+ [a,b] , and there exists a continuous and non-decreasing function ω :

R+ → R+ such that

W (t,ψ ,u(t)) � ω [(ψ(t)−ψ(a))αu(t)] , for any t ∈ [a,b],

then, for ρ ∈ R such that 0 < ρ < min{1,1− γ} and α + β − γ − (α + 1)ρ � 0 , we
have

u(t) � (ψ(t)−ψ(a))−α
(

F−1
(

F(P(t))+
∫ t

a
Q(s) ds

))ρ
for all t ∈ [a,T ],

where F(t)=
∫ t
t0

ds
ω1/ρ (sρ )

, t0 � 0 , P(t)= 21/ρ−1p1/ρ(t) , Q(t)= 21/ρ−1C1/ρ ψ ′(t)κ1/ρ(t)

with C = B1−ρ
(
(β − ρ)/(1−ρ),(1− γ − ρ)/(1−ρ)

)
(ψ(b)−ψ(a))α+β−γ−(α+1)ρ ,

and F−1 is the inverse function of F and T > a is chosen so that F(P(t))+
∫ t
a Q(s) ds∈

Dom
(
F−1

)
for any t ∈ [a,T ] .

REMARK 5. The results in Theorem 6 seem to be new and are still under consid-
eration in previous works.

Proof. Putting v(t) = (ψ(t)−ψ(a))αu(t) . Then the inequality (14) gives

v(t) � p(t)+ (ψ(b)−ψ(a))α
∫ t

a
Λ1,β ,γ(s,t,ψ)κ(s)ω(v(s)) ds,

Applying Theorem 5 with k(t) := (ψ(b)−ψ(a))ακ(t) , we get

v(t) �
(

F−1
(

F(P(t))+
∫ t

a
Q(s) ds

))ρ
,

where P(t)= 21/ρ−1p1/ρ(t) , and Q(t)= 21/ρ−1C1/ρψ ′(t)κ1/ρ(t) with C = B1−ρ
(
(β −

ρ)/(1−ρ),(1− γ −ρ)/(1−ρ)
)
(ψ(b)−ψ(a))α+β−γ−(α+1)ρ , and F−1 is the inverse

function of F , and T > a is chosen so that F(P(t))+
∫ t
a Q(s) ds ∈ Dom

(
F−1

)
for any

t ∈ [a,T ] . The last inequality leads to the desired result of Theorem. �
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3. Applications

We apply our results to study the existence and uniqueness of solution of a differ-
ential equation involving ψ -Hiffer fractional derivatives with weakly singular sources
and a class of integral with two singular kernels. We start by introducing the definitions
of fractional integrals and ψ -Hilfer fractional derivatives.

DEFINITION 1. (see [1, 10]) Let α > 0, ψ ∈C1
+[a,b] , and f an integrable func-

tion. Fractional integral of a function f with respect to another function ψ is defined
by

Iα ;ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ ′(τ)(ψ(t)−ψ(τ))α−1 f (τ) dτ.

DEFINITION 2. Let n ∈ N , n− 1 < α < n , ψ ∈C1
+[a,b] , and f ∈Cn[a,b] . The

left ψ -Hilfer fractional derivative HDα ,β ;ψ
a+ (.) of function of order α and type β ∈ [0,1]

is defined as [18]

HDα ,β ;ψ
a+ f (t) = Iβ (n−α);ψ

a+

(
1

ψ ′(t)
d
dt

)n

I(1−β )(n−α);ψ
a+ f (t).

For complete surveys of basic properties of the fractional integrals and ψ -Hilfer
fractional derivatives, we refer to [10, 18].

In this section, let us define the Banach space

C1−γ [a,b] =
{
u ∈C((a,b],R) : (ψ(.)−ψ(a))1−γu ∈C[a,b]

}
.

We denote the norm associated the space C1−γ [a,b] by

‖u‖γ = sup
t∈[a,b]

(ψ(t)−ψ(a))1−γ |u(t)|.

For k ∈ L∞[a,b] , we also denote |||k|||b = esssupa�t�b |k(t)| .
Using the above notations, we state and prove an useful lemma as follows.

LEMMA 2. Let α > 0 , γ ∈ (0,1] , and a < b, a � τ < t � b. Let ψ ∈ C1
+[a,b] ,

u ∈C1−γ ([a,b];R) . We denote

Su(t) =
∫ t

a
ψ ′(τ)(ψ(t)−ψ(τ))α−1 f (τ,ψ ,u(τ)) dτ,

BR = {u ∈C1−γ([a,b];R) : ||u||γ � R}.
Suppose that there exist ρ ∈ R with ρ +1− γ < min{1,α} and p > 0 such that

| f (t,ψ ,u)| � (ψ(t)−ψ(a))−ρ (A1|u|p +A2) for any t ∈ (a,b], u ∈ R.

Then S(BR) is equicontinuous on [a,b] and uniformly bounded.

Proof. The proof is similar to the one [3, Lemma 4.5], hence we omit it. �
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3.1. The initial problem with ψ -Hilfer fractional derivatives

In this part, we consider the existence and uniqueness of solution of a nonlinear
differential equation with respect to ψ -Hilfer fractional derivatives. Precisely, let 0 <
α < 1, 0 � β � 1, ψ ∈C1

+[a,b] , and f : (a,b)×C1
+[a,b]×R → R . We consider the

following problem {
HDα ;β ;ψ

a+ u(t) = f (t,ψ ,u), a < t � b,

I1−γu(a) = ua, ua ∈ R, γ = α + β −αβ .
(15)

We known from [17] that u(t) satisfies initial value problem (15) if u(t) satisfies the
second kind Volterra integral equation

u(t) =
(ψ(t)−ψ(a))γ−1

Γ(γ)
ua +

1
Γ(α)

∫ t

a
ψ ′(s)(ψ(t)−ψ(s))α−1 f (s,ψ ,u(s)) ds. (16)

DEFINITION 3. The solution of the equation (16) is called mild solution of the
problem (15).

To investigate the existence and uniqueness, the following assumptions are posed.

• Assumption (C 1). f ∈C
(
(a,b]×C1

+[a,b]×R;R
)
, and there exist M > 0, p �

0, ρ ∈ R , and κ1 : [a,b] → R+ such that

| f (t,ψ ,u)| � (ψ(t)−ψ(a))−ρ1(κ1(t)|u|p +M) for any u ∈ R, t ∈ (a,b].

• Assumption (C 2). There exist ρ1 ∈ R , and h ∈C ([a,b]×R,R) such that

| f (t,ψ ,u)− f (t,ψ ,v)| � (ψ(t)−ψ(a))−ρ1 |h(t,u)−h(t,v)| for all u,v ∈ R, t ∈ (a,b].

• Assumption (C 3). There exist ρ ∈ R , and κ : [a,b] → R+ such that

| f (t,ψ ,u)− f (t,ψ ,v)| � κ(t)(ψ(t)−ψ(a))−ρ|u− v| for any u,v ∈ R, t ∈ (a,b],

| f (t,ψ ,0)| � κ(t)(ψ(t)−ψ(a))−ρ.

THEOREM 7. Let 0 < α � 1 , 0 � β � 1 such that α + γ > 1 with γ = α +
β − αβ , and let ψ ∈ C1

+[a,b] , and ρ ,ρ1 ∈ R+ such that r = α + γ − ρ − 1, r1 =
α + γ −ρ1−1 > 0 . Suppose that the assumptions (C 1) and (C 2) hold. Then,

(i). The problem (15) has at least one mild solution belonging to C1−γ [a,b] when-
ever one of the following assertions is valid

(A1). 0 � p � 1 and k1 ∈ L1/r1
+ [a,b]∩L∞

+[a,b] .
(A2). p > 1 , k1 ∈ L∞

+[a,b] , and there exists a M > 0 such that

M > E +
Γ(1−ρ1− p(1− γ))

Γ(1+ α −ρ1− p(1− γ))
|||κ1|||bM p,

where E = |ua|/Γ(γ)+MΓ(1−ρ)/Γ(α −ρ +1)(ψ(b)−ψ(a))1+α−ρ−γ .

(ii). If the assumption (C 3) holds, and κ ∈ L1/r
+ [a,b]∩L∞

+[a,b] . Then the problem
(15) has a unique belonging to C1−γ [a,b] .
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Proof. We consider the operator Q : C1−γ [a,b]→C1−γ [a,b] defined by

Qu(t) =
ua

Γ(γ)
(ψ(t)−ψ(a))γ−1 +

1
Γ(α)

∫ t

a
ψ ′(s)(ψ(t)−ψ(s))α−1 f (s,ψ ,u(s)) ds.

(i). We put
BR = {u ∈C1−γ([a,b];R) : ||u||γ � R}.

Firstly, we consider the case the assertion (A1) holds. For 0 � p � 1, from the
assumption (C 1) , we can find that

| f (t,ψ ,u)| � (ψ(t)−ψ(a))−ρ1(|||κ1|||b|u|p +M)

� (ψ(t)−ψ(a))−ρ1(|||κ1|||b|u|+M1) for any u ∈ R, t ∈ (a,b],

where M1 = M + |||κ1|||b . Therefore, using Lemma 2, we can verify that Q(BR) is
equicontinuous and uniformly bounded. Base on the assumption (C 2) , by straightfor-
ward, we find that Q is a continuous operator. So we conclude that Q is a compact
operator in C1−γ [a,b] .

Continuously, let us denote

Ω =
{
u ∈C1−γ [a,b] : u = λQu for some λ ∈ [0,1]

}
.

If u ∈ Ω then |u(t)| � |Qu(t)| , by straightforward, one has

|u(t)| �
( |ua|

Γ(γ)
+M1

Γ(1−ρ1)
Γ(α −ρ1 +1)

(ψ(t)−ψ(a))1+α−ρ1−γ
)

(ψ(t)−ψ(a))γ−1

+
1

Γ(α)

∫ t

a
Λ1,α ,ρ1(s,t,ψ)κ1(s)|u(s)| ds (17)

due to B(α,1−ρ1)/Γ(α) = Γ(1−ρ1)/Γ(α −ρ1 +1) . We can apply Theorem 3 with
r1 = α + γ −ρ1−1 to (17), and obtain that

(ψ(t)−ψ(a))1−γ |u(t)| �
(

Φ(t)+
∫ t

a
Ψ(s)Φ(s)exp

(∫ t

s
Ψ(s) ds

)
ds

)r1
,

where Ψ(t) = D1/r1ψ ′(t)κ1/r1
1 (t) with D being a positive constant and

Φ(t)= 2(1−r1)/r1
(
|ua|/Γ(γ)+M1Γ(1−ρ1)/Γ(α−ρ1+1)(ψ(t)−ψ(a))1+α−ρ1−γ

)1/r1
.

From the latter inequality, we conclude that Ω is bounded. By virtue of the Leray-
Schauderfixed point theorem, we find that Q has at least one fixed point in C1−γ([a,b],R) ,
which is a mild solution of the problem (15) in C1−γ([a,b],R) .

Secondly, we consider the case the assertion (A2) holds. For p > 1, we put

Ω =
{

w ∈C1−γ([a,b],R) : ||w||γ < M
}

.
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Suppose that there exists u ∈ ∂Ω such that u = λQu for some λ ∈ (0,1) , by direct
computation, we get

(ψ(t)−ψ(a))1−γ |u(t)|

� |ua|
Γ(γ)+M Γ(1−ρ1)

Γ(α−ρ1+1) (ψ(t)−ψ(a))1+α−ρ1−γ

+
1

Γ(α)

∫ t

a
Λ1,α ,ρ1+p(1−γ)(s,t,ψ)κ1(s)

(
(ψ(s)−ψ(a))1−γ |u(s)|)p

ds

� E +
|||κ1|||b||u||pγ

Γ(α)

∫ t

a
Λ1,α ,ρ1+p(1−γ)(s,t,ψ) ds

� E +
Γ(1−ρ1− p(1− γ))

Γ(1+ α −ρ1− p(1− γ))
|||κ1|||b||u||pγ ,

where E = |ua|/Γ(γ)+MΓ(1−ρ1)/Γ(α −ρ1 +1)(ψ(b)−ψ(a))1+α−ρ1−γ . It implies
that

M � E +
Γ(1−ρ1− p(1− γ))

Γ(1+ α −ρ1− p(1− γ))
|||κ1|||bM p.

This contradicts the hypothesis. So, we conclude that there dose not exist u ∈ ∂Ω such
that u = λQu for some λ ∈ [0,1] . Therefore, the nonlinear Leray-Schauder alternatives
fixed point theorem (see [7, p.4]) implies that Q has a fixed point u ∈ Ω , which is a
mild solution of the problem (15) in C1−γ ([a,b],R) .

(ii). From the assumption (C 3) , we find that

| f (t,ψ ,u)| � (ψ(t)−ψ(a))−ρ(κ(t)|u|+ |||κ |||b) for any u ∈ R, t ∈ (a,b].

Using result in part (i), we conclude that the problem (15) has at least one mild solution
in C1−γ ([a,b],R) .

Finally, we prove that the uniqueness of solution of our problem. To this aim, let
us consider two mild solution u1,u2 of our problem. Base on the assumption (C 3) , by
direct computations, we have

|u1(t)−u2(t)| � 1
Γ(α)

∫ t

a
Λ1,α ,ρ(s,t,ψ)κ(s)|u1(s)−u2(s)| ds.

Using Theorem 1, we obtain the desired result of Theorem. �

3.2. A class of integral equation with two singular kernels

In this part, let α,β > 0, φ ∈ C[a,b] , and f ,g : (a,b]×C1
+[a,b]×R → R , we

consider the following integral equation

u(t) = φ(t)+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))α−1 f (s,ψ ,u(s)) ds

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β−1g(s,ψ ,u(s)) ds. (18)
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REMARK 6. The integral equation (18) is generalized from some of the integral
equations that appear in the study fractional Langevin equations (see [4, 22]).

In order to investigate the existence results, we use the following assumptions.

• Assumption (C 4). g∈C
(
(a,b]×C1

+[a,b]×R;R
)
, and there exist M > 0, ρ2 ∈

R , and κ2 : [a,b] → R+ such that

|g(t,ψ ,u)| � (ψ(t)−ψ(a))−ρ2(κ2(t)|u|+M) for any u ∈ R, t ∈ (a,b].

• Assumption (C 5). There exist ρ2 ∈ R , and � ∈C ([a,b]×R,R) such that

|g(t,ψ ,u)−g(t,ψ ,v)|� (ψ(t)−ψ(a))−ρ2 |�(t,u)− �(t,v)| for all u,v ∈ R, t ∈ (a,b].

THEOREM 8. Let a,b ∈ R with a < b, β1,β2 > 0 , and let ρ1,ρ2 ∈ R such that
ρ1 < {1,β1} and ρ2 < {1,β2} . Let ψ ∈C1

+[a,b] , and let the assumptions (C 1)−(C 2)
and (C 4)− (C 5) hold with κ1,κ2 ∈ L∞

+[a,b] . Then the problem (18) has at least one
solution in C[a,b] if one of the following conditions is satisfied.

(i). max{β1,β2} � 1 , φ the non-decreasing function on [a,b] , and κi ∈ L1/ri for
some 0 < ri < min{1,1−ρi} and βi−ρi− ri � 0 (i = 1,2) .

(ii). max{β1,β2} < 1 , and σ := max{ρ1,ρ2} < min{β1,β2} := η , and κi ∈ L1/r
+

for some 0 < r < 1−σ and η −σ − r � 0 .

Proof. We consider the operator P : C[a,b] →C[a,b] defined by

Pu(t) = φ(t)+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β1−1 f (s,ψ ,u(s)) ds

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β2−1g(s,ψ ,u(s)) ds.

From the assumptions (C 1) and (C 4) , we have

| f (t,ψ ,u)| � (ψ(t)−ψ(a))−ρ1(|||κ1|||b|u|+M) for any u ∈ R, t ∈ (a,b]

and

|g(t,ψ ,u)| � (ψ(t)−ψ(a))−ρ2(|||κ2|||b|u|+M) for any u ∈ R, t ∈ (a,b].

Therefore, using Lemma 2, we can verify that Pu is equicontinuous (with respect to t )
and bounded. Base on the assumptions (C 2) and (C 5) , by straightforward, we find
that P is a continuous operator. So we conclude that P is a compact operator in C[a,b] .

We denote

Ω = {u ∈C[a,b] : u = λPu for some λ ∈ [0,1]} .

For u ∈ Ω , using Lemma 1, the assumptions (C 1) and (C 4) , we have

|u(t)| � |Pu(t)| � φ(t)+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β1−1| f (s,ψ ,u(s))| ds

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β2−1|g(s,ψ ,u(s))| ds
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� H(t)+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β1−1(ψ(s)−ψ(a))−ρ1κ1(τ)|u(τ)| ds

+
∫ t

a
ψ ′(s)(ψ(t)−ψ(s))β2−1(ψ(s)−ψ(a))−ρ2κ2(τ)|u(τ)| ds,

(19)

where

H(t)= φ(t)+MB(β1,1−ρ1)(ψ(t)−ψ(a))β1−ρ1 +MB(β2,1−ρ2) (ψ(t)−ψ(a))β2−ρ2 .

We note that if φ is the non-decreasing function then H is also the non-decreasing
function. Therefore, applying Theorem 2 to integral inequality (19), we conclude that
Ω is bounded. So, using the Leray-Schauder fixed point theorem we obtain the desired
results of Theorem. �

4. Conclusions

We proposed and proved some new weakly Henry-Gronwall-Bihari type inequal-
ities for an appropriate function ψ , which are generalized from some recent works.
We applied the obtained results to study the existence and uniqueness of solution of a
fractional differential equation and a integral equation with weakly singular sources.

In future work, we hope that we can extend our results for the sum of n -integral
terms with doubly singular kernels and apply them to study nonlinear fractional differ-
ential or fractional partial differential equations involving generalized fractional deriva-
tives with weakly singular sources.
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