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SOME APPROXIMATION RESULTS ON A CLASS
OF NEW TYPE A -BERNSTEIN POLYNOMIALS

RESAT ASLAN AND MOHAMMAD MURSALEEN*

(Communicated by M. Krni¢)

Abstract. The main concern of this article is to acquire some approximation properties of a
new class of Bernstein polynomials based on Bézier basis functions with shape parameter A €
[—1,1]. We prove Korovkin type approximation theorem and estimate the degree of convergence
in terms of the modulus of continuity, for the functions belong to Lipschitz type class and Pee-
tre’s K-functional, respectively. Additionally, with the help of Maple software, we present the
comparison of the convergence of newly defined operators to the certain functions with some
graphical illustrations and error estimation tables. Also, we conclude that the error estimation of
our newly defined operators in some cases is better than classical Bernstein operators [3], Cai et
al. [4] and Izgi [10].

1. Introduction

Bernstein [3] proposed the following polynomials for a simple way of proving the
Weierstrass approximation theorem:

Bu(p:y) = quk (%), vepo, (L.1)

where m € N, u € C[0,1] and Bernstein basis functions g, x(y) are given as:

Gni(y) = (’Z)y"(l =yt (12)

These polynomials still shed light on many studies in approximation theory. Due to
the significance of Bernstein polynomials, extensive studies have been done by some
authors on many modifications and generalizations of polynomials (1.1). Recently, one
of these studies was presented by Izgi [10] as follows:

Fap(H:7) = qum u(aet ) v s]
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where m € N, 0 < a<b, quiap(y) = (%)m () (g — yym=k,

He derived the Korovkin type theorem and estimated in connection with the mod-
ulus of continuity the order of convergence of operators (1.3). Moreover, he concluded
that in some special cases of variables a and b, the error estimation of operators (1.3)
is better than the classical Bernstein operators (1.1).

In 1960’s, a French engineer Bézier handled the Bernstein basis functions to de-
velop the shape design of surface and curve of cars. These basis functions are known
today as Bézier basis. Moreover, these magnificent polynomials of Bernstein led to
many application areas of mathematics, such as computer graphics, computer-aided ge-
ometric design (CAGD), numerical solution of partial differential equations and so on.
Some applications in CAGD, one can referto ([11, 12, 17,9, 23]).

Very recently, the Bézier basis with shape parameter A € [—1,1], which is pre-
sented by Ye et al. [26], has attracted attention by some authors. Firstly, Cai et al. [4]
introduced A -Bernstein polynomials as below:

)L ] B m _ ) E
B(wi) = X ans(hinu(5,). meN, (1.4)

where g, x(A;y) are Bézier basis with shape parameter A € [—1,1].

For the operators defined by (1.4), they derived various approximation theorems,
namely, Korovkin type convergence, local approximation, convergence of the element
of Lipschitz continuous function and Voronovskaya-type asymptotic. Ozger [18] achie-
ved several statistical approximation results of univariate A -Bernstein operators and
proved a statistical Voronovskaya type asymptotic theorem. Also, he defined bivariate
A -Bernstein operators and reached several approximation results of these operators.
Further, Cai et al. [6] obtained some statistical approximation properties of a new gen-
eralization of A -Bernstein operators via g-calculus. Cai and Cheng [5] constructed a
new kind of A -Bernstein operators related on (p,q)-calculus (see [16]) and arrived
Korovkin type convergence theorem, order of approximation for the Lipschitz type
continuous function. Mursaleen et al. [15] investigated some approximation results
of Chlodowsky type g-Bernstein-Stancu operators with the help of Bézier basis with
A € [—1,1]. Acuetal. [1] introduced the Kantorovich type A -Bernstein operators and
arrived several approximation features such as order of convergence, in connection with
Ditzian-Totik modulus of smoothness the Voronovskaya and Griiss-Voronovskaya type
theorems. Further, we refer the readers some other interesting papers established on the
Bézier basis with shape parameter A € [—1,1] (see: [22, 19, 20, 21, 24, 25, 14]).

Now, motivated by all above mentioned works, based on operators (1.3), we define
a new class of Bernstein operators related on the Bézier basis with shape parameter
A € [—1,1] as below:

k(m—|—a)> 6[0 m—|—a] (L5)

mabnuy Equuhzfy) ( (m—l—b) ’m——f—b’

where ¢, kq5(A;y) are Bézier basis with shape parameter A € [—1,1] as

A

m4+ ICIm-'rl lab(y)

Zim707a7b(x;y) = qm,0,a,b (y)
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m—2j+1

gm,j,a,b(x;y) = Qm,j,a,b(y) +A ( 1 q;n+1,j,a,b(y)

m—2j—1 .
- ﬁqm+l7j+l,a,b(y)> (]: 1,2,...,]’)’1—1)7 (16)
~ A
qm,m@b(x;y) = Qm,mﬂJJ(y) m4+ 161m+1 m,a b(y)

and m €N, 0<a<b, Guras(y) = (Z2)" (7)y* (24 —y)"=*. When a = b and
A =0, they reduce to (1.2).

The structure of this work is organized as follows: In section 2, some preliminar-
ies results such as moments and central moments are computed. In section 3, Korovkin
type convergence theorem is derived, the order of convergence with regard to the ordi-
nary modulus of continuity, for the functions belong to Lipschitz type class and Peetre’s
K -functional are discussed, respectively. In the final section, we compare the conver-
gence behaviour of our newly defined operators (1.5) by different parameters of m,a,b
and A with the help of some graphical illustrations and error estimation tables. Further,
we conclude that the error estimation of operators (1.5), in some cases, is better than
operators (1.1), (1.3) and (1.4).

2. Preliminaries

LEMMA 1. [10] Let the operators F, ,,(U;y) be defined by (1.3). Then, the
following expressions verify:

Fm,a,b(l;y) =1
Fm,a,b(t;y) =Y

+a)— (m+b)y]
F 2:y) = y? yl(m .
map(IY) =3+ m(m+b)
LEMMA 2. Let the operators Fn%_u_h(u;y) be defined by (1.5). Then, we have the
following identities: -

Fpop(Ly) =1 2.1
Fpr o p(t:y) =y+ G )[1+($IZy)m“( (_11_)%%)”[+1 _Z%y]k; (2.2)
Faply) =y 4 LD (20D (2% 72 ()" Gy
m(m+D) m(m—1)
LG [0 - B (> . ()~ 1] ) N o3

Proof. From the definition of operators (1.5) and gy, j 4»(4:y) (1.6), it is easy to
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see Z Gmiap(Aiy) =1, hence we get (2.1).
k=0

Fpr o p(t5y) = Gmkan(A3Y)
’ k:zomw +b)
! k(m+a) m—2k+1
e A’ ==
k=0 (m+b) {qm’kﬂb( )+ ( m?—1 Gm+1kad(Y)
m 2k—1 o) + o) A o)
m2—1 qm+1k+1,a,b\Y dm,m,a,b\y ma ICIm+1 m,a,b\y

m

_ < kim+a) k(m+a) m—2k+1
_k_zom(m_’_b)qm,k,u,h(y)‘Fk (]{:20 m(m+b) mz—l qurl,k,a,b(y)

”ilkm—ka ym—2k—1 )
m+b m2 — 1 dm+1,k+1,a,6\Y

& k(m+a)
2 m—|—b q;mk,a,b(y) +2, [(Pl (m7a7b7y) - %(m»a»b,y)L
k=0

where

) m—2k+1

X k(m+a
b,y) = ;
¢1(m,a,b,y) kzzom(m+b) 21 Gm+1kab(Y)
b k(m+a) m—2k—1

+a ( )
m(m+b) 2 —1 dm+1k+1,ab\Y)-

Now, we calculate the identities ¢ (m,a,b,y) and ¢ (m,a,b,y).

¢1(m,a,b,y)
ﬁ k(m+a) m—2k+1
Sy m(m+Db) m?—1

qm+l,k,a,b(y)

(m+a) 2(m+a) Z K

:WE qm+1kab()’) m fIm+1kab(y)
m+l y m—1
Z quab Z qm,k,a,b(y)
m—l k:()
2y*(m+b) m=2
_()}7’,"_'_‘1 Zq;n lkab

y[1-@2)"]  2im by [l—%y)"“]

m (m+a)(m—1)
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¢2(m7a7b7y)

b k(m+a) m—2k—1 )
P (m+b) 2 —1 qm+1,k+1,a,6\Y

y m—1 2y m—1
m g mkab m(m_ 1) kglqm,k,a,b(y)
(m+a) m—1
m(m+ 1)(m—|—b) kzl qm+17k+1,a,b(y)
2y?(m+b) "2 2(m+a) ml
- (7m+a 2 qm— lkuh (m2 “1)(m+b) 21 qm+l,k+l,a,h(y)
m+b m+b m+b m+b "
y |1 (1 mky)" — () } 2y [1 (1—2y)" — (22y)"]
= +
m m(m—1)

(ma) [1= (1= 22y)"" (e 1y (22) (1 - 22y)" — (22y)"" ]
(m+Db)m(m+1)
2(m+ b)y? [1 — (ﬁ—ﬁy)mil}
(m+a)(m—1)
2m+a) [1— (1= 222y)"" = (mt Dy (222 (1= 22y)" = (22) "]
(m+b) (m2—1) '

If we combine ¢; (m,a,b,y) and ¢,(m,a,b,y), hence we arrive (2.1).

Again, taking into consideration the definition of operators (1.5) and g, j 45(A;y)
(1.6), it follows

2 k2 (m+a)?
F* (% A
m,a,b( y) kgme(m_i_b)zCImkab( y)

m—1 72

K2 (m + a)? m—2k+1
- 2 (- )2 | 1mka A ——— m a
= m2(m—|—b) [q kab(y) + ( ] dmik, »()
m—2k—1 A
B mz—l qm+l’k+l’u’h(y)>:| +qm,m,a,b(y) +lqm+lmab(y)

no k2 (m4-a)? 2k (mA4-a)? m—2k+1
= %W%mk,a,b(y) +2 kzz)mz(m—i-b)z P Gm+1kab(Y)

i (m+a)® m—2k—1

- kg‘l m*(m+b)2 m?—1 qm+17k+l7a7b(y)>

m k2 + 2
S () (03 (m.ab.y) ~ 0.0,
k=0
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where
K (m+a)> m—2k+1

m2 m+b)2 m2_1 Qm-‘rl,hmb(y);
)

I M:

¢3(m7a7b7y) =

S =

K (m+a)? m—2k—1
¢4(m,a,b,y) = Z, m2(m+ D)2 mE—1

Clm+1,k+1,a,b(y)~

Now, we calculate the identities ¢3(m,a,b,y) and @¢4(m,a,b,y).

¢3(m,a,b,y)
u k2 m+a m—2k-+1

Z‘m m_|_b m2—1 6]m+l7k.,a.,b(y)

k=0
<Jﬁﬁw2%%mw>wgﬁ%ﬁiﬁw“m
EZH oy 2Clm Lkab(y +(£nm++ba R zquab
_%qumkuh()} _1 Eq’” k(Y

2(m+a)y mil dmkab(y)

C(m+b)mi(m—1) &
(m+ 192 [1 = (22)" ] (m+a)m+ 1)y 1= (222y)"]

m+a

B m(m—1) T o)
2m+ o)y [1 = (223)" 7] 6?1 ()" ]
(m+a)m m(m—1)
2(m+a)y [ ’mﬂ }
(m+b)m*(m—1)
Cm=9? 1= ()" (merapy |1 (3)"]
m(m—1) (m+b)m?
2(m+b)y? [1 - (ﬁ—il}jy)miz}
(m+a)m ’
¢a(m,a,b,y)

21 K(m+a)> m—2k—1
m2(m+b)? m2—1

e o) —2mta
m261m+1.,k+1.,a.,b y (m2—1)(m~+b)2 P!

qm+-1,k+1,a,b (y)
B (m+a) m—1 k3
(m+1)(m+b)* &

_261m+17k+17a7b(y)
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2 m—2

(m+a)y
= ]Zaquhk,a,b(ﬂ Z(n 1 D) Z G eap(y
(m_|_a)2 m—1
+ m a,
(m+b)2m2(m+ kZlq +Lk+Lab(y)
2(m+b)y> "3 2(m —|—a
m(m+a) kgz)q’n—lk@b(y) m2( )(m+Db) 2 kaab

2(m+a 2 ml
m2(m2 —1)(m+ b)? 2 Am1+1,0,6()

21— m) IR e A =0

(m+b)m?
N (m+a)? [1 — (m 1) () y(1 — BELyym — (1 — byt (i)™

(m+b)*m?(m+1)
2(m+b)y3 [1 _ (::izy)m—Z} 2(m+a) [1 _ (m+b ) (1 _ m+by) }

3 _ m+ay m-+a
m(m—+a) m?(m—1)(m+D)
 Hmap? (1= (m 1) (22) y(1 — iy — (1 — eyt — (i)™

(m+b)2m2(m2 —1)

If we combine ¢3(m,a,b,y) and ¢s4(m,a,b,y), hence we obtain (2.3), thus we reach
the proof of Lemma 2. [l

COROLLARY 1. Let y € [0, 2] and A € [—1,1]. As a consequence of Lemma 2,
we obtain following relations

(i)
A .
Fm,a,b(t_y’y)
_ () e byt — gyt om]
m(m—1)
(58) [+ ()" + 1oy +23880]
< = ﬂm,a,b(y)
m(m—1)

(i)
Fl st =9)%y)
_ylmta) = mtb)y] | (200) b0 ey 4 ()" (G )]
m(m+b) m(m—1)
(325)° [(1 = Feen)™! + Gty - 1] ) A
m?(m—1)

+
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_lmta) = (m+b)y] | 2(55) (1= Fav)™ + ()™ (5 — )]

m(m+b) m(m—1)
m+a\2 m+b . \m m+b . \m
+ (mib) [(l_miay) Jrl—i_(miay) +1+1] =1 (y)
m2(m—1) " fmab

REMARK 1. For the operators defined by (1.5), we have following results

> In case A = 0, the operators given by (1.5) reduce to the class of new type
Bernstein polynomials defined by Izgi [10].

> In case a = b, the operators given by (1.5) reduce to the A -Bernstein operators
defined by Cai et al. [4].

> In case A =0 and a = b, the operators given by (1.5) reduce to classical
Bernstein operators defined by [3].

>> Incase A =0 =a and b = 1, the operators given by (1.5) reduce to the new
class of Bernstein type operators defined by Deo et al. [7].

A
3. Convergence results of Eyap

In the next theorem, we introduce the Korovkin type approximation theorem. As

it is known, the space C[0, 2%¢] denote the real-valued continuous function on [0, 2£¢]

and it is equipped with the norm for a function u as follows:

1tllco,mea) = sup |u(y)[-

ye[0, 244

THEOREM 1. If pu € C[0,244], then we have

lim £y, (1) = (),

m+a}.

uniformly on [0, 7=

Proof. According to the Bohman-Korovkin theorem [13], it is sufficient to verify

lim max |F} (%) —y'| =0, fors=0,1,2.
moeyel il

Using (2.1), for s =0, it is clear.
For s =1, in view of (2.2), we have

lim max Fnlab(t;y)—y’
moeyelo gl T

+ +b\m+1 +b \m+1 +b
Ctim max o | Gs) (L Gian)™ — (- S 20

oo +
meyel0, ]

m(m—1)
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Similarly, by (2.3), then

lim max
m=eoyel0, 2]

A 2. 2
Fm,u,h(t 7y) -y ‘

= lim max
o0

(8" [(1 - ey + (oo — 1]
m2(m—1)

Cgim 4 (e} L 26 G L
1 {( o)’ L 206 (- i) }

4m m(m—1)

y{mta)— (m+b)y] | [2(258) — 422 (1) (2tbyym!
m(m+b) m(m—1)

+

Hence, we get the required sequel. [J

Further, we discuss the order of convergence with regard to the ordinary modu-
lus of continuity, an element of Lipschitz type continuous function and Peetre’s K -
functional.

The Peetre’s K -functional is given by

Kp(u,m)= inf A{llu—v[l+n|v|},

vec2(o, 2]

where 1 >0 and C?[0, 2] = {v € C[0, 24] : v/,v" € C[0, 241} .

Taking into account [8], there exists an absolute constant C > 0 such that

K(usn) <Con(u;vm),  n>0 3.1)

where
@ (u;n) = sup  sup |u(y+2a)—2u(y+o)+u(y)l,

0<asn yelo,224]

is the second order modulus of smoothness of the function u € CJ0, ’YZIZ] Further, by

o(u;n):= sup  sup [u(y+oa)—u)l,

.
0<os<n ye[0, 75

we denote the ordinary modulus of continuity of y € C[0, 2441, Since n >0, o(u;n)
has some useful properties see: [2].

Also, we give an element of Lipschitz type continuous function with Lip;(§),
where L >0 and 0 < { < 1. If the expression below:

@) —u)| <Ll—y*,  (yeR),

holds, then one can say a function y is belong to Lipy(§).
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THEOREM 2. Let p € C[0, 2]y € [0, 2] and A € [—1,1]. Then, the follow-
ing inequality verify

Fhap(1:9) = 10) | € 20(1\Fnas (),
where Yiap(y) defined in Corollary 1.

Proof. Taking |u(t) —u(y)| < <1 + @) o(u;6) into account and operating

A (), we obtain

m,a,b

Flastiin) =) < (14 5Bhani—o1)) 0(u:3)

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality and from Lemma 2, it gives

‘Frﬁ,a,b(u;y)—u(y)‘ < (H% Eﬁmb((t—y)z;y)) o(u;8)

< (1 + %\/Ym,u,h()’)) o(u;8).

Choosing 8 = \/%n.a»(y), hence the proof is completed. [

THEOREM 3. Let y € [0,254] and A € [~1,1]. Then, for u € Lip1(§) we obtain

FanW39) = B0)| € LOmas ()5

Proof. By the linearity and monotonicity of the operators (1.5), it becomes

Fas(139) = 0| < oy 1 O)]53)
R k(m+a)\
= kgz)qu,a,h(})) ’.U (mi(m—kb)) u(y) ’

)
m(m+ b)

m
<MY Gnias(y)
k=0

Utilizing the Holder’s inequality with p; = % and pp = ﬁ and in view of Corollary
1 and Lemma 2, we arrive

m 2 % m %
i as1) ~0)| € L3 s s 910 { (o) } {kz()am,m,h(y)}
S 2-¢
=L{FL (=3P} {Fhastn}

9

< L(Ym a b( ))
Thus, the proof is completed. [
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THEOREM 4. For all u € C[0,254],y € [0,%5¢] and A € [1,1], the following
inequality holds:

B (159) ~ 10| < Cn (155l )+ (Bras (0)2 + 00013 Ban()).

where C > 0 is a constant, By, 4 5(Y), Ynap(y) are same as in Corollary 1.

Proof. Let u € C[0,244]. We denote

’ m+b
o ) [+ Gyt — (- By - 28],
(Xmﬂ,h(y) _y+ m(m_ l) 9

it is obvious that 04,,4,(v) € [0, 25%] for sufficently large m. We define the following
auxiliary operators:

Fo s (139) = Fy o (153) = 1O p (7)) + (). (3.2)
In view of (2.1) and (2.2), it follows that

~

Frﬁ,a,b(t _y;y) =0.

By Taylor’s formula, one has

50 =E0)+-nE0)+ [-w'wadu. (e, "2]). (33)

After operating F' . b( y) to (3.3), we obtain

t

Flap(E) = 60) = Fikap (1= )E 0)) + Bl [ (1= 0)E" ()ducy)

y
t amab
— OVt —3i0) + Eigpl [ (1= 08" (w)dusy) - / (Oman(v) ~ 1) ()
y ¥
t amab
= Flap( [ (=& (wdusy) - / (O () ~ )& ().
y y
Taking Lemma 2 and (3.2) into the account,
‘muh (y))
13 am.a‘b(y)

< F,iagx/ (=& @dwy)|+| [ (Omar() 0" (w)du

y y
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am,a#h()’)

<Fhapll =l |8 @] duwy)+ [ |oman(s) ~u][€" )] du
y y

< ||€”H{ mas y)z;y)+(amuh(y)—y)2}
g{Ymab (ﬁmab }HéﬂH
Also from (2.1), (2.2) and (3.2), it deduce the following

B )| < Bk apuin)] +2

<l B (L) + 2|1 <3 ufl- (3.4)
On the other hand, by (3.3) and (3.4) imply

Fhas () 10| < |mabu &)~ (u-8)0)|

B ap(&9) = EO)|+ [1G) — 1(0nap ()]
<4Hu—é||+{ym,a,b<y>+<ﬂm,a,b<y>>2} 16"+ o (1: Bas()

m+a}

On account of this, if we take the infimum on the right-hand side over all & € C? [0, 5

and by (3.1), we arrive

Frﬁ,a,b(u;y)—u(y>\<4l<( {tnan(y +(ﬁmab( )’ }>

<Cay (u;iWm,a7h<y>+<ﬁm,a,h<y>>2) + (4 Bas ()

Hence, we obtain the proof of this Theorem. [l

+ (D(,U 5 Bm,a,b (y))

THEOREM 5. If p € C'[0,224], then for all y € [0, 24], A € [—1,1], we arrive:

o p(1:y) — u(y)I < Bunap ) |1 )]+ 24/ Ynap ) O (W3 ) Ynap ()

where By ap(Y), Ymap(y) are same as in Corollary 1.

Proof. Let u € C'[0,224]. For any y,7 € [0, 2£4], we get

1O =16 = WO =)+ [ (W)~ /() du
y

After operating F; b( ;¥) to the both sides of foregoing expression, then

t

Fap (1(0) = BO):3) = WO F a1 =353) + Fhap [ (00 = /() ).
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In view of the following well-known property

jut) -l < (1+52 ) owso). >0,

then
t

_v)2
/}“/(”)—M/(y)}du < (O 5y> +t—y> o(u';8).

y

Hence,

Fmab( _y;y)‘ |[,L/(y)

F)L _ 2;
- lM +F£,a,b<|t—y|;y>] o(u';8).

[ p(by) — 1) <

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality on the right-hand side of fore-
going inequality and taking into consideration Corollary 1, it becomes

o p(1:y) — I 'mab y;y)‘lu’(y)

Fl o (t=y)%y)
o(u'; ) 5 11 F (0 =9)%)

Ymab(y)

< ﬁm@b(y) |[,L/(y)| + a)(u’,S) |‘$ +1 Ym,a,b(y)'

Taking 6 = \/Ym.ap(y), Which gives the required result. [J

4. Graphical and numerical results

In this section, with the aid of Maple software, we present some graphics and error
estimation tables to demonstrate the convergence of operators (1.5) to certain functions
with the different values of a, b, m and A parameters. Moreover, we compare the
convergence of operators (1.5) to the certain function p(y) with the operators given by
(1.1), (1.3) and (1.4).

EXAMPLE 1. Let u(y) = 1 —sin(2my) (yellow), A =1, a=0.1 and b=0.7.
In Figure 1, for m =15 (red), m =30 (green), m =75 (purple), we demonstrate
the convergence of operators Frﬁ7a7b(u; y) to p(y). In Table 1, with choosing a = 0.2,
b =0.8, y=0.25 and for the certain values of —1 < A < 1, we estimate the error of
approximation operators Frﬁ7a7b(u; y) to u(y) for m=15,30,75, 150, respectively. It is
obvious from Table 1 that, as the value of m increases than the error of approximation
operators Frﬁ7a7b(u;y) to u(y) is decreases. Also, for A > 0, the absolute difference

between operators Fn%_u_h(u; y) and u(y) is smaller than between F,, o ,(1;y) and pu(y).
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EXAMPLE 2. Let u(y) =ysin(2rmy)/2 (vellow), A =—1, a=0.1 and b=0.7.
In Figure 2, for m = 15 (red), m =30 (green), m =75 (purple), we demonstrate
the convergence of operators Eﬁ’a’b(u; y) to u(y). In Table 2, with choosing a = 1,
b =73, y=0.8 and for the certain values of —1 < A < 1, we estimate the error of
approximation operators Eﬁ’a’b(u;y) to u(y) for m = 15,30,75,150, respectively. It
is clear from Table 2 that, as the value of m increases than the error of approximation
operators E{}’a’b(u; y) to u(y) is decreases. Also, for A > 0, the absolute difference

between operators Frr}:,a,b(”; y) and p(y) is smaller than between F,, , »(tt;y) and p(y).

EXAMPLE 3. Let u(y) = ycos(3¢”)/(14+y?) (yellow), A =1, a=0 and b =
0.2. In Figure 3, for m = 10, we show the convergence of operators F*  (u;y) (red),

Fap(l:y) (green), Bﬁ(,u;y) (purple) and B,,(u;y) (blue) to u(y). In Table 3,
with choosing A = 1 and for the certain values of 0 < y < 1, we estimate the error

of approximation operators F* , (1;y), Fnas(i:y), Bi(p:y) and By, (u3y) to wu(y)
for m =990. It is clear from Table 3 that, the absolute difference between operators
Eﬁ’a’b(u;y) and (y) is smaller than between F, ,,(14;y) and u(y), between B2 (1;y)
and U(y), between B, (u;y) and p(y). Namely, the error of approximation of opera-
tors Frflﬂa’b(u;y) is better than operators Fy, , »(i;y), BA(us;y) and B, (u;y).

u)=1-sin(2zy)

—F

15,a,b

L5 30,a,b

75,a,b

A=1, a=0.1, b=0.7

0.5

y

Figure 1: The convergence of operators F) | 5(1;y) to p(y) = 1—sin(2my) (vellow) for
m=15 (red), m =30 (green), m="15 (purple)
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0.14
0 T T
0.2 0.4
-0.14
“ 2 in2
H)=sin(2y)
-0.24 —
FXIS, a, b
30,a,b
75, a,b
-0.37
A=-1, a=0.1, b=0.7

Figure 2: The convergence of operators F,, (1)'1_0'7 (usy) to pu(y) =ysin(2my)/2 (yellow) for
m=15 (red), m =30 (green), m="15 (purple)

0.4
cos( 3¢’
uy=res 5
1+
0.31 _B]()
Y
BIO
024 [ Fro.an
F)Ll(),a,b
011 a=1,a=0, b=0.2
0 ‘ ‘ ‘ ‘
02 4 0.6 0.8 1
y
,0.1,

Figure 3: The convergence of operators Fllo,o,o‘z(”?y) (red), Fi0002(1:y) (green), Bl,(1;y)
(purple) and Bio(i;y) (blue) to u(y) = ycos(3e¥)/(14y*) (vellow)
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Table 1: Error of approximation operators F}i a,h(/’“ y) to u(y) = 1 —sin(2my) for m =

15,30,75, 150
A u(y) = Ep (1Y) y=025 a=02,b=038
m=15 m =30 m=7175 m =150

-1 0.213218040 0.113939155 0.047702899 0.024250568

-0.75 0.212240374 0.113775828 0.047691683 0.024249137

0 0.209307374 0.113285842 0.047658034 0.024244841

0.75 0.206374375 0.112795858 0.047624384 0.024240545

1 0.205396709 0.112632529 0.047613167 0.024239113

Table 2: Error of approximation operators F,;}‘a‘b(u;y) to u(y) = ysin(2my)/2 for m =

15,30,75, 150
A () —F o (us)] y=08  a=1b=3
m=15 m =30 m=7175 m =150

-1 0.041965113  0.030488789  0.015446375 0.008356444

-0.75  0.040779260 0.030354903 0.015432666 0.008353694

0 0.037221701 0.029953245 0.015391540 0.008345446

0.75 0.033664141 0.029551587 0.015350415 0.008337198

1 0.032478288 0.029417700 0.015336706  0.008334449

Table 3: Error of approximation operators Frﬁ,a.b(“;y)’ Fonap (L), B&n(,u;y) and Bp(W3y)
to u(y) =ycos(3e”)/(1+y*) for m =990

Y o) =Byl (1) = Fuap(uiy)l 110G) = Bi(wsy)| (1) = Bu(i:y)]

0.1 0.000127691 0.000128426 0.000127700 0.000128435
0.2 0.000545082 0.000545340 0.000545187 0.000545444
0.5 0.000494954 0.000494957 0.000495172 0.000495174
0.8 0.001836189 0.001836891 0.001837952 0.001838653
0.9 0.000755498 0.000758146 0.000756985 0.000759632
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