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SOME REFINEMENTS OF NUMERICAL RADIUS

INEQUALITIES FOR 2× 2 OPERATOR MATRICES

HONGWEI QIAO, GUOJUN HAI ∗ AND EBURILITU BAI

(Communicated by T. Burić)

Abstract. In this paper, new numerical radius inequalities for 2×2 operator matrices are proved.
These numerical radius inequalities refine the existing upper bounds.

1. Introduction

Let (H,〈·, ·〉) be a nontrivial complex Hilbert space and B(H) denote the C∗ -
algebra of all bounded linear operators on H . For T ∈ B(H) , recall that the numerical
radius and the operator norm are denoted as

ω(T ) = sup{|〈Tx,x〉| : x ∈ H,‖x‖ = 1},

and

‖T‖ =sup{‖Tx‖ : x ∈ H,‖x‖ = 1}
=sup{|〈Tx,y〉| : x,y ∈ H,‖x‖ = ‖y‖ = 1}.

Denote |T | = (T ∗T )
1
2 be the absolute value of T ∈ B(H) . Then we have

ω(|T |) =
∥∥|T |∥∥= ‖T‖.

It is clear that ω(·) defines an operator norm on B(H) which is equivalent to the
operator norm ‖ · ‖ , where we have

1
2
‖T‖ � ω(T ) � ‖T‖, for T ∈ B(H). (1.1)

The inequalities in (1.1) are sharp. The first inequality becomes an equality if T 2 = 0
and the second inequality becomes an equality if T ∗T = TT ∗ .
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For ω(T ) , an important inequality is the power inequality, which asserts that

ω(Tn) � ωn(T ), for n = 1,2, · · ·
In [1], Dragomir refined the second inequality in (1.1) , and obtained that

ω2(T ) � 1
2

(
ω(T 2)+‖T‖2). (1.2)

Another improvement of the second inequality in (1.1) has been established by Kit-
taneh in [2]. This refinement asserts that if T ∈ B(H) , then

ω2(T ) � 1
2

∥∥|T |2 + |T ∗|2∥∥. (1.3)

It is obvious that the inequality (1.3) is a special case of the following more general
form in [3]:

ω2r(T ) � 1
2

∥∥|T |2r + |T ∗|2r
∥∥ for r � 1. (1.4)

In [4], Dragomir showed the following numerical radius inequality involving the prod-
uct of two operators:

ωr(T ∗S) � 1
2

∥∥|T |2r + |S|2r
∥∥ for r � 1. (1.5)

There are more such inequalities, we refer the readers to [5, 6, 7, 8] and the references
therein.

It should be mentioned that the direct sum of two copies of H is denoted by H2 =

H⊕H . For P,Q,T and S∈B(H) , the operator matrix W =
[

P T
S Q

]
can be considered

as an operator in B(H ⊕H) , which is defined by Wx =
[

Px1 +Tx2

Sx1 +Qx2

]
for every vector

x =
[

x1

x2

]
∈ H⊕H .

For operator matrix

[
P T
S Q

]
, Bani-Domi et. al. proved the following inequality

(see [11]), which asserts

ω4
([

P T
S Q

])
�8max{ω4(P),ω4(Q)}+3max{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}

+max{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )}.

(1.6)

In [12], it was shown that

ω4
([

P T
S Q

])
�8max

{
ω4(P),ω4(Q)

}
+(1+ α)max

{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}
+(3−α)max

{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )} .

(1.7)
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In this paper, we use the extensions of Schwarz inequality to present several new
upper bounds for the numerical radius of 2× 2 operator matrices which refine the in-
equalities (1.6) and (1.7). In addition, for T ∈ B(H) and 0 � α � 1, we prove that

ω4(T ) � (1+ α)
4

∥∥|T |4 + |T∗|4∥∥+
(1−α)

2
ω2(T 2)

and

ω4(T ) � 1
8

∥∥|T |4 + |T∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T 2).

It should be mentioned that our numerical radius inequalities here improve the existing
ones in [10, 11, 12].

2. Preliminaries

To obtain the desired results of this paper, we need the following lemmas (see
[13, 14, 15]).

LEMMA 2.1. Let T ∈ B(H) be a positive operator, and let x ∈ H be any unit
vector. Then

〈Tx,x〉r � 〈T rx,x〉 for r � 1.

LEMMA 2.2. Let f be a non-negative, convex function on [0,∞) , and let T,S ∈
B(H) be positive operators. Then∥∥∥∥ f

(
T +S

2

)∥∥∥∥�
∥∥∥∥ f (T )+ f (S)

2

∥∥∥∥ .

Particularly, for r � 1 , it holds∥∥∥∥
(

T +S
2

)r∥∥∥∥�
∥∥∥∥T r +Sr

2

∥∥∥∥ .

LEMMA 2.3. Let a,b,c ∈ H . Then

|〈a,b〉|2 + |〈a,c〉|2 � ‖a‖2
√
|〈b,b〉|2 + |〈c,c〉|2 +2|〈b,c〉|2.

The proofs of the following two lemmas depend on the Buzano extension of the
Schwarz inequality.

LEMMA 2.4. Let x,y,e ∈ H with ‖e‖ = 1 and 0 � α � 1 . Then

|〈x,e〉〈e,y〉|2 � 1
2

(
(1+ α)‖x‖2‖y‖2 +(1−α)|〈x,y〉|2) .
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Proof. In [9], Buzano shows the following extension of the Schwarz inequality:

|〈x,e〉〈e,y〉| � 1
2

(‖x‖‖y‖+ |〈x,y〉|), (2.1)

where x,y,e ∈ H with ‖e‖ = 1.
On the other hand, by the Cauchy-Schwarz inequality, we have

|〈x,y〉| =α|〈x,y〉|+(1−α)|〈x,y〉|
�α‖x‖‖y‖+(1−α)|〈x,y〉|.

Then, by utilizing the Power-Mean inequality, it holds

|〈x,y〉|2 �(α‖x‖‖y‖+(1−α)|〈x,y〉|)2
�α‖x‖2‖y‖2 +(1−α)|〈x,y〉|2.

(2.2)

Now, from the inequality (2.1) and by using the convexity of the function f (t) = t2 , it
can be obtained

|〈x,e〉〈e,y〉|2 �
(‖x‖‖y‖+ |〈x,y〉|

2

)2

�1
2

(‖x‖2‖y‖2 + |〈x,y〉|2) .
(2.3)

Thus, from the inequalities (2.2) and (2.3), one has

|〈x,e〉〈e,y〉|2 �1
2

(‖x‖2‖y‖2 + |〈x,y〉|2)
�1

2

(‖x‖2‖y‖2 + α‖x‖2‖y‖2 +(1−α)|〈x,y〉|2) .
So

|〈x,e〉〈e,y〉|2 � 1
2

(
(1+ α)‖x‖2‖y‖2 +(1−α)|〈x,y〉|2) .

This completes the proof. �

REMARK 2.1. It was shown in [10] that for any x,y,e ∈ H with ‖e‖ = 1, it holds

|〈x,e〉〈e,y〉|2 � 3
4
‖x‖2‖y‖2 +

1
4
‖x‖‖y‖|〈x,y〉|. (2.4)

We note that Lemma 2.4 is sharper than the inequality (2.4) if taking α = 1
2 . As a

matter of fact, when α = 1
2 , we have

|〈x,e〉〈e,y〉|2 �1
2

((
1+

1
2

)
‖x‖2‖y‖2 +

(
1− 1

2

)
|〈x,y〉|2

)

=
3
4
‖x‖2‖y‖2 +

1
4
|〈x,y〉|2

�3
4
‖x‖2‖y‖2 +

1
4
‖x‖‖y‖|〈x,y〉|.
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LEMMA 2.5. Let x,y,e ∈ H with ‖e‖ = 1 and 0 � α � 1 . Then

|〈x,e〉〈e,y〉|2 � 1
4

(
‖x‖2‖y‖2 +(2+ α)‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣+(1−α)|〈x,y〉|2
)

.

Proof. By using the Cauchy-Schwarz inequality, we have

|〈x,y〉|2 =α|〈x,y〉|2 +(1−α)|〈x,y〉|2

�α‖x‖‖y‖
∣∣∣〈x,y〉∣∣∣+(1−α)|〈x,y〉|2. (2.5)

Then, from the inequality (2.1), it can be established

|〈x,e〉〈e,y〉|2 �
(‖x‖‖y‖+ |〈x,y〉|

2

)2

=
1
4

(
‖x‖2‖y‖2 +2‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣+ |〈x,y〉|2
)

.

(2.6)

It follows from the inequalities (2.5) and (2.6) that

|〈x,e〉〈e,y〉|2 �1
4

(
‖x‖2‖y‖2 +2‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣+ |〈x,y〉|2
)

�1
4

(
‖x‖2‖y‖2 +(2+ α)‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣+(1−α)|〈x,y〉|2
)

.

This completes the proof. �

REMARK 2.2. It should be mentioned that Lemma 2.5 refine the inequality [12],

|〈x,e〉〈e,y〉|2 � 1
4

(
(1+ α)‖x‖2‖y‖2 +(3−α)‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣) .

As a matter of fact, by the Cauchy-Schwarz inequality, it holds

|〈x,e〉〈e,y〉|2

�1
4

(
‖x‖2‖y‖2 +(2+ α)‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣+(1−α)|〈x,y〉|2
)

�1
4

(
‖x‖2‖y‖2 + α‖x‖2‖y‖2 +2‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣+(1−α)‖x‖‖y‖
∣∣∣〈x,y〉∣∣∣)

=
1
4

(
(1+ α)‖x‖2‖y‖2 +(3−α)‖x‖‖y‖

∣∣∣〈x,y〉∣∣∣) .

The last needed lemma is well known and it was obtained in [16, 17].

LEMMA 2.6. Let T,S ∈ B(H) . Then

(i) ω
([

T 0
0 S

])
= max{ω(T +S),ω(T −S)};

(ii) ω
([

T S
S T

])
= max{ω(T +S),ω(T −S)};
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In particular,

ω
([

0 S
S 0

])
= ω(S);

(iii)
∥∥∥∥
[

T 0
0 S

]∥∥∥∥=
∥∥∥∥
[

0 T
S 0

]∥∥∥∥= max{‖T‖,‖S‖}.

3. Some refinements of numerical radius for 2×2 operators matrices

The main goal of this section is to derive several upper bounds for numerical radius
which are refinements of some existing ones.

THEOREM 3.1. Let P,Q,T,S ∈ B(H) and 0 � α � 1 . Then

ω4
([

P T
S Q

])
�8max

{
ω4(P),ω4(Q)

}
+4(1−α)max

{
ω2(TS),ω2(ST )

}
+2(1+ α)max

{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥} .

Proof. Let x ∈ H ⊕H with ‖x‖ = 1. Then

∣∣∣∣
〈[

P T
S Q

]
x,x

〉∣∣∣∣
4

=
∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉
+
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
4

�
(∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣+
∣∣∣∣
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
)4

=

⎛
⎜⎜⎝

2

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣+2

∣∣∣∣
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
2

⎞
⎟⎟⎠

4

�8

(∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+
∣∣∣∣
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
4
)

(by the convexity of f (t) = t4)

�8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+4
(
(1+ α)‖Yx‖2‖Y ∗x‖2 +(1−α)|〈Yx,Y ∗x〉|2)

(by Lemma 2.4 with Y =
[

0 T
S 0

]
)

=8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+4(1+ α)〈|Y |2x,x〉〈|Y ∗|2x,x〉+4(1−α)|〈Y2x,x〉|2
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�8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+2(1+ α)
(〈|Y |2x,x〉2 + 〈|Y ∗|2x,x〉2)+4(1−α)|〈Y2x,x〉|2

(by the arithmetic-geometric mean inequality)

�8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+2(1+ α)
(〈|Y |4x,x〉+ 〈|Y ∗|4x,x〉)+4(1−α)|〈Y2x,x〉|2

(by Lemma 2.1)

�8ω4
([

P 0
0 Q

])
+2(1+ α)

∥∥|Y |4 + |Y∗|4∥∥+4(1−α)ω2(Y 2)

=8ω4
([

P 0
0 Q

])
+2(1+ α)

∥∥∥∥
[ |T ∗|4 + |S|4 0

0 |T |4 + |S∗|4
]∥∥∥∥

+4(1−α)ω2
([

TS 0
0 ST

])
.

Taking the supremum over x∈H⊕H and by Lemma 2.6, the result can be written
as

ω4
([

P T
S Q

])
�8max

{
ω4(P),ω4(Q)

}
+4(1−α)max

{
ω2(TS),ω2(ST )

}
+2(1+ α)max

{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥} . �

REMARK 3.1. In Theorem 3.1, if taking α = 1
2 , we observe that

ω4
([

P T
S Q

])
�8max{ω4(P),ω4(Q)}+3max{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}

+2max{ω2(TS),ω2(ST )}.
It should be mentioned here that this inequality is sharper than the inequality (1.6). As
a matter of fact, by applying inequality (1.5), we can obtain

2max{ω2(TS),ω2(ST )} � max{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )}.

So

ω4
([

P T
S Q

])
�8max{ω4(P),ω4(Q)}+3max{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}

+2max{ω2(TS),ω2(ST )}
�8max{ω4(P),ω4(Q)}+3max{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}

+max{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST)}.

Thus, for α = 1
2 , Theorem 3.1 is a refinement of the inequality (1.6).

With the property in Lemma 2.6, it can be established the following inequality of
ω4(T ) .
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COROLLARY 3.1. Let T ∈ B(H) and 0 � α � 1 . Then

ω4(T ) � (1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

2
ω2(T 2).

Proof. It follows from Lemma 2.6 and Theorem 3.1 that

ω4
([

P T
T P

])
=max{ω4(T +P),ω4(T −P)}

�8ω4(P)+2(1+ α)
∥∥|T |4 + |T ∗|4∥∥+4(1−α)ω2(T 2).

(3.1)

Then, by taking T = P in the inequality (3.1), it can be obtained

16ω4(T ) =ω4(2T ) � 8ω4(T )+2(1+ α)
∥∥|T |4 + |T ∗|4∥∥+4(1−α)ω2(T 2).

Thus

ω4(T ) � (1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

2
ω2(T 2). �

REMARK 3.2. In [10], Omidvar et. al. proved that

ω4(T ) � 3
8

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T∗|2∥∥ω(T 2). (3.2)

If taking α = 1
2 in Corollary 3.1, we will obtain

ω4(T ) �3
8

∥∥|T |4 + |T ∗|4∥∥+
1
4

ω2(T 2),

which is sharper than the inequality (3.2).
In fact,

3
8

∥∥|T |4 + |T ∗|4∥∥+
1
4

ω2(T 2)

�3
8

∥∥|T |4 + |T ∗|4∥∥+
1
4

ω2(T )ω(T 2)

�3
8

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2).

Therefore, if taking α = 1
2 , it holds

ω4(T ) �3
8

∥∥|T |4 + |T∗|4∥∥+
1
4

ω2(T 2)

�3
8

∥∥|T |4 + |T∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2).

For α = 1
2 , Corollary 3.1 is an improvement of the inequality (3.2). In order to

appreciate our inequality in Corollary 3.1, we give the following example to show that
our inequality is a nontrivial improvement of the inequality (3.2).
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EXAMPLE 3.1. Let

T =

⎡
⎣ 0 1 0

0 0 2
0 0 0

⎤
⎦ .

Then by elementary calculations, it holds

|T |2 =

⎡
⎣ 0 0 0

0 1 0
0 0 4

⎤
⎦ , |T ∗|2 =

⎡
⎣ 1 0 0

0 4 0
0 0 0

⎤
⎦ ,

|T |4 =

⎡
⎣ 0 0 0

0 1 0
0 0 16

⎤
⎦ , |T ∗|4 =

⎡
⎣ 1 0 0

0 16 0
0 0 0

⎤
⎦ and T 2 =

⎡
⎣ 0 0 2

0 0 0
0 0 0

⎤
⎦ .

Therefore, if taking α = 1
2 , we have

3
8

∥∥|T |4 + |T ∗|4∥∥+
1
4

ω2(T 2) =
53
8

and
3
8

∥∥|T |4 + |T∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2) = 7.

Thus

3
8

∥∥|T |4 + |T ∗|4∥∥+
1
4

ω2(T 2) <
3
8

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2).

REMARK 3.3. Corollary 3.1 is a refinement of the inequality (1.4) with r = 2.
Indeed, by Lemma 2.2, we have

(1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

2
ω2(T 2)

�(1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

2
ω4(T )

�(1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

8

∥∥|T |2 + |T ∗|2∥∥2

=
(1+ α)

4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

8

∥∥(|T |2 + |T ∗|2)2∥∥
=

(1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

8

∥∥∥∥∥
(

2|T |2 +2|T∗|2
2

)2
∥∥∥∥∥

�(1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

4

∥∥|T |4 + |T ∗|4∥∥
=

1
2

∥∥|T |4 + |T ∗|4∥∥.
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Thus, it holds

ω4(T ) � (1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

2
ω2(T 2)

�1
2

∥∥|T |4 + |T ∗|4∥∥.

For 0 � α < 1, the following example shows that Corollary 3.1 is a nontrivial
improvement of the inequality (1.4).

EXAMPLE 3.2. Let T be the same as described in Example 3.1. Then by simple
calculations, we have

(1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

2
ω2(T 2) =

19+15α
4

and
1
2

∥∥|T |4 + |T ∗|4∥∥=
17
2

.

Thus, it holds

(1+ α)
4

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

2
ω2(T 2) <

1
2

∥∥|T |4 + |T ∗|4∥∥
for any α ∈ [0,1) .

THEOREM 3.2. Let P,Q,T,S ∈ B(H) and 0 � α � 1 . Then

ω4
([

P T
S Q

])
�2(2+ α)max

{∥∥|P|4 + |T ∗|4∥∥,∥∥|Q|4 + |S∗|4∥∥}
+4(2−α)ω2

([
0 TQ
SP 0

])
.

Proof. Let x ∈ H ⊕H with ‖x‖ = 1, and W =
[

P 0
0 Q

]
, Y =

[
0 T
S 0

]
. Then

∣∣∣∣
〈[

P T
S Q

]
x,x

〉∣∣∣∣
2

=|〈(W +Y)x,x〉|2
�(|〈Wx,x〉|+ |〈Yx,x〉|)2

=|〈Wx,x〉|2 + |〈Yx,x〉|2 +2|〈Wx,x〉||〈Yx,x〉|
�
√
|〈Wx,Wx〉|2 + |〈Y ∗x,Y ∗x〉|2 +2|〈Wx,Y ∗x〉|2 +2|〈Wx,x〉||〈Yx,x〉|

(by Lemma 2.3)
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=
1
2

(
2
√
|〈Wx,Wx〉|2 + |〈Y ∗x,Y ∗x〉|2 +2|〈Wx,Y ∗x〉|2 +4|〈Wx,x〉||〈Yx,x〉|

)

�
[
2
(|〈Wx,Wx〉|2 + |〈Y∗x,Y ∗x〉|2 +2|〈Wx,Y ∗x〉|2)+8|〈Wx,x〉〈Yx,x〉|2] 1

2 .

(by the Power-Mean inequality)

Thus

∣∣∣∣
〈[

P T
S Q

]
x,x

〉∣∣∣∣
4

�2
(〈Wx,Wx〉2 + 〈Y ∗x,Y ∗x〉2 +2|〈Wx,Y ∗x〉|2)+8|〈Wx,x〉〈Yx,x〉|2

�2
(〈Wx,Wx〉2 + 〈Y ∗x,Y ∗x〉2 +2|〈Wx,Y ∗x〉|2)

+4(1+ α)‖Wx‖2‖Y ∗‖2 +4(1−α)|〈Wx,Y ∗x〉|2
(by Lemma 2.4)

�2
(〈Wx,Wx〉2 + 〈Y ∗x,Y ∗x〉2 +2|〈Wx,Y ∗x〉|2)

+2(1+ α)
(〈Wx,Wx〉2 + 〈Y∗x,Y ∗x〉2)+4(1−α)|〈Wx,Y ∗x〉|2

(by the arithmetic-geometric mean inequality)

�2
(〈|W |4x,x〉+ 〈|Y ∗|4x,x〉+2|〈Wx,Y ∗x〉|2)

+2(1+ α)
(〈|W |4x,x〉+ 〈|Y ∗|4x,x〉)+4(1−α)|〈Wx,Y ∗x〉|2

(by Lemma 2.1)

=2(2+ α)〈(|W |4 + |Y ∗|4)x,x〉+4(2−α)|〈YWx,x〉|2
�2(2+ α)

∥∥|W |4 + |Y∗|4∥∥+4(2−α)ω2(YW )

=2(2+ α)
∥∥∥∥
[ |P|4 + |T∗|4 0

0 |Q|4 + |S∗|4
]∥∥∥∥+4(2−α)ω2

([
0 TQ
SP 0

])
.

Now, taking the supremum over all x∈H⊕H in the last inequality and by Lemma
2.6, we get

ω4
([

P T
S Q

])
�2(2+ α)max

{∥∥|P|4 + |T ∗|4∥∥,∥∥|Q|4 + |S∗|4∥∥}
+4(2−α)ω2

([
0 TQ
SP 0

])
. �

By Theorem 3.2, it will hold the following corollary.

COROLLARY 3.2. Let T ∈ B(H) and 0 � α � 1 . Then

ω4(T ) � (2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(2−α)

4
ω2(T 2).
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Proof. Let P = Q and T = S in Theorem 3.2. Then it will hold

ω4
([

P T
T P

])
=max{ω4(T +P),ω4(T −P)}

�2(2+ α)
∥∥|P|4 + |T∗|4∥∥+4(2−α)ω2(TP).

(3.3)

Taking T = P in the inequality (3.3), we have

16ω4(T ) = ω4(2T ) � 2(2+ α)
∥∥|T |4 + |T ∗|4∥∥+4(2−α)ω2(T 2).

So

ω4(T ) � (2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(2−α)

4
ω2(T 2). �

REMARK 3.4. Corollary 3.2 is sharper than the inequality (3.2) for any α ∈ [0,1] .
In fact, by Lemma 2.2, we can obtain

(2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(2−α)

4
ω2(T 2)

=
(2+ α)

8

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

4
ω2(T 2)+

1
4

ω2(T 2)

� (2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

16

∥∥|T |2 + |T ∗|2∥∥2 +
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

=
(2+ α)

8

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

16

∥∥(|T |2 + |T ∗|2)2∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

� (2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(1−α)

8

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T∗|2∥∥ω(T 2)

=
3
8

∥∥|T |4 + |T∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2).

Thus, by Corollary 3.2, we have

ω4(T ) �(2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(2−α)

4
ω2(T 2)

�3
8

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

�1
2

∥∥|T |4 + |T ∗|4∥∥.
(3.4)

The final inequality in (3.4) was proved in [10].

To show that our inequality in Corollary 3.2 is a nontrivial improvement of the
inequality (3.2), we give the following example.

EXAMPLE 3.3. Let T be the same as described in Example 3.1. Then it can be
checked that

(2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(2−α)

4
ω2(T 2) =

38+15α
8
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and
3
8

∥∥|T |4 + |T∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2) = 7.

Therefore

(2+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(2−α)

4
ω2(T 2) <

3
8

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

for any α ∈ [0,1] .

THEOREM 3.3. Let P,Q,T,S ∈ B(H) and 0 � α � 1 . Then

ω4
([

P T
S Q

])
�8max

{
ω4(P),ω4(Q)

}
+max

{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}
+(2+ α)max

{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )}
+2(1−α)max

{
ω2(TS),ω2(ST )

}
.

Proof. Let x ∈ H ⊕H with ‖x‖ = 1. Then

∣∣∣∣
〈[

P T
S Q

]
x,x

〉∣∣∣∣
4

=
∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉
+
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
4

�
(∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣+
∣∣∣∣
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
)4

=

⎛
⎜⎜⎝

2

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣+2

∣∣∣∣
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
2

⎞
⎟⎟⎠

4

�8

(∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+
∣∣∣∣
〈[

0 T
S 0

]
x,x

〉∣∣∣∣
4
)

(by the convexity of f (t) = t4)

�8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+2‖Yx‖2‖Y ∗x‖2 +2(2+ α)‖Yx‖‖Y ∗x‖
∣∣∣〈Yx,Y ∗x〉

∣∣∣
+2(1−α)|〈Yx,Y ∗x〉|2

(by Lemma 2.5 with Y =
[

0 T
S 0

]
)
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=8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+2〈|Y |2x,x〉〈|Y ∗|2x,x〉

+2(2+ α)
√
〈|Y |2x,x〉〈|Y ∗|2x,x〉

∣∣∣〈Y 2x,x〉
∣∣∣+2(1−α)|〈Y2x,x〉|2

�8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+
(〈|Y |2x,x〉2 + 〈|Y ∗|2x,x〉2)

+(2+ α)
(〈|Y |2x,x〉+ 〈|Y ∗|2x,x〉)∣∣∣〈Y 2x,x〉

∣∣∣+2(1−α)|〈Y2x,x〉|2

(by the arithmetic-geometric mean inequality)

�8

∣∣∣∣
〈[

P 0
0 Q

]
x,x

〉∣∣∣∣
4

+
(〈|Y |4x,x〉+ 〈|Y ∗|4x,x〉)

+(2+ α)〈(|Y |2 + |Y ∗|2)x,x〉
∣∣∣〈Y 2x,x〉

∣∣∣+2(1−α)|〈Y2x,x〉|2

(by Lemma 2.1)

�8ω4
([

P 0
0 Q

])
+
∥∥|Y |4 + |Y∗|4∥∥+(2+ α)

∥∥|Y |2 + |Y∗|2∥∥ω(Y 2)

+2(1−α)ω2(Y 2)

=8ω4
([

P 0
0 Q

])
+
∥∥∥∥
[ |T ∗|4 + |S|4 0

0 |T |4 + |S∗|4
]∥∥∥∥

+(2+ α)
∥∥∥∥
[ |T ∗|2 + |S|2 0

0 |T |2 + |S∗|2
]∥∥∥∥ω

([
TS 0
0 ST

])

+2(1−α)ω2
([

TS 0
0 ST

])
.

Taking the supremum over x∈H⊕H and by Lemma 2.6, the result can be written
as

ω4
([

P T
S Q

])
�8max

{
ω4(P),ω4(Q)

}
+max

{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}
+(2+ α)max

{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )}
+2(1−α)max

{
ω2(TS),ω2(ST )

}
. �

REMARK 3.5. It can be checked that Theorem 3.3 is an improvement of the in-
equality (1.7) for any α ∈ [0,1] .

To see this, we need to prove that

max
{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST)}

� max
{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥} .
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Now, by the inequality (1.5) and Lemma 2.2, it holds

max
{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )}

�1
2

max
{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max

{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}
=

1
2

max
{∥∥|T |2 + |S∗|2∥∥2

,
∥∥|T ∗|2 + |S|2∥∥2

}

=
1
2

max

{∥∥∥∥∥
(

2|T |2 +2|S∗|2
2

)2
∥∥∥∥∥ ,

∥∥∥∥∥
( |T ∗|2 + |S|2

2

)2
∥∥∥∥∥
}

�max
{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥} .

Also by inequality (1.5), we can obtain

max{ω2(TS),ω2(ST )} � 1
2

{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST)} .

Combine the above two inequalities, we observe that

ω4
([

P T
S Q

])
�8max

{
ω4(P),ω4(Q)

}
+max

{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}
+(2+ α)max

{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )}
+2(1−α)max

{
ω2(TS),ω2(ST )

}
�8max

{
ω4(P),ω4(Q)

}
+(1+ α)max

{∥∥|T |4 + |S∗|4∥∥,∥∥|T ∗|4 + |S|4∥∥}
+(3−α)max

{∥∥|T |2 + |S∗|2∥∥,∥∥|T ∗|2 + |S|2∥∥}max{ω(TS),ω(ST )} .

This indicates that Theorem 3.3 is a refinement of the inequality (1.7) for any α ∈ [0,1] .

By Theorem 3.3, it can be obtained the following inequality of ω4(T ) .

COROLLARY 3.3. Let T ∈ B(H) and 0 � α � 1 . Then

ω4(T ) � 1
8

∥∥|T |4 + |T∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T 2).

Proof. It follows from Lemma 2.6 and Theorem 3.3 that

ω4
([

P T
T P

])
= max{ω4(T +P),ω4(T −P)}

�8ω4(P)+
∥∥|T |4 + |T∗|4∥∥+(2+ α)

∥∥|T |2 + |T∗|2∥∥ω(T 2)+2(1−α)ω2(T 2).
(3.5)

Taking T = P in the inequality (3.5), it holds

16ω4(T ) = ω4(2T )

�8ω4(T )+
∥∥|T |4 + |T ∗|4∥∥+(2+ α)

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+2(1−α)ω2(T 2).
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Thus

ω4(T ) � 1
8

∥∥|T |4 + |T∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T 2). �

REMARK 3.6. In [12], it was shown that

ω4(T ) � (1+ α)
8

∥∥|T |4 + |T ∗|4∥∥+
(3−α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2). (3.6)

It should be noticed that Corollary 3.3 is sharper than the inequality (3.6).
To see this, note that

1
8

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T 2)

�1
8

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T )ω(T 2)

�1
8

∥∥|T |4 + |T ∗|4∥∥+
α
16

∥∥|T |2 + |T∗|2∥∥2 +
2
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

+
(1−α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

=
1
8

∥∥|T |4 + |T ∗|4∥∥+
α
16

∥∥(|T |2 + |T ∗|2)2 ∥∥+
(3−α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

�1
8

∥∥|T |4 + |T ∗|4∥∥+
α
8

∥∥|T |4 + |T ∗|4∥∥+
(3−α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

=
(1+ α)

8

∥∥|T |4 + |T ∗|4∥∥+
(3−α)

8

∥∥|T |2 + |T∗|2∥∥ω(T 2).

So

ω4(T ) �1
8

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T 2)

� (1+ α)
8

∥∥|T |4 + |T∗|4∥∥+
(3−α)

8

∥∥|T |2 + |T∗|2∥∥ω(T 2)

�1
2

∥∥|T |4 + |T ∗|4∥∥.
(3.7)

The final inequality in (3.7) was proved in [12].

The following example shows that Corollary 3.3 is a nontrivial improvement of
the inequality (3.6).

EXAMPLE 3.4. Let T is as same as the matrix in Example 3.1. Then it can be
checked that

1
8

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T 2) =

29+3α
8

and
(1+ α)

8

∥∥|T |4 + |T ∗|4∥∥+
(3−α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2) =
32+12α

8
.
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Thus, we have

1
8

∥∥|T |4 + |T∗|4∥∥+
(2+ α)

8

∥∥|T |2 + |T∗|2∥∥ω(T 2)+
(1−α)

4
ω2(T 2)

<
(1+ α)

8

∥∥|T |4 + |T ∗|4∥∥+
(3−α)

8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

for any α ∈ [0,1] .

THEOREM 3.4. Let P,Q,T,S ∈ B(H) and 0 � α � 1 . Then

ω4
([

P T
S Q

])

�3max
{∥∥|P|4 + |T ∗|4∥∥,∥∥|Q|4 + |S∗|4∥∥}+2(3−α)ω2

([
0 TQ
SP 0

])

+(2+ α)max
{∥∥|P|2 + |T ∗|2∥∥,∥∥|Q|2 + |S∗|2∥∥}ω

([
0 TQ
SP 0

])
.

Proof. Let x ∈ H⊕H with ‖x‖ = 1, and let W =
[

P 0
0 Q

]
, Y =

[
0 T
S 0

]
. With the

same argument in the proof of Theorem 3.2, we get

∣∣∣∣
〈[

P T
S Q

]
x,x

〉∣∣∣∣
2

�
[
2
(|〈Wx,Wx〉|2 + |〈Y∗x,Y ∗x〉|2 +2|〈Wx,Y ∗x〉|2)+8|〈Wx,x〉〈Yx,x〉|2] 1

2 .

Thus ∣∣∣∣
〈[

P T
S Q

]
x,x

〉∣∣∣∣
4

�2
(〈Wx,Wx〉2 + 〈Y ∗x,Y ∗x〉2 +2|〈Wx,Y ∗x〉|2)+8|〈Wx,x〉〈Yx,x〉|2

�2
(|〈Wx,Wx〉|2 + |〈Y ∗x,Y ∗x〉|2 +2|〈Wx,Y ∗x〉|2)+2‖Wx‖2‖Y ∗‖2

+2(2+ α)‖Wx‖‖Y∗‖
∣∣∣〈Wx,Y ∗x〉

∣∣∣+2(1−α)|〈Wx,Y ∗x〉|2

(by Lemma 2.5)

=2
(|〈Wx,Wx〉|2 + |〈Y ∗x,Y ∗x〉|2 +2|〈Wx,Y ∗x〉|2)+2〈Wx,Wx〉〈Y ∗x,Y ∗x〉

+2(2+ α)
√
〈Wx,Wx〉〈Y ∗x,Y ∗x〉

∣∣∣〈Wx,Y ∗x〉
∣∣∣+2(1−α)|〈Wx,Y ∗x〉|2

�2
(〈Wx,Wx〉2 + 〈Y ∗x,Y ∗x〉2 +2|〈Wx,Y ∗x〉|2)+

(〈Wx,Wx〉2 + 〈Y ∗x,Y ∗x〉2)
+(2+ α)

(〈Wx,Wx〉+ 〈Y ∗x,Y ∗x〉)∣∣∣〈Wx,Y ∗x〉
∣∣∣+2(1−α)|〈Wx,Y ∗x〉|2

(by the arithmetic-geometric mean inequality)
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�2
(〈|W |4x,x〉+ 〈|Y ∗|4x,x〉+2|〈Wx,Y ∗x〉|2)+

(〈|W |4x,x〉+ 〈|Y ∗|4x,x〉)
+(2+ α)

(〈|W |2x,x〉+ 〈|Y ∗|2x,x〉)∣∣∣〈Wx,Y ∗x〉
∣∣∣+2(1−α)|〈Wx,Y ∗x〉|2

(by Lemma 2.1)

=3〈(|W |4 + |Y ∗|4)x,x〉+(2+ α)〈(|W |2 + |Y ∗|2)x,x〉|〈YWx,x〉|
+2(3−α)|〈YWx,x〉|2

�3
∥∥|W |4 + |Y ∗|4∥∥+2(3−α)ω2(YW )+ (2+ α)

∥∥|W |2 + |Y ∗|2∥∥ω(YW )

=3

∥∥∥∥
[ |P|4 + |T ∗|4 0

0 |Q|4 + |S∗|4
]∥∥∥∥+2(3−α)ω2

([
0 TQ
SP 0

])

+(2+ α)
∥∥∥∥
[ |P|2 + |T ∗|2 0

0 |Q|2 + |S∗|2
]∥∥∥∥ω

([
0 TQ
SP 0

])
.

Taking the supremum over all x ∈ H ⊕H in the above inequality and by Lemma
2.6, we get

ω4
([

P T
S Q

])

�3max
{∥∥|P|4 + |T∗|4∥∥,∥∥|Q|4 + |S∗|4∥∥}+2(3−α)ω2

([
0 TQ
SP 0

])

+(2+ α)max
{∥∥|P|2 + |T ∗|2∥∥,∥∥|Q|2 + |S∗|2∥∥}ω

([
0 TQ
SP 0

])
. �

It follows from Theorem 3.4 and Lemma 2.6, it can be established the following
inequality of ω4(T ) .

COROLLARY 3.4. Let T ∈ B(H) and 0 � α � 1 . Then

ω4(T ) � 3
16

∥∥|T |4 + |T∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T∗|2∥∥ω(T 2)+
3−α

8
ω2(T 2).

Proof. Let P = Q and T = S . Then the inequality in Theorem 3.4 will be

ω4
([

P T
T P

])
= max{ω4(T +P),ω4(T −P)}

�3
∥∥|P|4 + |T ∗|4∥∥+2(3−α)ω2(TP)+ (2+ α)

∥∥|P|2 + |T∗|2∥∥ω(TP).
(3.8)

Taking T = P in the inequality (3.8), it holds

16ω4(T ) = ω4(2T ) � 3
∥∥|T |4 + |T∗|4∥∥+(2+ α)

∥∥|T |2 + |T∗|2∥∥ω(T 2)+2(3−α)ω2(T 2).

Thus, we can establish that

ω4(T ) � 3
16

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(3−α)

8
ω2(T 2). �
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REMARK 3.7. It can be checked that Corollary 3.4 is a refinement of the inequal-
ity (3.2) for any α ∈ [0,1] .

To see this, we note that

3
16

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(3−α)

8
ω2(T 2)

� 3
16

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(3−α)

8
ω2(T )ω(T 2)

� 3
16

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

+
(1−α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

� 3
16

∥∥|T |4 + |T ∗|4∥∥+
3
32

∥∥|T |2 + |T ∗|2∥∥2 +
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

=
3
16

∥∥|T |4 + |T ∗|4∥∥+
3
32

∥∥(|T |2 + |T∗|2)2∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

� 3
16

∥∥|T |4 + |T ∗|4∥∥+
3
16

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

=
3
8

∥∥|T |4 + |T∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2).

This indicates

ω4(T ) � 3
16

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(3−α)

8
ω2(T 2)

�3
8

∥∥|T |4 + |T∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2).
(3.9)

Corollary 3.4 is a nontrivial improvement of the inequality (3.2). To see this, we
give the following example.

EXAMPLE 3.5. Let T be the same as described in Example 3.1. Then by elemen-
tary calculations, we have

3
16

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(3−α)

8
ω2(T 2) =

67+3α
16

and
3
8

∥∥|T |4 + |T∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2) = 7.

Therefore

3
16

∥∥|T |4 + |T ∗|4∥∥+
(2+ α)

16

∥∥|T |2 + |T ∗|2∥∥ω(T 2)+
(3−α)

8
ω2(T 2)

<
3
8

∥∥|T |4 + |T ∗|4∥∥+
1
8

∥∥|T |2 + |T ∗|2∥∥ω(T 2)

for any α ∈ [0,1] .
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