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SOME NOTES ON THE INCLUSION BETWEEN MORREY SPACES

PHILOTHEUS E. A. TUERAH AND NICKY K. TUMALUN*

(Communicated by L. Liu)

Abstract. In this paper, we show that the Morrey spaces ., (R") cannot be contained in the
weak Morrey spaces w,///q’; (R™) for g1 # q2. We also show that the vanishing Morrey spaces
V) (R") are not empty and properly contained in the Morrey spaces ML (RY).

1. Introduction

Let | <p<g<e and n>2. The Morrey space .#}(R") is the set of all
functions f € LlOC (R™) for which

Q=

1
1Ly = sup |BOe)[@ [ fllLr () < o

xeR™, r>0

£l e B r)) = (/BW) |f(Y)|de) ’

Here B(x,r) is the open ball in Euclidean space R”" with center x and radius r, and
|B(x,r)| denotes its Lebesgue measure. Meanwhile, the weak Morrey space w.#} (R")
is defined to be the set of all functions f € wL (R") for which

where

loc

1
P Hf”wL/’ < o,

N

1l = sup [BGer)

x€R™ r>0

where )
£ e (B(x,r) —suptl{yeB(x r) s |f) >,

and [{y € B(x,r) : | f(y)| > t}| also denotes the Lebesgue measure of the set {y € B(x,r):
|f(y)] >1}. Now, we define

VMR = {f € AMPRY): lim Ay (r) = 0} ,
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where

1_1
My (r) = sup [B(x,r)| 77| fll 1 B(x.r))-

xeR?
The set #.1)(R") is called the vanishing Morrey space. It is clear that .21 (R") is
a subset of .2} (R").

The Morrey spaces were introduced by C. B. Morrey [ 1] and the vanishing Morrey
spaces were introduced in [2]. Recently, many authors are attracted in studying the in-
clusion properties between Morrey spaces [3, 4, 5, 6, 7, 8]. One interesting result stated
in [5, Remark 4.5], that is, the weak Morrey spaces wg///[f1 (R") cannot be contained
in the weak Morrey spaces w.#]) (R") and vice versa, for distinct values g and g5.
This statement was deduced by a characterization of inclusion between weak Morrey
spaces and its parameters, which is proved by using Closed Graph Theorem and Mor-
rey norm estimate for the characteristic functions of balls [5, Theorem 4.4]. Regarding
to the inclusion between vanishing Morrey spaces and Morrey spaces over a bounded
domain, it was stated in [9] that the vanishing Morrey spaces are properly contained in
the Morrey spaces without giving an explicit counter example.

In this paper, we will prove that the Morrey spaces ./, (R") cannot be contained
in the weak Morrey spaces w.Z), (R") and the Morrey spaces .}, (R") cannot be
contained in the weak Morrey spaces w.#/ (R"), for different values ¢; and g . This
result is more general and sharp than the previous result in [5] since we can recover
that previous result and the fact that ./ (R") is a proper subset of w.Z} (R") [6,
Theorem 1.2]. We also note that our method here is different than in [5] because we
give a function which belongs to .2} (R")\w.#}, (R") and a function which belongs to
AP (R")\w.#] (R"). Furthermore, by using the idea in [8], we also show that the van-
ishing Morrey spaces #'.#[)(R") are non empty and properly contained in AP (R
by providing some examples.

The positive constant C that appears in the proofs of all theorems may vary from
line to line and the notation C = C(n, p,q) indicates that C depends only on n, p and

q.

2. A note on the inclusion between weak Morrey spaces

Letl<p<g<eand y= g < n. Define a function f: R” — R by the formula

) I y#0,
f(y)—{ 0. v_o (1)

Itis clear that 1 — %, < 0 and n— py > 0 by observing to the given assumptions.
The function f, that appears in Lemma | and 3, is defined by (1).

LEMMA 1. If x € R" and r > 0, then ||f||1r(xr) < Crv ™7 =Crr i, where
C=C(n,p.q).
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Proof. Note that

[ 1rway= | yI -y | Iy
B(xr) {yI<he—yl<r} {he=yl<iyn{le=yl<r}

=I1+1I.

Since n— py > 0, we have
1< / | PYdy=C / " Pl dr =Y
{Il<r 0
and
Hg/ \x—y\fm'dyzC/ (P dr = cr e,
{lx=yl<r} 0

by using polar coordinate for radial function. Therefore

1 e sy = (/B(x )

s

i 1
f(y)l”dy> "<c(er )T —en

<=
Y

which proves the lemma. [

The following lemma is not hard to prove. We leave its proof to the reader.
LEMMA 2. Let s >0, M >0, and ¢ : (0,00) — [0,00). If

sup @(t) =M = sup @(t),

0<t<s s<t<oo

then
sup () =

t>0

Using the above lemma, we can compute the weak Lebesgue norm of f on the
ball B(0,r) with arbitrary radius r.

LEMMA 3. If r>0, then || f o (8(0.)) =Cr " =Crath, where C=C(n,p,q).

Proof. Let r be an arbitrary positive real number. Note that, for every r > 0, we
have

{y € B(0,r): |f(y)| >t} = HyEBOr |y|<t7%})

) (0,7) B0, 7). )

We now define ¢ : (0,00) — [0, o) by the formula

() =1 |{y € BO,r): |F()] > 1}]7 . 3)
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_1
For every t > r~7, we obtain ¢ 7 < r. Then

=Ct 7,

<=

{y € B0, : FO)] > 1} = |BO,177)

by using (2). This gives us

n

1
1y € B(O,r): |f()] > 1} = Ct (,—%) P=a'Th, We(rTe). (@)

On the other hand, for every 7 < r~7, we have f% > r. Hence
{y € B(0,r):|f ()| > 2} = [B(0,r)| = C/",
which comes from (2). Therefore,
(€ BO,7): |f()] > )P =Cr(”")p =Cerb, Ve (0,57 5)
We obtain

ct' T, e (r77,00)
(p(t) = 1 n _
Ct(r")p =Ctrr, Vre(0,r77].
by virtue of (4) and (5). Observing ¢ non increasing on (r~7,o0) and non decreasing

on (0,r77], since 1 — %, < 0 and % > 0 respectively, then

sup @(t)=Cr 75 = sup o(r). ©6)

rY<t<eo 0<t<r=7

Thus

£ lwerBe0,r)) = SHOP(P(Z) =Cr’tr=craty,
1>

that is concluded from Lemma 2. [

By taking Lemma 2 and Lemma 3 as the tools, we are ready to state and prove the
first main result of this paper.

THEOREM 1. Let 1 <p<gq)<eand 1 <p<qy<eo.lIf g1 #q2, then M} (R") ¢
wAE (R") and 4L, (R") & watk (R").

Proof. We will only prove that .} (R") is not contained by w.Z} (R"). The
proof that .} (R") is not contained by w.#} (R") can be done by similar method.
Let y1 =n/q; and f; : R" — R, defined by the formula

) I, y#0,
fl(y)—{ 0. y=0.

We will show that f; € L (R")\w.#L,(R"). Let x € R" and r > 0 be arbitrarily
given. According to Lemma 1, by replacing y with y;, we obtain

n o n n

11 o
IB(x, )| P (| filloBgery) < Crov Preat =C < oo,
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This gives us

11
1filay = sup 1BOx, )7 P fill o () < oo
xeR

>0

since x and r are arbitrary. Whence f; € . (R"). By virtue to Lemma 3, we have

n_n n_ 11
[l > 1BODE filarisony = Crts b = ol a).

Hence ||fi]],,. g, = This is due to arbitrary r and gy # q». We conclude that
fi ¢ watl (R™). Thus, we have already proved that .} (R") ¢ w.#},(R"). O

As an immediate consequence of Theorem 1, we recover the result from [5] which
is stated in the following corollary.

COROLLARY 1. Let 1 < p< gy <eoand 1 < p < gy <eo. If q1 # qa, then
wE (R") & wat] (R") and WJ//,}; (R") & wat}, (R”)

3. A note on the inclusion between Morrey spaces and vanishing Morrey spaces

Let I<p<g<e and 0 = exp( ) Define a function g : R” — R by the

formula .
x8() P 0
8(y) = <|y|"f<lny>2> VA0 )

0, y=0,

where yp is a characteristic function defined on B = B(0,6).
The function g in the following lemma is defined by (7). This following lemma
shows that the vanishing Morrey spaces in a non empty set.

LEMMA 4. g€ V. #/H(R").

Proof. Let x € R" and r > 0 be arbitrarily given. Note that

1
L1 B(y !
1B, )| 7 18l < C / n_f_fp : )—’ @
<hyl<r [x—y|"~ 7 [y| 7 (In]y])?

x8(y)
(e i)
Ul o=y~ ] ¥ (in]y])2

=I1+II. ®)

==

Now we have two cases, thatis, § <r or r < §. Assume 0 < r, then we have

x8(y) 1 ( -1 )
1< _ABY) gy = —— _ay=C|—=), 9
/,y,<, N /\y\<6 yrapE® = \ing) ®
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and
= / ! dy < / ! dy
R kP Fp Fanpz - Jeoies P b2
-1
=C 10
(o) o
since 1/¢"7/4(In(t))? decreasing on interval (0,8). Assume r < §. We have
1 -1 -1
<[ 7dy=0<—)<c<—)7 an
i<r [y"(In]y[)2 In(r) In(8)

and

1 1
11:/ 3 — dy</ dy
{pe=yl<lyl<r} ‘x—y‘"7f|y|7p(ln‘y‘)2 [x—y[<r \x—y\"(ln|x—y|)2

N{[x—y[<r}
:C<_—1) gc<__1), (12)
In(r) In(d)

since 1/¢"7/4(In(r))? decreasing on interval (0,7) C (0,8). By virtue of (8), (9), (10),
(11), and (12), we conclude that

==

1 —Ly’
[B(x,r)| 4 ||g||u’<B<x’r>><I+H<C<W) ’

where C = C(n,p,q). This means g € .Z} (R"). We remaind to prove
lim .7 (r) = 0. (13)

r—0

For every 0 < r < §, we have shown that

This means (13) holds and the proof is done. [

Now we define a function that will play as an element of Morrey spaces but not in
the vanishing Morrey spaces. Let 1 < p < g < e. For every k € N, with k > 3, we set
x=(27%...,0) €R" and

np —k

875y e B8,
w(y) = € Blxi, 87

0, y¢&B(x,87").

Define a function u : R" — R by the formula

1

mw:<imw). (14)
k=3

We first claim that u belongs to the Morrey spaces .77 (R").
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LEMMA 5. u € .4} (R").

Proof. Let x € R" and r > 0 be arbitrarily given. There are two casses: (i) x ¢
B(x;,2(47%)) for every k >3, or, (i) x € B(x;,2(47/)) for some j > 3. Assume (i)
holds. Then

247 <=l < o=yl [y = <r 475

for every y € B(x,r) N B(x;,87%). This means r¢ " < 4"~ )* and
"y > n_ Pk )
A iy < 3400 824y
B(x,r) ,Zg B(x,r)NB(x,8)
=3

where C depends on n. Assume (ii) holds. Since {B(xk72(4fk))}k>3 is a disjoint col-
lection, then there is only one j > 3 such that x € B(x;,2(47/)) and x ¢ B(x;,2(47%))
for every k > 3 with k # j. Note that
P _p np i
ra 84 /dy < C < oo, (16)

/B(x,r)ﬁB(xj,S’f) /B(x,r)ﬁB(xj-,S’f)

where C depends on n,p, and g. By virtue of (16) and the computation of (15), we
have

np

np hd
ﬁ_"/ u(y)[Pdy =ra" / ug (v)dy
B(x,r) k§3 B(x,r)NB(x;,87F)

i (v)d
=r4q u;
B(x.)NB(x;.8~7) i

np
mw_,

+ra ur(y)dy

—3 /B(x,r)ﬁB(xk,S*k)
k£
<C+C Y 2T <o (17)
k=3
k#j
where C depends on n,p, and ¢g. Combining (16) and (17), whence

np

1.1 w_y, P
B Hlid e =€ (77 [ utiray) " <0<

where C depends on n, p, and q. Therefore u € .#} (R"). O

The following theorem states that the vanishing Morrey spaces is a non empty
proper subset of the Morrey spaces. This theorem is the second main result in this

paper.
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THEOREM 2. Let 1 < p <gq<oo. Then V. #}(R") is a non empty proper subset
of M} (R").

Proof. According to Lemma4, ¥ .7!(R") is non empty, and according to Lemma
5, the function u belongs to ///qp (R™). Therefore, we need only to show that u does
not belong to ¥.#%(R"). Let 0 < r < 1. By the Archimedan property, there is an

integer k > 3 such that 8% < r. Then

() = [ iy c / ¥)dy
’ B(x.r) B(x;,87%
:C/ g1k dy>c:8*"k/ ldy=C>0,
(xkvsik) B(xkvsik)

where C depends on n. This means .#¢(r) is bounded away from zero as r tends to
zero. Thus u ¢ ¥4 (R"). O
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