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Abstract. In this paper, we show that the Morrey spaces M p
q1(R

n) cannot be contained in the
weak Morrey spaces wM p

q2 (R
n) for q1 �= q2 . We also show that the vanishing Morrey spaces

V M p
q(Rn) are not empty and properly contained in the Morrey spaces M p

q (Rn) .

1. Introduction

Let 1 � p � q < ∞ and n � 2. The Morrey space M p
q (Rn) is the set of all

functions f ∈ Lp
loc(R

n) for which

‖ f‖M p
q

= sup
x∈Rn,r>0

|B(x,r)| 1
q− 1

p ‖ f‖Lp(B(x,r)) < ∞,

where

‖ f‖Lp(B(x,r)) =
(∫

B(x,r)
| f (y)|pdy

) 1
p

.

Here B(x,r) is the open ball in Euclidean space Rn with center x and radius r , and
|B(x,r)| denotes its Lebesgue measure. Meanwhile, the weak Morrey space wM p

q (Rn)
is defined to be the set of all functions f ∈ wLp

loc(R
n) for which

‖ f‖wM p
q

= sup
x∈Rn,r>0

|B(x,r)| 1
q− 1

p ‖ f‖wLp(B(x,r)) < ∞,

where
‖ f‖wLp(B(x,r)) = sup

t>0
t |{y ∈ B(x,r) : | f (y)| > t}| 1

p ,

and |{y ∈ B(x,r) : | f (y)| > t}| also denotes the Lebesgue measure of the set {y∈B(x,r) :
| f (y)| > t} . Now, we define

V M p
q(R

n) =
{

f ∈ M p
q (Rn) : lim

r→0
M f (r) = 0

}
,
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where

M f (r) = sup
x∈Rn

|B(x,r)| 1
q− 1

p ‖ f‖Lp(B(x,r)).

The set V M p
q(R

n) is called the vanishing Morrey space. It is clear that V M p
q(Rn) is

a subset of M p
q (Rn) .

The Morrey spaces were introduced by C. B. Morrey [1] and the vanishing Morrey
spaces were introduced in [2]. Recently, many authors are attracted in studying the in-
clusion properties between Morrey spaces [3, 4, 5, 6, 7, 8]. One interesting result stated
in [5, Remark 4.5], that is, the weak Morrey spaces wM p

q1(R
n) cannot be contained

in the weak Morrey spaces wM p
q2(R

n) and vice versa, for distinct values q1 and q2 .
This statement was deduced by a characterization of inclusion between weak Morrey
spaces and its parameters, which is proved by using Closed Graph Theorem and Mor-
rey norm estimate for the characteristic functions of balls [5, Theorem 4.4]. Regarding
to the inclusion between vanishing Morrey spaces and Morrey spaces over a bounded
domain, it was stated in [9] that the vanishing Morrey spaces are properly contained in
the Morrey spaces without giving an explicit counter example.

In this paper, we will prove that the Morrey spaces M p
q1(R

n) cannot be contained
in the weak Morrey spaces wM p

q2(R
n) and the Morrey spaces M p

q2(R
n) cannot be

contained in the weak Morrey spaces wM p
q1(R

n) , for different values q1 and q2 . This
result is more general and sharp than the previous result in [5] since we can recover
that previous result and the fact that M p

q (Rn) is a proper subset of wM p
q (Rn) [6,

Theorem 1.2]. We also note that our method here is different than in [5] because we
give a function which belongs to M p

q1(R
n)\wM p

q2(R
n) and a function which belongs to

M p
q2(R

n)\wM p
q1(R

n) . Furthermore, by using the idea in [8], we also show that the van-
ishing Morrey spaces V M p

q(R
n) are non empty and properly contained in M p

q (Rn)
by providing some examples.

The positive constant C that appears in the proofs of all theorems may vary from
line to line and the notation C = C(n, p,q) indicates that C depends only on n, p and
q .

2. A note on the inclusion between weak Morrey spaces

Let 1 � p < q < ∞ and γ = n
q < n . Define a function f : Rn −→R by the formula

f (y) =

{
|y|−γ , y �= 0,

0, y = 0.
(1)

It is clear that 1− n
pγ < 0 and n− pγ > 0 by observing to the given assumptions.

The function f , that appears in Lemma 1 and 3, is defined by (1).

LEMMA 1. If x ∈ Rn and r > 0 , then ‖ f‖Lp(B(x,r)) � Cr
n
p−γ = Cr

n
p− n

q , where
C = C(n, p,q) .
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Proof. Note that∫
B(x,r)

| f (y)|pdy =
∫
{|y|�|x−y|<r}

|y|−pγdy+
∫
{|x−y|<|y|}∩{|x−y|<r}

|y|−pγdy

= I + II.

Since n− pγ > 0, we have

I �
∫
{|y|<r}

|y|−pγdy = C
∫ r

0
tn−pγ−1dt = Crn−pγ

and

II �
∫
{|x−y|<r}

|x− y|−pγdy = C
∫ r

0
tn−pγ−1dt = Crn−pγ ,

by using polar coordinate for radial function. Therefore

‖ f‖Lp(B(x,r)) =
(∫

B(x,r)
| f (y)|pdy

) 1
p

� C
(
Cr

n
p−γ
) 1

p
= Cr

n
p− n

q ,

which proves the lemma. �
The following lemma is not hard to prove. We leave its proof to the reader.

LEMMA 2. Let s > 0 , M � 0 , and ϕ : (0,∞) −→ [0,∞) . If

sup
0<t�s

ϕ(t) = M = sup
s<t<∞

ϕ(t),

then
sup
t>0

ϕ(t) = M.

Using the above lemma, we can compute the weak Lebesgue norm of f on the
ball B(0,r) with arbitrary radius r .

LEMMA 3. If r > 0 , then ‖ f‖wLp(B(0,r)) =Cr−γ+ n
p =Cr−

n
q + n

p , where C =C(n, p,q) .

Proof. Let r be an arbitrary positive real number. Note that, for every t > 0, we
have

|{y ∈ B(0,r) : | f (y)| > t}| =
∣∣∣{y ∈ B(0,r) : |y| < t−

1
γ
}∣∣∣

=
∣∣∣B(0,r)∩B(0, t−

1
γ )
∣∣∣ . (2)

We now define ϕ : (0,∞) −→ [0,∞) by the formula

ϕ(t) = t |{y ∈ B(0,r) : | f (y)| > t}| 1
p . (3)
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For every t > r−γ , we obtain t−
1
γ < r . Then

|{y ∈ B(0,r) : | f (y)| > t}| =
∣∣∣B(0,t−

1
γ )
∣∣∣= Ct−

n
γ ,

by using (2). This gives us

t |{y ∈ B(0,r) : | f (y)| > t}| 1
p = Ct

(
t−

n
γ
) 1

p
= Ct1−

n
pγ , ∀t ∈ (r−γ ,∞). (4)

On the other hand, for every t � r−γ , we have t−
1
γ � r . Hence

|{y ∈ B(0,r) : | f (y)| > t}| = |B(0,r)| = Crn,

which comes from (2). Therefore,

t |{y ∈ B(0,r) : | f (y)| > t}| 1
p = Ct(rn)

1
p = Ctr

n
p , ∀t ∈ (0,r−γ] . (5)

We obtain

ϕ(t) =

{
Ct1−

n
pγ , ∀t ∈ (r−γ ,∞)

Ct(rn)
1
p = Ctr

n
p , ∀t ∈ (0,r−γ ] .

by virtue of (4) and (5). Observing ϕ non increasing on (r−γ ,∞) and non decreasing
on (0,r−γ ] , since 1− n

pγ < 0 and n
p > 0 respectively, then

sup
r−γ <t<∞

ϕ(t) = Cr−γ+ n
p = sup

0<t�r−γ
ϕ(t). (6)

Thus
‖ f‖wLp(B(0,r)) = sup

t>0
ϕ(t) = Cr−γ+ n

p = Cr−
n
q + n

p ,

that is concluded from Lemma 2. �
By taking Lemma 2 and Lemma 3 as the tools, we are ready to state and prove the

first main result of this paper.

THEOREM 1. Let 1 � p < q1 < ∞ and 1 � p < q2 < ∞ . If q1 �= q2 , then M p
q1(R

n) �
wM p

q2(R
n) and M p

q2(R
n) � wM p

q1(R
n) .

Proof. We will only prove that M p
q1(R

n) is not contained by wM p
q2(R

n) . The
proof that M p

q2(R
n) is not contained by wM p

q1(R
n) can be done by similar method.

Let γ1 = n/q1 and f1 : Rn −→ R , defined by the formula

f1(y) =

{
|y|−γ1 , y �= 0,

0, y = 0.

We will show that f1 ∈ M p
q1(R

n)\wM p
q2(R

n) . Let x ∈ Rn and r > 0 be arbitrarily
given. According to Lemma 1, by replacing γ with γ1 , we obtain

|B(x,r)| 1
q1

− 1
p ‖ f1‖Lp(B(x,r)) � Cr

n
q1

− n
p r

n
p− n

q1 = C < ∞.
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This gives us

‖ f1‖M p
q1

= sup
x∈Rn,r>0

|B(x,r)| 1
q1

− 1
p ‖ f1‖Lp(B(x,r)) < ∞,

since x and r are arbitrary. Whence f1 ∈ M p
q1(R

n) . By virtue to Lemma 3, we have

‖ f1‖wM p
q2

� |B(0,r)| 1
q2

− 1
p ‖ f1‖wLp(B(0,r)) = Cr

n
q2

− n
p r

n
p− n

q1 = Cr
n
(

1
q2

− 1
q1

)
.

Hence ‖ f1‖wM p
q2

= ∞ . This is due to arbitrary r and q1 �= q2 . We conclude that

f1 /∈ wM p
q2(R

n) . Thus, we have already proved that M p
q1(R

n) � wM p
q2(R

n) . �
As an immediate consequence of Theorem 1, we recover the result from [5] which

is stated in the following corollary.

COROLLARY 1. Let 1 � p < q1 < ∞ and 1 � p < q2 < ∞ . If q1 �= q2 , then
wM p

q1(R
n) � wM p

q2(R
n) and wM p

q2(R
n) � wM p

q1(R
n) .

3. A note on the inclusion between Morrey spaces and vanishing Morrey spaces

Let 1 � p < q < ∞ and δ = exp(−2q
np ) . Define a function g : Rn −→ R by the

formula

g(y) =

⎧⎪⎨
⎪⎩

(
χB(y)

|y|
np
q (ln |y|)2

) 1
p

, y �= 0,

0, y = 0,

(7)

where χB is a characteristic function defined on B = B(0,δ ) .
The function g in the following lemma is defined by (7). This following lemma

shows that the vanishing Morrey spaces in a non empty set.

LEMMA 4. g ∈ V M p
q(R

n) .

Proof. Let x ∈ Rn and r > 0 be arbitrarily given. Note that

|B(x,r)| 1
q− 1

p ‖g‖Lp(B(x,r)) � C

(∫
|y|�|x−y|<r

χB(y)

|x− y|n− np
q |y| np

q (ln |y|)2
dy

) 1
p

+C

(∫
{|x−y|<|y|}
∩{|x−y|<r}

χB(y)

|x− y|n− np
q |y| np

q (ln |y|)2
dy

) 1
p

= I + II. (8)

Now we have two cases, that is, δ � r or r < δ . Assume δ � r , then we have

I �
∫
|y|<r

χB(y)
|y|n(ln |y|)2 dy =

∫
|y|<δ

1
|y|n(ln |y|)2 dy = C

( −1
ln(δ )

)
, (9)
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and

II =
∫
{|x−y|<|y|<δ}
∩{|x−y|<r}

1

|x− y|n− np
q |y| np

q (ln |y|)2
dy �

∫
|x−y|<δ

1
|x− y|n(ln |x− y|)2 dy

= C

( −1
ln(δ )

)
, (10)

since 1/tnp/q(ln(t))2 decreasing on interval (0,δ ) . Assume r < δ . We have

I �
∫
|y|<r

1
|y|n(ln |y|)2 dy = C

( −1
ln(r)

)
� C

( −1
ln(δ )

)
, (11)

and

II =
∫
{|x−y|<|y|<r}
∩{|x−y|<r}

1

|x− y|n− np
q |y| np

q (ln |y|)2
dy �

∫
|x−y|<r

1
|x− y|n(ln |x− y|)2 dy

= C

( −1
ln(r)

)
� C

( −1
ln(δ )

)
, (12)

since 1/tnp/q(ln(t))2 decreasing on interval (0,r) ⊆ (0,δ ) . By virtue of (8), (9), (10),
(11), and (12), we conclude that

|B(x,r)| 1
q− 1

p ‖g‖Lp(B(x,r)) � I + II � C

( −1
ln(δ )

) 1
p

,

where C = C(n, p,q) . This means g ∈ M p
q (Rn) . We remaind to prove

lim
r→0

M f (r) = 0. (13)

For every 0 < r < δ , we have shown that

M f (r) � C

( −1
ln(r)

) 1
p

.

This means (13) holds and the proof is done. �
Now we define a function that will play as an element of Morrey spaces but not in

the vanishing Morrey spaces. Let 1 � p < q < ∞ . For every k ∈ N , with k � 3, we set
xk = (2−k, . . . ,0) ∈ Rn and

uk(y) =

{
8

np
q k, y ∈ B(xk,8−k),

0, y /∈ B(xk,8−k).

Define a function u : Rn −→ R by the formula

u(y) =

(
∞

∑
k=3

uk(y)

) 1
p

. (14)

We first claim that u belongs to the Morrey spaces M p
q (Rn) .



SOME NOTES ON THE INCLUSION BETWEEN MORREY SPACES 361

LEMMA 5. u ∈ M p
q (Rn) .

Proof. Let x ∈ Rn and r > 0 be arbitrarily given. There are two casses: (i) x /∈
B(xk,2(4−k)) for every k � 3, or, (ii) x ∈ B(x j,2(4− j)) for some j � 3. Assume (i)
holds. Then

2(4−k) � |x− xk| � |x− y|+ |y− xk| < r+4−k,

for every y ∈ B(x,r)∩B(xk,8−k) . This means r
np
q −n � 4(n− np

q )k and

r
np
q −n

∫
B(x,r)

|u(y)|pdy �
∞

∑
k=3

4(n− np
q )k
∫

B(x,r)∩B(xk,8−k)
8

np
q kdy

� C
∞

∑
k=3

2( np
q −n)k < ∞, (15)

where C depends on n . Assume (ii) holds. Since {B(xk,2(4−k))}k�3 is a disjoint col-
lection, then there is only one j � 3 such that x ∈ B(x j,2(4− j)) and x /∈ B(xk,2(4−k))
for every k � 3 with k �= j . Note that

r
np
q −n

∫
B(x,r)∩B(x j ,8− j)

u j(y)dy = r
np
q −n

∫
B(x,r)∩B(x j ,8− j)

8
np
q jdy � C < ∞, (16)

where C depends on n, p , and q . By virtue of (16) and the computation of (15), we
have

r
np
q −n

∫
B(x,r)

|u(y)|pdy = r
np
q −n

∞

∑
k=3

∫
B(x,r)∩B(xk,8−k)

uk(y)dy

= r
np
q −n

∫
B(x,r)∩B(x j ,8− j)

u j(y)dy

+ r
np
q −n

∞

∑
k=3
k �= j

∫
B(x,r)∩B(xk,8−k)

uk(y)dy

� C+C
∞

∑
k=3
k �= j

2( np
q −n)k < ∞, (17)

where C depends on n, p , and q . Combining (16) and (17), whence

|B(x,r)| 1
q− 1

p ‖u‖Lp(B(x,r)) = C

(
r

np
q −n

∫
B(x,r)

|u(y)|pdy

) 1
p

� C < ∞,

where C depends on n, p , and q . Therefore u ∈ M p
q (Rn) . �

The following theorem states that the vanishing Morrey spaces is a non empty
proper subset of the Morrey spaces. This theorem is the second main result in this
paper.
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THEOREM 2. Let 1 � p < q < ∞ . Then V M p
q(R

n) is a non empty proper subset
of M p

q (Rn) .

Proof. According to Lemma 4, V M p
q(Rn) is non empty, and according to Lemma

5, the function u belongs to M p
q (Rn) . Therefore, we need only to show that u does

not belong to V M p
q(Rn) . Let 0 < r < 1. By the Archimedan property, there is an

integer k � 3 such that 8−k < r . Then

(
M f (r)

)p � Cr
np
q −n

∫
B(xk,r)

|u(y)|pdy � C
∫

B(xk,8−k)
uk(y)dy

= C
∫

B(xk,8−k)
8

np
q kdy � C8−nk

∫
B(xk,8−k)

1dy = C > 0,

where C depends on n . This means M f (r) is bounded away from zero as r tends to
zero. Thus u /∈ V M p

q(Rn) . �
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