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Abstract. In the paper, with the help of an integral representation of the Dirichlet eta function
and by means of a monotonicity rule for a ratio of two integrals with a parameter, the authors find
increasing property and logarithmic convexity of two functions involving the gamma function,
the extended binomial coefficient, and the Dirichlet eta function.

1. Introduction

In this paper, we use the notation
N={1,2,...}, No={0,1,2,...}, N_={-1,-2,...}, Z={0,+1,+2,...}.

It is well known (see [, Chapter 6], [21, Chapter 3]) that the classical Euler’s
gamma function T'(z) can be defined by

) n!n®

M= I g e

According to [6, Fact 13.3], for z € C such that R(z) > 1, the Riemann zeta
function §(z) can be defined by
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In [21, Section 3.5, pp. 57-58], the analytic continuation of the Riemann zeta function

{(z) into the punctured complex plane C\ {1} is discussed: the only singularity z =1
is a simple pole with residue 1.

Basing on the last equation in (1.1), ones consider the Dirichlet eta function

n(z) = (1 - %) £(z), R(z)>0.

zeC\{0,—1,-2,...}.

Mathematics subject classification (2020): Primary 11MO06; Secondary 11B73, 11M41, 26A48,
26A51, 33B15.

Keywords and phrases: Dirichlet eta function, integral representation, increasing property, logarithmic
convexity, monotonicity rule, extended binomial coefficient, gamma function.

* Corresponding author.

© depay, Zagreb 463

Paper IMI-16-33


http://dx.doi.org/10.7153/jmi-2022-16-33

464 D.LiM AND F. QI

It is also known as alternating zeta function. The Dirichlet eta function 71(z) has an
integral representation

1 = !

n(x)—r(x)/o e’—l—ldt’ x>0 (1.2)
in [8, p. 1046, 9.513.1] and [9, p. 604, 25.5.3]. In 1998, Wang [22] obtained that the
Dirichlet eta function 1(x) is logarithmically concave on (0,). In 2009, Cerone and
Dragomir [7] established many inequalities and properties for the Riemann eta function
{(x) and the Dirichlet eta function 7 (x). In 2015, Adell and Lekuona [2] and Alzer and
Kwong [3] strengthened the logarithmic concavity in [22] to a concavity of the Dirichlet
eta function 71 (x) on (0,c0). In 2018, Qi [16, 18] used the logarithmic concavity of the

1By(us )l

Dirichlet eta function 1(x) in [22] to establish a double inequality of the ratio o]

for n € N, where the Bernoulli numbers By, for n > 0 are generated by

Z - I = 2"
=V B, =1-24Y Bp——, [o<2m.
1 22)”n! 2'%2; 2

Very recently, the double inequality established in [16, 18] was extended, sharpened,
discussed in the papers [20, 25, 26].
In this paper, we consider

1. the functions

x+o+0\nx+o)
— —_Z (=01 1.3
(e ) -

and their monotonicity on (0,e), where ¢ > 0 is a constant,

C(z+1)
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denotes the extended binomial coefficient, and

n71 _— e _n n
<ﬁ>n=1‘[(ﬁ—k>:{f(ﬁ Dot nen
=0 , .

for B € C is called the falling factorial,

2. the functions I'(x+£)7n (x) on (0,e0) for £ = 1,2 and their logarithmic convexity.
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2. A monotonicity rule

For proving our main results in this paper, we need the following lemma, a mono-
tonicity rule for the ratio of two integrals with a parameter, which can be found in [17,
Lemma 2.7 and Remark 6.3] and [19, Remark 7.2].

LEMMA 2.1. Let U(t), V(t) >0, and W(t,x) > O be integrable in t € (a,D),
1. if the ratios ”’”Vu"]((#/‘h
(a,b), then the ratio

and % are both increasing or both decreasing in t €

is increasing in x;
2. if one of the ratios W and ((;; is increasing and another is decreasing in
€ (a,b), then the ratio R(x) is decreasing in x.

REMARK 2.1. Lemma 4 in [24] states that, if the ratio % is increasing on

el —xt
(0,00), then the ratio m% is decreasing in 7 € (0,e0). This monotonicity rule

for the ratio of two Laplace transforms can be deduced from Lemma 2.1 by setting
(a,b) = (0,%), U(x) = A(x), V(x) = B(x), and W(x,r) = ¢ ™. This means that
Lemma 2.1 is a generalization of [24, Lemma 4].

There have been a number of literature, such as [4, pp. 10-11, Theorem 1.25]
and [5, 10, 11, 12, 13, 14, 15, 23], dedicated to investigation and application of var-
ious monotonicity rules for ratios of two functions, of two integrals, of two Laplace
transforms, and the like.

3. Increasing property and logarithmic convexity

We are now in a position to state and prove our main results in this paper.

THEOREM 3.1. Let o > 0 be a constant and let { > 0 be an integer. Then the
two functions defined in (1.3) are increasing from (0,e0) onto (0,e0). Consequently,
for fixed £ = 1,2, the functions T'(x+ €)1 (x) are logarithmically convex in x € (0,e0).

Proof. With the aid of the recurrence relation T'(z+ 1) = zI'(z) and the integral
representation (1.2), integrating by parts yields

I'x+o+1)nkx+a) :F(x—i-OH—l) (x}&-a) (;o%dt
Fx+1) n) C(x+1) f°° £:+'1
(x+o) wtjill dt
x [l gy

0 e+1
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d[x+0!

o fO e+1  dr d
- 1 drs
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fo [e,H %) de
I (Hl)zt"dt '

Applying Lemma 2.1 to

Ui = —C e vy = —

(et_|_ 1)2 (et_|_ 1)2
and (a,b) = (0,), since ‘%; =1* and W Inz are both increasing on (0,00),
we conclude by (1.4) that the function

>0, W(t,x)=r">0,

Io [w5m e/H 1%]rdr Tt ot+)nix+a)
fOoo (e’+1)2t dt r(x+1) n(x)

is increasing in x € (0,00).
Similarly, integrating by parts, we obtain
C(x+o+2)

Fx+o+2)nx+a)  Torer) Tx+o+1)nx+a)
T T(x+2
T(x+2) n(x) ngﬂg T'(x+1) n(x)
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Applying Lemma 2.1 to

Ut)= %t““, V()= %t >0, W(t,x)=r">0,
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and (a,b) = (0,), since % =1* and W Inz are both increasing on (0,00),
we conclude by (1.4) that the function

e efl
[ GEe M Mt at2) nxr o)

\%[iﬁjl]ﬂdt © T+2) 1
:F(a+1)<x+g+l> n(;c(q;)a)

is increasing in x € (0,00).
Because the function F(lf(tc i‘;’)[) "(;(J; ;x ) for £=1,2 is increasing in x € (0, ), its

first derivative

Tx+a+d)nx+a)]
[(x+1¢) n(x)
_ PatatOnk+a)T+Onx)] - [Clx+ o+ Onx+o)][Cx+On )]
[T+ )mn(x))?

is positive for x € (0,o0). Hence, we have

Cx+oa+0n(x+o)] - [C(x+0)n(x)])
F'x+o+0)nx+a) [C(x+0)n(x)]

)

that is, the logarithmic derivative
Cx+OnK)]
[T(x+O)m(x)]

is increasing in x € (0,00). Consequently, for ¢ = 1,2, the function T'(x+ £)n(x) is
logarithmically convex in (1,e0). The proof of Theorem 3.1 is complete. ]

(In[C(x+ )0 (x)]) =

REMARK 3.1. Because the third derivative

is not monotonic and does not keep the same sign on (0,0), we can not find any more
result by the method used in this paper.
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