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Abstract. In this paper, we create new types of upper and lower bounds of Heinz means using
simplified relations based on hyperbolic functions. In particular, for any strictly positive opera-
tors A,B ∈ B(H ) ,we obtain the inequality

A#2μ−τB+A#1−τB < 2Hτ (A,B) < A#τB+A#1−(2μ−τ)B,

where 0 < A < B and 0 < μ < τ < 1.

1. Introduction

If a and b are two positive numbers and μ ∈ [0,1] , then the weighted arithmetic
mean, weighted geometric mean and Heinz mean in the parameter μ are defined by

a∇μb := (1− μ) a+ μb,

a#μb := a1−μbμ

and

Hμ(a,b) :=
1
2
(a#μb+a#1−μb),

respectively.
It is well-known that

a#μb � a∇μb. (1.1)

we simply denote a∇ 1
2
b and a# 1

2
b by a∇b and a#b , receptively.

The following inequalities come directly by taking the maximum and minimum
values of the Heinz mean

a # b � Hμ(a,b) � a ∇b. (1.2)

In [3, Therorem 2.1] and [6, Theorem 2.1], Kittaneh and Manasrah gave some
refinements of inequalities (1.1) and (1.2) as follows:

2r0(a∇b−a#b) � a∇μb−a#μb � 2R0(a∇b−a#b), (1.3)
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2r0(a∇b−a#b) � a∇b−Hμ(a,b) � 2R0(a∇b−a#b), (1.4)

where 0 � μ � 1, r0 = min {μ ,1− μ} and R0 = max {μ ,1− μ}.
Another refinement of inequality (1.2) was given in [4, Corollary2.7] and [8, In-

equality2.5] as follows:

4μ(1− μ)(a∇b−a#b)� a∇b−Hμ(a,b) � 1
2

μ(1− μ)(b−a) ln
b
a
. (1.5)

On the other hand, Zhu [17, Theorem 1.2] obtained a lower bound for the Heinz
mean as follows:

a1−τbτ −aτb1−τ

(1−2τ)(ln a− ln b)
< Hμ(a,b), (1.6)

where a,b > 0, a �= b , and (1−2τ)2 � (1−2μ)2.
More motivating inequalities related to the Heinz means can be found in [1], [4],

[9], [10] and [15].
Throughout this paper, indicate the space of bounded linear operators on a Hilbert

space H by B(H ) . For A,B ∈ B(H ) , we write A < B to mean B−A is positive
definite, particularly, 0 < A denotes that A is positive definite. By considering the
definitions of means in the scalar case, such definitions can be raised up to the operator
level. For μ ∈ [0,1] , the weighted arithmetic operator mean ∇μ and geometric operator
mean #μ are defined as follows:

A∇μB = (1− μ)A+ μB,

A#μB = A
1
2 (A

−1
2 BA

−1
2 )μA

1
2 ,

for positive definite operators A,B ∈ B(H ) .
If μ = 1

2 , we write A∇B and A#B to denote the arithmetic operator mean and
geometric operator mean, respectively. By recognizing the above definitions, the Heinz
operator mean is given by

Hμ(A,B) =
A#μB+A#1−μB

2
.

An operator version of (1.1) and (1.2) due to Furuta [2] and Kittaneh et al. [5] are
the following inequalities

A#μB � A∇μB, (1.7)

A#B � Hμ(A,B) � A∇B. (1.8)

Recently, such operator mean inequalities are under active investigations. The
authors in [7, Theorem 4] and [6, Corollary 3.1] established the following refinements
of the inequalities in (1.7) and (1.8) as follows:

2r0(A∇B−A#B) � A∇μB−A#μB � 2R0(A∇B−A#B), (1.9)

2r0(A∇B−A#B) � A∇B−Hμ(A,B) � 2R0[A∇B−A#B], (1.10)

where 0 � μ � 1 ,r0 = min{μ ,1− μ} and R0 = max{μ ,1− μ} .
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The generalized hyperbolic cosine and hyperbolic sine functions which play a vital
role in our research are introduced in [13] as:

cosha(z) =
az +a−z

2
and sinha(z) =

az−a−z

2
,

where a,z ∈ R and a > 1.
In this paper, we are interested in finding new ordering relations for the Heinz op-

erator means by adapting generalizations of hyperbolic functions and using the mono-
tonicity principle for bounded self-adjoint operators on the Hilbert space H [15]: Let
T ∈ B(H ) be self-adjoint with a spectrum Sp(T ) and let f and g be continuous real
functions such that f (t) � g(t) for all t ∈ Sp(T ) . Then f (T ) � g(T ) .

2. Preliminaries

We use the simplified relations

coshax =
a1−τbτ +aτb1−τ

2
√

ab
=

Hτ(a,b)√
ab

, (2.1)

sinhax
ax

=
a1−τbτ −aτb1−τ

(1−2τ)(ln a− ln b)
1√
ab

, (2.2)

where 0 < a < b , 0 < τ < 1, τ �= 1
2 , a = 1−2τ and x = 1

2 (ln a− ln b) .
If x,y ∈ R and x < y , then we have [12]

e−(y−x) ln(a) <
cosha(y)
cosha(x)

< e(y−x) ln(a) (2.3)

In addition, for z ∈ (0,1), the inequality

eαz2 < cosha(z) < eβ z2 , (2.4)

where α = ln(a+ 1
a )− ln2 and β = ln2 a

2 holds [12].
For z �= 0, we have [11,12]

ln(a)
cosha(z)

<
sinha(z)

z
< ln(a) cosha(z), (2.5)

and
sinha(z)

z
<

(2+ cosha(z)) ln (a)
3

(2.6)

Moreover,

cosha(z) <

(
sinha(z)

z

)q

, (2.7)

for every q � 3.
Furthermore, it is known that [12] if z ∈ (0,∞) , then

ln(a) cosha

( z
2

)
<

sinha(z)
z

< ln(a)cosh2
a

( z
2

)
. (2.8)

Note that, when a = e , the ineuality (2.6) is reduced to the hyperbolic Cusa-
Huygens inequality [14].
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3. Scalar results

We start our work by establishing some new scalar inequalities related to the Heinz
means by the help of hyperbolic functions.

THEOREM 3.1. Let 0 < a < b and 0 < μ < τ < 1 . Then

(a
b

)τ−μ
Hμ(a,b) < Hτ(a,b) <

(a
b

)μ−τ
Hμ(a,b). (3.1)

Proof. Let α = 1− 2τ and β = 1− 2μ . Then for x = 1
2 (lna− lnb) , we have

βx < αx .
So, inequality (2.3) implies

e−(αx−β x) <
coshαx
coshβx

< e(αx−β x).

Hence,

e−(αx−β x) <
Hτ(a,b)
Hμ(a,b)

< e(αx−β x).

By using the equation α −β = 2(μ − τ) , we have

e−2(μ−τ)xHμ(a,b) < Hτ(a,b) < e2(μ−τ)xHμ(a,b).

By taking x = 1
2(lna− lnb) , we complete the proof. �

A nice result is given in the following corollary by letting μ = 1
2 in theorem3.1.

COROLLARY 3.1. Let 0 < a < b and 1
2 < τ < 1 . Then

aτb1−τ < Hτ(a,b) < a1−τbτ (3.2)

The following theorem provides a new upper and lower bounds for the Heinz
means.

THEOREM 3.2. Let 0 < a < b and 0 < τ < 1
2 . Then

(
a2 +b2

2ab

)τ2

<
H 1−2τ

2
(a,b)

√
ab

<

(
b
a

) τ2 ln( b
a )

2

(3.3)

Proof. Inequality (2.4) implies

eατ2
<

( b
a )

τ
+( b

a)
−τ

2
< eβ τ2

,

where α = ln ( b
a + a

b)− ln 2 and β = 1
2 ln 2( b

a) .
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Thus, (
a2 +b2

2ab

)τ2

<
( b

a )τ +( b
a)

−τ

2
<

(
b
a

) τ2 ln ( b
a )

2

So, we complete the proof. �
In the following theorem we construct other ordering relations for the Heinz means

using inequalities (2.5), (2.6), (2.7) and the relations (2.1) and (2.2).

THEOREM 3.3. Let 0 < a < b and 0 < τ < 1 with τ �= 1
2 . Then the following

inequalities hold

i. ab
Hτ (a,b) < a1−τ bτ−aτ b1−τ

(1−2τ)(lna−lnb) < Hτ(a,b). (3.4)

ii. a1−τ bτ−aτb1−τ

(1−2τ)(lna−lnb) < 2
3

√
ab+ 1

3Hτ (a,b). (3.5)

iii. Hτ(a,b) < (a#b)1−q
(

a1−τbτ−aτ b1−τ

(1−2τ)(lna−lnb)

)q
, q � 3. (3.6)

Consider the function fμ : R
+×R

+ → R defined by

fμ(a,b) =
a1−μbμ −aμb1−μ

(1−2μ)(lna− lnb))
, μ ∈ [0,1], μ �= 1

2
and a �= b.

It is clear that fμ is decreasing on 0 � μ < 1
2 and increasing on 1

2 < μ � 1. So,
Theorem 3.3 (i) yields

a1−τbτ −aτb1−τ

(1−2τ)(lna− lnb)
<

a1−μbμ −aμb1−μ

(1−2μ)(lna− lnb)
< Hμ(a,b), (3.7)

for 0 < a < b and 0 < μ < τ < 1
2 . Thus, inequality (3.7) is more precise than inequality

(1.6).
The following series of inequalities presents some new comparisons of Heinz op-

erator means with the function fμ(a,b) with different parameters.

THEOREM 3.4. Let 0 < a < b and 1
2 < μ < τ < 1 . Then

H 1+2μ
4

(a,b) <
a1−τbτ −aτb1−τ

(1−2τ)(lna− lnb)
<

1√
ab

H2
1+2μ

4
(a,b). (3.8)

Proof. Let α = 1−2τ , β = 1−2μ and x = 1
2(lna− lnb) . Then

cosh

(
βx
2

)
=

e( βx
2 ) + e−( βx

2 )

2
=

( a
b )

β
4 +( a

b)
−β
4

2

=
a( 1

2− β
4 )b( 1

2 + β
4 ) +a( 1

2 + β
4 )b( 1

2− β
4 )

2
√

ab
=

1√
ab

H 1+2μ
4

(a,b).
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Since βx < αx , inequality (2.8) implies

cosh

(
βx
2

)
< cosh

(αx
2

)
<

sinhax
ax

< cosh2
(ax

2

)

Thus, by using inequality (2.1)

H 1+2μ
4

1√
ab

<
a1−τbτ −aτb1−τ

(1−2τ)(lna− lnb)
√

ab
<

1
ab

H2
1+2μ

4
(a,b). �

4. Operator results

Based on inequality (3.1) and by virtue of the monotonicity principle, we obtain a
new upper and lower bounds for the Heinz operator means.

THEOREM 4.1. Let A,B ∈ B(H ) be such that 0 < A < B and 0 < μ < τ < 1 .
Then

A#2μ−τB+A#1−τB < 2Hτ(A,B) < A#τB+A#1−(2μ−τ)B. (4.1)

In particular, if μ = 1
2 , then we have

A#1−τB < Hτ(A,B) < A#τB. (4.2)

Proof. Let T = A− 1
2 BA− 1

2 . Then T > I , where I is the identity operator, and if
t ∈ σ(T ) , we have

(
1
t

)τ−μ
Hμ(1,t) = tμ−τ

(
tμ + t1−μ

2

)
<

tτ + t1−τ

2
< tτ−μ

(
tμ + t1−μ

2

)

=
(

1
t

)μ−τ
Hμ(1,t).

Now, monotonicity principle implies

T μ−τ
(

T μ +T 1−τ

2

)
<

T τ +T 1−τ

2
< T τ−μ

(
T μ +T1−τ

2

)

By multiplying both sides by A
1
2 , we get

A
1
2 (A− 1

2 BA− 1
2 )2μ−τA

1
2 +A

1
2 (A− 1

2 BA− 1
2 )1−τA

1
2

2

<
A

1
2 (A− 1

2 BA− 1
2 )τA

1
2 +A

1
2 (A− 1

2 BA− 1
2 )1−τA

1
2

2

<
A

1
2 (A− 1

2 BA− 1
2 )τA

1
2 +A

1
2 (A− 1

2 BA− 1
2 )1−(2μ−τ)A

1
2

2

Hence,
A#2μ−τB+A#1−τB < 2Hτ(A,B) < A#τB+A#1−(2μ−τ)B. �
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Finally, the operator versions of the inequalities (3.3), (3.6), (3.5) and (3.8) are ob-
tained by using the monotonicity principle in a similar way as in the proof of Theorem
4.1. Here, we regard the function Fμ as introduced in [7],

Fμ =
{

xμ−x1−μ

lnx , x > 0, x �= 1
2μ −1, x = 1

,

where 0 � μ � 1.
Now we are ready to present new inequalities for Heinz, geometric and arithmetic

means. The proofs are passed on the monotonicity property for matrices and Theorem
3.2 Theorem 3.3 (iii), Theorem 3.3 (ii) and Theorem (3.4), respectively.

THEOREM 4.2. Let A, B ∈ B(H ) be such that 0 < A < B. Then the following
inequalities hold:

i. For 0 < τ < 1
2 ,

21−τ2
A

1
2

(
(A− 1

2 BA− 1
2 )2 + I

)τ2

A
1
2 < A#τ(τ−1)B+A#τ(τ+1)B. (4.3)

ii. For 0 < τ < 1 , τ �= 1
2 and q � 3 ,

A# 1
2 (q−1)+τB+A# 1

2 (q+1)−τB <
2

(2τ −1)q A
1
2

(
Fτ(A− 1

2 BA− 1
2 )

)q
A

1
2 . (4.4)

iii. For 0 � τ � 1 ,

1
2τ −1

A
1
2 Fτ(A− 1

2 BA− 1
2 )A

1
2 <

2
3
A#B+

1
3
Hτ (A,B). (4.5)

iv. For 1
2 < μ � τ < 1 ,

H 1+2μ
4

(A,B) <
1

(2τ −1)
A

1
2 Fτ(A− 1

2 BA− 1
2 )A

1
2 <

1
2
[Hμ(A,B)+A#B]. (4.6)

It should be noticed here inequality (4.5) was obtained by Liang and Shi in [9].
Also, inequality (4.6) is a refinement of Heinz operator mean inequality since

A#B < H 1+2μ
4

(A,B) <
1

(2τ −1)
A

1
2 Fτ(A− 1

2 BA− 1
2 )A

1
2

<
1
2
[Hμ(A,B)+A#B] < Hμ(A,B)

and this refinment has been explored in [7].
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