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ROUGH FRACTIONAL INTEGRAL

OPERATORS ON MORREY––ADAMS SPACES
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Abstract. In 1981, Adams introduced another variant of Morrey spaces, and we call it the
Morrey–Adams space. In this paper, we investigate the boundedness of rough fractional inte-
gral operators on Morrey–Adams spaces under a weaker condition. We compare it with Adams’
results. We then refine the results to vanishing Morrey–Adams spaces in the local sense. We
also prove the beyond Adams’ inequality of rough fractional integral operators on local Morrey–
Adams spaces for the radial functions.

1. Introduction

Let 1 � p < ∞ and λ ∈ R . It is well known that the Morrey space Lp,λ is the set
of f with

‖ f‖Lp,λ = sup
x∈Rn,r>0

r−
λ
p ‖ f‖Lp(B(x,r)) < ∞

where B(x,r) = {y ∈ R
n; |y− x| < r} . The Morrey space contains some non-trivial

functions if 0 � λ � n . The simplest example is the characteristic function χB(0,r0)

with ‖χB(0,r0)‖Lp,λ = cnr
n−λ

p
0 and cn is a positive constant.

Note that, the Morrey norm ‖ · ‖Lp,λ can be written as

‖ f‖Lp,λ = sup
x∈Rn

∥∥∥| · |− λ
p ‖ f‖Lp(B(x,·))

∥∥∥
L∞(0,∞)

.

In 1981, Adams introduced the function space Lp,λ
θ by replacing the L∞ -norm

‖·‖L∞(0,∞) within the Morrey norm into the Lθ -norm ‖·‖Lθ (0,∞) for 1 � θ < ∞ [5, 11].

The space Lp,λ
θ is the set of f with

‖ f‖
Lp,λ

θ
= sup

x∈Rn

(∫ ∞

0
r−

λθ
p ‖ f‖θ

Lp(B(x,r))dr

) 1
θ

< ∞.
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By [10, Lemma 1], the space Lp,λ
θ is non-trivial if p

θ < λ < n + p
θ . For example,

‖χB(0,r0)‖Lp,λ
θ

= cnr
n−λ

p + 1
θ

0 where cn is a positive constant. The interesting thing about

Lp,λ
θ is that the λ can be greater than the dimension of the function’s domain.

Similar to the relation between Lebesgue space Lθ (0,∞) and L∞(0,∞) , there is

no inclusion property between Lp,λ
θ and Lp,λ . In instance, we have f (x) = |x|− n−λ

p in

Lp,λ \ Lp,λ
θ . On the other hand, the function g(x) = |x|− n−κ

p χB(0,1)(x) with n > κ >

λ − p
θ is in Lp,λ

θ \Lp,λ .

In the last decade, some authors call the general version of Lp,λ
θ (which contains

some weight function), and they call the space Morrey-type space (see [3, 4, 10, 11]).
In this paper, we call Lp,λ

θ the Morrey–Adams space.
The aim of this paper is to investigate the behavior of rough fractional integral

operators on Morrey–Adams spaces. Let 0 < α < n . Let Ω be a zero degree homoge-
neous function in R

n ; Ω(τx) = Ω(x) for any x ∈ R
n and τ > 0. The rough fractional

integral operator TΩ,α is defined as

TΩ,α f (x) =
∫

Rn

Ω(x− y)
|x− y|n−α f (y)dy.

We have the following two boundedness properties of TΩ,α .

THEOREM 1. Let 1 < p < ∞ , 0 < α < min{n, n−λ
p + 1

θ } ,

n− μ
q

+
1
ϕ

=
n−λ

p
+

1
θ
−α,

θ (n−λ )
ϕ(n− μ)

=
p
q
.

If Ω∈ Ls(Sn−1) with s � p′ = p
p−1 and λ � μ < n or n < μ � λ , then TΩ,α is bounded

from Lp,λ
θ to Lq,μ

ϕ .

THEOREM 2. Let 1 < p < ∞ , 0 < α < min{n, 1
θ } ,

1
ϕ

=
1
θ
−α,

θ
ϕ

� p
q
.

If Ω ∈ Ls(Sn−1) with s � p′ = p
p−1 , then TΩ,α is bounded from Lp,n

θ to Lq,n
ϕ .

For the case of μ = λ and Ω ≡ 1, we note that Theorems 1 and 2 are similar to
[11, Theorem 3]. We also note that the condition θ

ϕ � p
q in Theorem 2 is weaker than

[11, Theorem 3]. For the case θ = ϕ = ∞ , Theorem 1 reconstructs the boundedness of
TΩ,α on Morrey spaces (see [6, 9]).

Vanishing Morrey Space is one of the trending topics in recent study (see [1, 2]).
To the best of our knowledge, there is still no paper discussing vanishing Morrey–
Adams spaces. In Section 3, we shall discuss vanishing Morrey–Adams spaces based
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on the definition of vanishing Morrey space. We also show the invariance of vanishing
Morrey–Adams space for TΩ,α in the local sense.

In [6], Salim et al discussed inequality beyond Adams of TΩ,α on the classical
Morrey spaces. In Section 4, we investigate the beyond Adams’ inequalities of TΩ,α
on the Morrey–Adams spaces. Based on [6], in this investigation, we shall restrict the
domain of TΩ,α with radial function.

2. Operator TΩ,α on Morrey–Adams spaces

One of the main tool to investigate the operator TΩ,α is the rough maximal operator
MΩ which is given by

MΩ f (x) = sup
r>0

r−n
∫

B(x,r)
|Ω(x− y)| | f (y)|dy.

It is well known that MΩ is bounded on Lp for p > 1 if Ω ∈ L1(Sn−1) with Sn−1 =
{y ∈ R

n : |y| = 1} .
We write a � b if there exists constant c > 0 such that a � cb . We also write

a �Ω b if there exists constant cΩ > 0 depending on Ω such that a � cΩb .

THEOREM 3. The operator MΩ is bounded Lp,λ
θ for p > 1 if Ω ∈ Ls(Sn−1) with

s � p′ = p
p−1 .

Proof. Fix z ∈R
n , and decompose f = f1 + f2 with f1 = f χB(z,2r) . Note that, the

decomposition of f depends on r > 0. By the boundedness of MΩ on Lp , we obtain(∫ ∞

0
r−

λθ
p ‖MΩ f1‖θ

Lp(B(z,r))dr

) 1
θ

�Ω

(∫ ∞

0
r−

λθ
p ‖ f‖θ

Lp(B(z,2r))dr

) 1
θ

� ‖ f‖
Lp,λ

θ
.

For x ∈ B(z,r) , we have Bc(z,2r) ⊂ Bc(x,r) . Hence, by Hölder’s inequality,

MΩ f2(x) �
∞

∑
j=1

∫
B(x,2 j r)\B(x,2 j−1r)

|Ω(x− y)|
|x− y|n | f (y)|dy

�Ω

∞

∑
j=1

(2 jr)−
n
p ‖ f‖Lp(B(z,2 j+1r))

where the RHS is independent of x . By Minkowski’s inequality and by substituting
t = 2 j+1r , we can proceed as follows.(∫ ∞

0
r−

λθ
p ‖MΩ f2‖θ

Lp(B(z,r))dr

) 1
θ

�Ω

∞

∑
j=1

2−
jn
p

(∫ ∞

0
r
−λθ

p ‖ f‖θ
Lp(B(z,2 j+1r))dr

) 1
θ

�
∞

∑
j=1

2
j(λ−n)

p

(∫ ∞

0
t
−λθ

p ‖ f‖θ
Lp(B(z,t))

dt
2 j

) 1
θ

� ‖ f‖
Lp,λ

θ

∞

∑
j=1

2
j(λ−n)

p − j
θ
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with the convergent sums due to λ < n+ p
θ . Following by sublinearity of MΩ , Theorem

3 is verified. �
In order to use Theorem 3 in the investigation of TΩ,α , we need the following

pointwise estimate property.

LEMMA 1. Let f ∈ Lp,λ
θ , Ω ∈ Ls(Sn−1) with s � p′ , and α < n−λ

p + 1
θ ,

|TΩ,α f (x)| �Ω MΩ f (x)u‖ f‖1−u

Lp,λ
θ

.

for almost every x ∈ R
n where u = 1− α pθ

(n−λ )θ+p .

Proof. Let f be a non-trivial function. Fix x ∈ R
n , R > 0, and we decompose

f = f1 + f2 with f1 = f χB(x,R) . We have

|TΩ,α f1(x)| �
∞

∑
j=1

∫
B(x,2− j+1R)\B(x,2− jR)

|Ω(x− y)|
|x− y|n−α | f (y)|dy

� RαMΩ f (x).

Since α < n−λ
p + 1

θ , by Fubini’s Theorem and Hölder’s inequality

|TΩ,α f2(x)| �
∫

Bc(x,R)
|Ω(x− y)|| f (y)|

∫ ∞

|x−y|
tα−n−1dtdy

� ‖Ω‖Ls(Sn−1)

∫ ∞

R
tα− n

p−1‖ f‖Lp(B(x,t))dt

� Rα− n−λ
p − 1

θ ‖Ω‖Ls(Sn−1)‖ f‖
Lp,λ

θ
.

The proof then completes once we apply the linearity of TΩ,α

|TΩ,α f (x)| � RαMΩ f (x)+Rα− n−λ
p − 1

θ ‖Ω‖Ls(Sn−1)‖ f‖
Lp,λ

θ

and minimize the right-hand-side over R > 0. �
The proof of Lemma 1 and Lemma 2 (see Section 4) are motivated by the work of

Hedberg in 1972 (see [7]). We now can prove Theorems 1 and 2 as follows.

Proof. Fix z ∈ R
n . Follow by Lemma 1,

(∫ ∞

0
r−

μϕ
q ‖TΩ,α f‖ϕ

Lq(B(z,r))dr

) 1
ϕ

�Ω ‖ f‖1−u

Lp,λ
θ

(∫ ∞

0
r−

μϕ
q ‖MΩ f u‖ϕ

Lq(B(z,r))dr

) 1
ϕ

For Theorem 1, we have n−μ
q + 1

ϕ = n−λ
p + 1

θ −α and θ(n−λ )
ϕ(n−μ) = p

q . Therefore,

u = 1− α pθ
(n−λ )θ + p

=
n−λ

p + 1
θ −α

n−λ
p + 1

θ
=

n−μ
q + 1

ϕ
n−λ

p + 1
θ

=
θ
ϕ

.
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Moreover, the conditions λ � μ < n or n < μ � λ , and θ(n−λ )
ϕ(n−μ) = p

q imply u � p
q . For

Theorem 2, with λ = μ = n , 1
ϕ = 1

θ −α , and θ
ϕ � p

q , we have

u = 1−αθ = θ
(

1
θ
−α

)
=

θ
ϕ

� p
q
.

Therefore, for both Theorems 1 and 2, we have u = θ
ϕ and uq � p . We then can use

Hölder’s inequality with order p/uq . Follow by Theorem 3,

(∫ ∞

0
r−

μϕ
q ‖TΩ,α f‖ϕ

Lq(B(z,r))dr

) 1
ϕ

�Ω ‖ f‖1−u

Lp,λ
θ

(∫ ∞

0
r

(n−λ)θ
p − nθ

p ‖MΩ f‖θ
Lp(B(z,r))dr

) u
θ

� ‖ f‖1−u

Lp,λ
θ

‖MΩ f‖u
Lp,λ

θ
�Ω ‖ f‖

Lp,λ
θ

which completes the proof of both Theorems 1 and 2. �

In fact, the parameter condition

n− μ
q

+
1
ϕ

=
n−λ

p
+

1
θ
−α (1)

is necessary for the boundedness of TΩ,α from Lp,λ
θ to Lq,μ

ϕ .

THEOREM 4. If TΩ,α is bounded from Lp,λ
θ to Lq,μ

ϕ , then identity (1) holds.

Proof. Define δt f (x) = f (tx) for t > 0. Let f ∈ Lp,λ
θ be a non-trivial function.

Then, δt f ∈ Lp,λ
θ since

‖δt f‖Lp,λ
θ

= t−
n−λ

p − 1
θ ‖ f‖

Lp,λ
θ

.

We also have

TΩ,α f (x) = tαTΩ,α δt f
(x

t

)
, ‖TΩ,α f‖Lq,μ

ϕ
= tα+ n−μ

q + 1
ϕ ‖TΩ,α δt f‖Lq,μ

ϕ
.

By the boundedness of TΩ,α , we obtain

‖TΩ,α f‖Lq,μ
ϕ

= tα+ n−μ
q + 1

ϕ ‖TΩ,α δt f‖Lq,μ
ϕ

� Ctα+ n−μ
q + 1

ϕ ‖δt f‖Lp,λ
θ

= Ctα+ n−μ
q + 1

ϕ − n−λ
p − 1

θ ‖ f‖
Lp,λ

θ
.

Since t is an arbitrary positive number and f is a non-trivial function, the identity (1)
holds. �
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3. Vanishing local Morrey–Adams spaces and operator TΩ,α

Let us rewrite ‖ f‖
Lp,λ

θ
= supx∈Rn ‖Mp,λ ( f ;x, ·)‖Lθ (0,∞) where

Mp,λ ( f ;x,r) = r−
λ
p ‖ f‖Lp(B(x,r)).

Let us first recall the definition of vanishing Morrey spaces [1].

V0L
p,λ = { f ∈ Lp,λ : lim

r→0
sup
x∈Rn

Mp,λ ( f ;x,r) = 0}, and

V∞Lp,λ = { f ∈ Lp,λ : lim
r→∞

sup
x∈Rn

Mp,λ ( f ;x,r) = 0}.

Note that the function Mp,λ ( f ;x, ·) : (0,∞) → [0,∞) is a continuous function. If f ∈
Lp,λ

θ , then Mp,λ ( f ;x, ·) ∈ Lθ (0,∞) for any x ∈ R
n and as the consequence

lim
r→∞

Mp,λ ( f ;x,r) = 0.

Therefore, if we define V∞Lp,λ
θ in the similar sense as the definition of V∞Lp,λ , then we

have Lp,λ
θ = V∞Lp,λ

θ .

We now define V0L
p,λ
θ in the similar sense as the definition of V0Lp,λ .

DEFINITION 1. Let 1 � p,θ < ∞ , and p
θ < λ < n+ p

θ . The vanishing Morrey–

Adams space V0L
p,λ
θ is the set of f ∈ Lp,λ

θ with

lim
r→0

sup
x∈Rn

Mp,λ ( f ;x,r) = 0.

If f ∈ V0L
p,λ
θ , then Mp,λ ( f ;x,r) → 0 as r → 0 for any x ∈ R

n . By continuity
of Mp,λ ( f ;x, ·) and vanishing property for r → 0 and r → ∞ , we have Mp,λ ( f ;x, ·) ∈
L∞(0,∞) for almost every x ∈ R

n . Therefore, the function f is an element of local
Morrey space Lp,λ (z) with the norm

‖ f‖Lp,λ (z) = sup
r>0

Mp,λ ( f ;z,r)

for almost every z ∈ R
n .

Let 1 � p,θ < ∞ , p
θ < λ < n+ p

θ , and z ∈ R
n . The local Morrey–Adams space

Lp,λ
θ (z) is a space of function f where

‖ f‖
Lp,λ

θ (z)
= ‖Mp,λ ( f ;z, ·)‖Lθ (0,∞) < ∞.

Following from the proof of Theorems 1-3, we immediately have two following corol-
laries.

COROLLARY 1. Under the same conditions as in Theorem 3, MΩ is bounded on
Lp,λ

θ (z) for almost every z ∈ R
n .

COROLLARY 2. Under the same conditions as in Theorem 1 or Theorem 2, TΩ,α

is bounded from Lp,λ
θ (z) to Lq,μ

ϕ (z) for almost every z ∈ R
n .
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We now define the vanishing Morrey–Adams space in the local sense as follows.

DEFINITION 2. Let 1 � p,θ < ∞ , p
θ < λ < n+ p

θ , and z ∈ R
n . The vanishing

local Morrey–Adams space V0L
p,λ
θ (z) is the set of f ∈ Lp,λ

θ (z) with

lim
r→0

Mp,λ ( f ;z,r) = 0.

With the same argument as vanishing Morrey–Adams spaces, we note that for any
f ∈ V0L

p,λ
θ (z) , then f ∈ Lp,λ (z) . Hence, we can refine Corollary 1 and Corollary 2 as

follows.

THEOREM 5. Under the same conditions as in Theorem 3 and λ < n, for almost
every z ∈ R

n , MΩ(V0L
p,λ
θ (z)) ⊂V0L

p,λ
θ (z) .

THEOREM 6. Under the same conditions as in Theorem 1 and λ � μ < n, for
almost every z ∈ R

n , TΩ,α(V0L
p,λ
θ (z)) ⊂V0L

q,μ
ϕ (z) .

REMARK 1. In Theorems 1–3, Corollary 1, and Corollary 2, we can discuss the
case of n � μ � λ (for example f = χB(0,1) ). However, since f ∈ V0L

p,λ
θ (z) implies

f ∈ Lp,λ (z) , we should add the conditions λ < n for Theorems 5 and 6.

By Lemma 1 and Hölder’s inequality, we note that for any z ∈ R
n and r > 0,

Mq,μ(TΩ,α f ;z,r) �Ω ‖ f‖1− θ
ϕ

Lp,λ
θ

(
Mp,λ (MΩ f ;z,r)

) θ
ϕ .

Therefore, Theorem 6 is immediately proven once we verify Theorem 5. Let us prove
Theorem 5.

Proof. Let f = f1 + f2 with f1 = f χB(z,2r) . By boundedness of MΩ on Lp ,
Mp,λ (MΩ f1;z,r) �Ω Mp,λ ( f ;z,2r).

Since f ∈V0L
p,λ
θ (z) , we have Mp,λ (MΩ f1;z,r) → 0 as r → 0.

For x ∈ B(z,r) , by substituting t = 2τ , we have

MΩ f2(x) �
∫

Bc(z,2r)
|Ω(x− y)|| f (y)|

∫ ∞

|x−y|
τ−n−1dτdy

�Ω

∫ ∞

r
τ−

n
p−1‖ f‖Lp(B(z,2τ))dτ

�
∫ ∞

r
t−

n−λ
p −1Mp,λ ( f ;z,t)dt

Since f ∈V0L
p,λ
θ (z) , we have f ∈ Lp,λ (z) , which means λ < n . Since f ∈V0L

p,λ
θ (z) ,

we can find δ such that for any r < δ , Mp,λ ( f ;z,r) < ε . Hence, Mp,λ (MΩ f2;z,r) is

�Ω r
n−λ

p

[∫ δ

r
t−

n−λ
p −1Mp,λ ( f ;z,t)dt +

∫ ∞

δ
t−

n−λ
p −1Mp,λ ( f ;z, t)dt

]

� ε +‖ f‖Lp,λ (z)

( r
δ

) n−λ
p

.

Hence, as r goes to 0, Mp,λ (MΩ f2;z,r) goes to 0. Proof of Theorem 5 completes by
applying the sublinearity of MΩ . �
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4. Beyond Adams’ inequality

We have proved the boundedness of TΩ,α from Lp,λ
θ to Lq,μ

ϕ for λ � μ < n and
n < μ � λ in Theorem 1. It is natural for us to consider the case of μ < λ < n or n <
λ < μ . In [6], Salim et al investigate TΩ,α from Lp,λ to Lq,μ for the case of μ < λ < n
and called the results as beyond Adams’ inequality. As in [6], in this investigation, we
shall restrict the domain of TΩ,α onto collection of radial functions f in Lp,λ

θ (0) , and
prove that the maps TΩ,α f is in Lq,μ

ϕ (0) for the case of μ < λ < n−1.
For the case μ < λ < n− 1, we can’t use the same method as in the proof of

Theorem 1, since uq > p . In order to be able to use Hölder’s inequality, we need a new
pointwise estimation of TΩ,α f as follows.

LEMMA 2. Let f ∈ Lp,λ
θ (0) be a radial function. Let Ω ∈ Ls(Sn−1) for s � p′ ,

λ < γ < n−1 , and 0 < α < min{n, n−γ
p + 1

θ } ,

|TΩ,α f (x)| �Ω MΩ f (x)v|x| (λ−γ)(1−v)
p ‖ f‖1−v

Lp,λ
θ (0)

for almost every x ∈ R
n where v = 1− α pθ

(n−γ)θ+p .

Proof. Let f be a non-trivial function. Fix x ∈ R
n and let R > 0. We decompose

f as f1 + f2 with f1 = f χB(x,R) . As in the proof of Lemma 1, we have

|TΩ,α f1(x)| � RαMΩ f (x)

and

|TΩ,α f2(x)| � ‖Ω‖Ls(Sn−1)

∫ ∞

R
tα− n

p−1‖ f‖Lp(B(x,t))dt.

We then use Hölder’s inequality, and we obtain

|TΩ,α f2(x)| � ‖Ω‖Ls(Sn−1)R
α− n−γ

p − 1
θ

(∫ ∞

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt

) 1
θ

For R � |x|
2 , we have |x| < 2t and |x|+ t < 3t ,∫ ∞

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt � |x| (λ−γ)θ

p

∫ ∞

|x|
2

(|x|+ t)
−λθ

p ‖ f‖θ
Lp(B(0,|x|+t))dt

� |x| (λ−γ)θ
p ‖ f‖θ

Lp,λ
θ (0)

.

For R < |x|
2 , we write∫ ∞

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt =

∫ |x|
2

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt +

∫ ∞

|x|
2

t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt

which by the estimation for the case of R � |x|
2 , we have

∫ ∞

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt �

∫ |x|
2

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt + |x| (λ−γ)θ

p ‖ f‖θ
Lp,λ

θ (0)
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Since f is a radial function, and t < |x| , by [8, Lemma 1.1.], we have

‖ f‖p
Lp(B(x,t)) � tn−1

∫ |x|+t

|x|−t
| f0(s)|pds

where f0(|x|) = f (x) . Hence, we obtain

∫ ∞

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt �

∫ |x|
2

R
t

(n−γ−1)θ
p

(∫ |x|+t

|x|−t
| f0(s)|pds

) θ
p

dt + |x| (λ−γ)θ
p ‖ f‖θ

Lp,λ
θ (0)

.

Since t < |x| and n−γ−1 > 0, then t
(n−γ−1)θ

p < |x| (n−γ−1)θ
p . We also have |x|

2 < s < 3|x|
2 .

∫ ∞

R
t
−γθ

p ‖ f‖θ
Lp(B(x,t))dt � |x|− γθ

p

∫ |x|
2

R

(∫ |x|+t

|x|−t
| f0(s)|psn−1ds

) θ
p

dt + |x| (λ−γ)θ
p ‖ f‖θ

Lp,λ
θ (0)

� |x| (λ−γ)θ
p ‖ f‖θ

Lp,λ
θ (0)

.

Therefore, we can conclude that

|TΩ,α f (x)| � RαMΩ f (x)+Rα− n−γ
p − 1

θ ‖Ω‖Ls(Sn−1)|x|
(λ−γ)θ

p ‖ f‖θ
Lp,λ

θ (0)

and complete the proof by minimizing the right hand side over R > 0. �

By the new pointwise estimation, we obtain the beyond Adams’ inequality as fol-
lows.

THEOREM 7. Let f ∈ Lp,λ
0 be a radial function. Let Ω ∈ Ls(Sn−1) for s � p′ .

Suppose that μ < λ < γ < n−1 , 0 < α < min{n, n−γ
p + 1

θ } ,

n− μ
q

+
1
ϕ

=
n−λ

p
+

1
θ
−α,

n− μ
q

=
γ −λ

p
+

(n− γ)θ
pϕ

,

θ
ϕ

� γ −λ
γ − μ

,
nϕ
q

− nθ
p

>
(γ −λ )(ϕ −θ )

p
.

Then,
‖TΩ,α f‖Lq,μ

ϕ (0) �Ω ‖ f‖
Lp,λ

θ (0)
.

REMARK 2. Let n = 6, μ = 2, λ = 3, γ = 4, θ = 1, ϕ = 5, p = 17
16 , q = 85

28 ,
and α = 196

85 . Then all the parameter conditions in Theorem 7 are fulfilled.

Proof. By n−μ
q + 1

ϕ = n−λ
p + 1

θ −α and n−μ
q = γ−λ

p + (n−γ)θ
pϕ , we can rewrite v

in Lemma 2 as

v = 1− α
n−γ

p + 1
θ

=
n−μ

q + λ−γ
p + 1

ϕ
n−γ

p + 1
θ

=
θ
ϕ

⎛
⎝ n−μ

q + λ−γ
p + 1

ϕ
(n−γ)θ

pϕ + 1
ϕ

⎞
⎠=

θ
ϕ

.
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From n−μ
q = γ−λ

p + (n−γ)θ
pϕ , we have

p =
(n− γ)θq
(n− μ)ϕ

+
(γ −λ )q
n− μ

=
(

n− γ
n− μ

+
(γ −λ )ϕ
(n− μ)θ

)
vq.

Since θ
ϕ � γ−λ

γ−μ , we note that

n− γ
n− μ

+
(γ −λ )ϕ
(n− μ)θ

= 1+
1

n− μ

(
μ − γ +

(γ −λ )ϕ
θ

)
� 1.

Hence, p � vq and we can use Hölder’s inequality with order t = p
vq . By Lemma 2,

(∫ ∞

0
r−

μϕ
q ‖TΩ,α f‖ϕ

Lq(B(0,r))dr

) 1
ϕ

�Ω ‖ f‖1−v

Lp,λ
θ (0)

(∫ ∞

0
r−

μϕ
q

∥∥∥∥(MΩ f )v | · | (λ−γ)(1−v)
p

∥∥∥∥
ϕ

Lq(B(0,r))
dr

) 1
ϕ

� ‖ f‖1−v

Lp,λ
θ (0)

(∫ ∞

0
r−

μϕ
q ‖MΩ f‖θ

Lp(B(0,r))

∥∥∥∥ | · | (λ−γ)(1−v)qt′
p

∥∥∥∥
ϕ
qt′

L1(B(0,r))
dr

) v
θ

(2)

Since nϕ
q − nθ

p > (γ−λ )(ϕ−θ)
p , and nϕ

qt′ = nϕ
q − nθ

p , we have

(λ − γ)(1− v)qt ′

p
+n =

qt ′

ϕ

(
(λ − γ)(ϕ −θ )

p
+

nϕ
q

− nθ
p

)
> 0.

Therefore∥∥∥∥ | · | (λ−γ)(1−v)qt′
p

∥∥∥∥
ϕ
qt′

L1(B(0,r))
�
(∫ r

0
R

(λ−γ)(1−v)qt′
p +n−1dR

) ϕ
qt′

� r
(λ−γ)(ϕ−θ )

p + nϕ
q − nθ

p .

Since (n−μ)ϕ
q = (γ−λ )ϕ

p + (n−γ)θ
p , we can confirm that

−μϕ
q

+
(λ − γ)(ϕ −θ )

p
+

nϕ
q

− nθ
p

= −λ θ
p

.

By (2), and Theorem 3, we can complete the proof as follows.

(∫ ∞

0
r−

μϕ
q ‖TΩ,α f‖ϕ

Lq(B(0,r))dr

) 1
ϕ

� ‖ f‖1−v

Lp,λ
θ (0)

(∫ ∞

0
r−

λθ
p ‖MΩ f‖θ

Lp(B(0,r))dr

) v
θ

� ‖ f‖
Lp,λ

θ (0)
. �
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