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Abstract. In this paper, we consider pluriharmonic and harmonic mappings f defined on the
unit ball Bn , n � 2 , differentiable at a point a on the boundary of Bn , and f (B) satisfies
some convexity hypothesis at f (a) . For those mappings f , we obtain versions of its boundary
Schwarz lemma and the sharp estimate of the eigenvalue related to its Jacobian at a . In particular,
Theorem 1.4 below, solves the corresponding extremal problems concerning the magnitude of
the radial derivative of f at the direction a and improves the main estimates given in [7] and
[12]. Moreover, we partly generalized the corresponding results given in [8] and [24].

1. Introduction

Let C be the complex plane, and Cn the complex Euclidean n -space. In this
paper, we write a point z ∈ Cn as a column vector of the following n×1 matrix form

z =

⎛
⎜⎜⎜⎝

z1

z2
...
zn

⎞
⎟⎟⎟⎠ .

For two points z = (z1, · · · ,zn)T and w = (w1, · · · ,wn)T in Cn , where the symbol T
stands for the transposition, the standard Hermitian scalar product on Cn is given by

〈z,w〉 =
n
∑

k=1
zkwk and the Euclidean norm of z is given by |z| = 〈z,z〉 1

2 .

Throughout this paper, we use Bn = {z ∈ Cn : |z| < 1} to denote the unit ball of
the n -dimensional complex plane C

n (the “complex unit ball ”), and let S
n−1 be the

boundary of Bn . Moreover, when n = 1, the complex plane case, we use D = {z ∈ C :
|z| < 1} to denote the unit disk and let T := {z ∈ C : |z| = 1} be the unit circle.

For each z = x+ iy ∈ Cn , its “real version ” is given by z′ = (x,y)T ∈ R2n . Note
that in the literature, the same notation for “real unit ball ” is used frequently. To
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avoid the possible confusion, in this paper we use Bn to denote the unit ball of the
n -dimensional real Euclidean space, i.e., Bn = {x ∈ Rn : |x| < 1} , and let Sn−1 be the
boundary of Bn .

The conjugate transpose (or Hermitian transpose) of an m× n matrix Am,n with
complex entries is the n×m matrix obtained from A by taking the transpose and then
taking the complex conjugate of each entry. It is often denoted as AH (or A∗ ). For real
matrices, the conjugate transpose is just the transpose, that is AH = AT . Furthermore,
since Am,n is a linear operator from Rm into Rn , we can extend the above definition
and define the transpose AT by 〈Ax,y〉 = 〈x,AT y〉 , where x ∈ Rm and y ∈ Rn . Here
〈·, ·〉 denotes the standard Euclidean inner product on the corresponding spaces.

Operator norm and the tangent space

For an n×n complex matrix A , we recall the operator norm

‖A‖ = sup
z �=0

‖Az‖
‖z‖ = max{‖Aθ‖ : θ ∈ S

n−1}. (1.1)

For p ∈ R
n , we define the tangent space at p as Tp(Rn) = {vp = (v, p) : v ∈ R

n} , and
we frequently write simply v ∈ Tp(Rn) instead of vp , where v denotes a vector with
initial point p . The tangent space of a manifold can be considered as the generalization
of notation of vectors from affine spaces to general manifolds. For example, we can
define the tangent space of a sphere, Tp(Sn−1) = {v ∈ Rn : 〈p,v〉 = 0} , etc. For each
z0 = x+ iy ∈ Sn−1 , let z′0 = (x,y)T ∈ S2n−1 be its real version. Then the tangent space
Tz′0

(
S2n−1

)
is defined by

Tz′0

(
S2n−1) = {β ∈ R

2n : z′o
T β = 0}. (1.2)

For the reader’s convenience, note here that z′o T β is the product of the row matrix z′o T

and the column matrix β .

Schwarz lemma and Schwarz-pick lemma

The classical Schwarz lemma states that an analytic function f maps D into itself,
with f (0) = 0, satisfies | f (z)| � |z| in D .

The classical Schwarz-Pick lemma states that an analytic function f of D into
itself is a contraction in the hyperbolic metric, i.e. for z,w ∈ D ,

| f (z)− f (w)|
|1− f (z) f (w)| � |z−w|

|1− zw| .

Letting z → w on the above inequality, one can get the following classical form:

| f ′(z)| � 1−| f (z)|2
1−|z|2 . (1.3)
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These two classical results are well-known and had been extended by many mathemati-
cians.

However, for harmonic functions, people can not expect the classical form of the
Schwarz-pick lemma (1.3). Only for some special cases, for example harmonic func-
tions from D into the interval (0,1) , can have such similar form (see [8]). Establishing
various versions of the Schwarz lemma and Schwarz-pick lemma have attracted the
attention of many mathematicians (see [7]–[12], [15]–[17], [26]–[33]).

Boundary Schwarz lemma

The classical Schwarz lemma at the boundary is as follows:

THEOREM A. ([5, Page 42]) Suppose f : D → D is an analytic function with
f (0) = 0 , and, further, f is analytic at z = 1 with f (1) = 1 . Then, the following two
conclusions hold:

1. f ′(1) � 1 .

2. f ′(1) = 1 if and only if f (z) ≡ z.

Theorem A has the following generalization.

THEOREM B. ([17, Theorem 1.1 ′ ]) Suppose f : D → D is an analytic function
with f (0) = 0 , and, further, f is analytic at z = α ∈ T with f (α) = β ∈ T . Then, the
following two conclusions hold:

1. β f ′(α)α � 1 .

2. β f ′(α)α = 1 if and only if f (z) ≡ eiθ z, where eiθ = β α−1 and θ ∈ R .

We remark that, when α = β = 1, Theorem B coincides with Theorem A. The
interested reader can refer to [27, Lemma 6.1] and [34, 35, 36] for more general result of
Theorem B. The Schwarz lemma at the boundary plays an important role in the classical
complex analysis and serval complex variables. In 2015, Liu et al. improved Theorem
A to higher dimensions ([15, Theorem 3.1]). They also achieved breakthroughs on the
growth, covering and distortion results for normalized biholomorphic mappings and
pseudconvex domains in Cm ([16]). Recently, Hamada proved the boundary Schwarz
lemma for a C1 mapping of the unit ball B

n into B
m , where n,m � 1 ([7, Theorem

1.2]).

1.1. Motivation

The main purpose of this paper is to improve the corresponding results about
boundary Schwarz lemma for pluriharmonic mappings in the unit ball Bn ⊆ Cn and
for harmonic mappings. It should be noted that, our Theorem 1.4 below, solves the
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corresponding extremal problems and improves Hamada’s estimate [7]. The main tech-
niques of proving these results are the generalized Schwarz lemma and Claim 1.1 be-
low. See for example [18, Theorem 6], for the generalized Schwarz lemma of harmonic
mappings. Moreover, in [20], Khalfalah and the second author of this paper establish
some Schwarz type inequalities for mappings with bounded Laplacian. These men-
tioned results are useful and will be used in proving our main theorems.

A new approach in proving our results

In this paper, we consider the coordinate space Rm with the standard basis:

e1 = (1,0, . . . ,0)T

e2 = (0,1, . . . ,0)T

...

em = (0,0, . . . ,1)T

To see that this is a basis, note that an arbitrary vector in Rm can be written uniquely in
the form x = ∑m

i=1 xiei. The isometries associated with the Euclidean metric, are called
Euclidean motions.

Let D ⊂ Rn , and let f : D → D′ be a function of D into D′ ⊂ Rm , and assume
that a ∈ ∂D , the boundary of D . If

f (x)− f (a) = f ′(a)(x−a)+o(x−a)

when x through the domain D and tends to a , then we say that f is differentiable at a
with respect to D .

For a ∈ R
m and v ∈ Ta(Rm) (the tangent space at the point a ), we define the half

space H(a,v) = {y ∈ Rm : 〈y−a,v〉< 0} . If v is a unit vector, then we use notation na

for it and write simply Ha instead of H(a,v) . We also notice that in our approach the
following simple result is useful:

CLAIM 1.1. Assume that f is differentiable at a point a ∈ Rn and let b = f (a) ∈
Rm . Then by the definition of transpose T , we have

〈 f ′(a)Z,nb〉 = 〈Z, f ′(a)T nb〉,

for any Z ∈ Ta(Rn) . The following statements hold:

(i) If f ′(a) maps Ha into Hb , then f ′(a)T nb = λna , where λ > 0.

(ii) If further, f maps Ha into Hb , then f ′(a)T nb = λna , where λ � 0. In particular
if f ′(a)T nb �= 0, then λ > 0.

(iii) In both cases (i) and (ii), we have λ = | f ′(a)T nb| = 〈 f ′(a)na,nb〉 , and λ �
| f ′(a)na| .
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We remark here that in general f ′(a)na is not equal to snb for some s ∈ R .

EXAMPLE 1.1. a = b = 0, na = en , nb = em and f (x1, . . . ,xn) = (0, . . . ,0,x3
n) ,

shows that f maps Hen into Hem , and therefore it satisfies all the hypothesis of (ii).
Here in addition f ′(0) = 0, and therefore f ′(0)T = 0 and λ = 0.

Proof. Here it is convenient to identify Ha and Hb with subspaces of Ta(Rn) and
Tb(Rm) , respectively. Let e1,e2, . . . ,en be orthogonal basis such that e1,e2, . . . ,en−1 ∈
Ta(Ha) (the tangent space of Ha ), and en = na . By hypothesis f ′(a) maps Ha into Hb ,
and therefore we have

0 = 〈 f ′(a)X ,nb〉 = 〈X , f ′(a)T nb〉 (1.4)

for all X ∈ Ta(Ha) . This shows that X0 = f ′(a)T nb is orthogonal on Ta(Ha) . In our
setting, it means that it equals to λen . Then by definition of the transpose, one has

〈 f ′(a)en,nb〉 = 〈en, f ′(a)T nb〉 = 〈en,λen〉 = λ .

Since na ∈Ha , f ′(a)en ∈Hb , by the definition of Hb , we first conclude that 〈 f ′(a)en,nb〉
> 0, and hence, λ > 0. This completes the proof of (i).

For the proof of (ii), which is similar to (i), we leave it to the interested reader by
considering two cases: X0 = 0 and X0 �= 0.

(iii) is an immediate corollary of (i) and (ii). �

REMARK 1.1. The following example illustrates the situation concerning the part
(i) of Claim 1.1. Let a = b = 0 ∈ R3 , na = nb = e3 , A = f ′(0) be defined by A(e1) =
A(e2) = e1 and A(e3) = e2 +e3 . Then λ = 〈 f ′(a)en,nb〉= 〈Ae3,e3〉= 1 and AT (e3) =
e3 . If h = e1e1 + x2e2 + x3e3 , x3 > 0, then A(h) = A(x1e1 + x2e2 + x3e3) = (x1 +
x2)e1 + x3(e2 + e3) and 〈A(h),e3〉 = x3 .

Thus concerning the part (i) of Claim 1.1, note that in general it is possible that
f ′(a) does not map Ha onto Hb , but even in this case f ′(a)T nb exists and equation
(1.4) shows that it is orthogonal on Ta(Ha) .

Pluriharmonic mappings

Define the formal derivatives operators as follows:

∂ :=
1
2
(∂x − i∂y) and ∂ :=

1
2
(∂x + i∂y).

A twice continuously differentiable, complex-valued function f defined on Ω ⊆ C is
harmonic on Ω if

Δ f = ∂ (∂ f ) ≡ 0.

A vector-valued mapping f = ( f1, · · · , fn) of C into Cn is said to be harmonic, if each
component f j (1 � j � n) is a harmonic mapping in C .
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It follows from [4] that each harmonic mapping w(z) in D has the canonical de-
composition w = h + g . It is clearly that if f = ( f1, · · · , fn) is harmonic in D , then
each component f j has the decomposition f j = h j +g j . Therefore, we have f = h+ g
where h = (h1, · · · ,hn) and g = (g1, · · · ,gn) are holomorphic mappings of D .

A continuous complex-valued function f defined on a domain G ⊆ Cn is said
to be pluriharmonic if for each fixed z ∈ G and θ ∈ S

n−1 , the function f (z+ θζ ) is
harmonic in {ζ : |ζ |< dG(z)} where dG(z) denotes the distance from z to the boundary
∂G of G . If G is simply connected, then a real-valued function u defined on G is
pluriharmonic if and only if u is the real part of a holomorphic function on G .

Clearly, a mapping f : Bn → C is pluriharmonic if and only if f has a represen-
tation f = h+ g , where h and g are holomorphic in Bn . We refer to [8] and [11] for
more details on pluriharmonic mappings.

Jacobian

Let G be a domain in Rn . For a C1 mapping f : G → Rm , the Jacobian of f at
x , denoted by Jf (x) , is defined as the following m×n matrix:

Jf =

⎛
⎜⎜⎝

∂ f1
∂x1

, · · · , ∂ f1
∂xn

...
∂ fm
∂x1

, · · · , ∂ fm
∂xn

⎞
⎟⎟⎠ .

This matrix can be consider as the corresponding linear operator f ′(x) which acts on
the tangent space Tx(Rn) .

For a complex-valued and differentiable function f from B
n into C , we introduce

the following derivatives:

fz =
(

∂ f
∂ z1

, · · · , ∂ f
∂ zn

)
and fz =

(
∂ f
∂ z1

, · · · , ∂ f
∂ zn

)
.

If f : B
n → C

m is differentiable, then we introduce

fz =
(

∂ f j

∂ zk

)
m×n

and fz =
(

∂ f j

∂ zk

)
m×n

.

In the literature the 2m×2n Jacobian matrix of f at z0 in terms of real coordinates
is also denoted by Jf (z′0) .

Let f = h + g be a pluriharmonic mapping from Bn into Cn . Then, the real
Jacobian determinant of f can be written in the following form

detJf = detDf = det

(
∂h ∂g
∂g ∂h

)

and if h is locally biholomorphic, then the determinant of Jf can be written as follows

detJf = |det∂h|2 det(In− ∂g[∂h]−1∂g[∂h]−1).
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When n = 2, i.e., the complex plane, and f is harmonic in D , then its determinant of
Jacobian is given as follows

detJf = | fz|2−| fz|2 = |h′|2−|g′|2.

Boundary Schwarz lemma for harmonic mappings

In [12], the authors obtained a Schwarz lemma for pluriharmonic mappings be-
tween the unit balls of any dimensions, which generalizes the classical Schwarz lemma
for bounded harmonic functions to higher dimensions. As an application of this result,
the authors also established a boundary Schwarz lemma for pluriharmonic mappings
between unit balls with any dimensions. Later, Kalaj [11] extended and simplified the
main result of [12].

Main results

The main purpose of this paper is to establish a new version of the boundary
Schwarz lemma for pluriharmonic mappings (harmonic mappings and C1 mappings)
f , and obtain the sharp estimate of the eigenvalue λ related to the Jacobian of f . Our
main results are as follows.

THEOREM 1.2. Let f be a pluriharmonic self-mapping of Bn having differen-
tiable extension to a boundary point a∈ Sn−1 such that f (0) = 0 and b = f (a)∈ Sn−1 .
Assume that a′ and b′ are the real version of a and b, respectively.

(i) Then there exists a positive number λ ∈ R such that Jf (a′)T b′ = λa′ and

(ii)
λ � 2/π � C2n,

where C2n is given by (2.3) .

(iii) In particularly if n = 1 , we have λ � 2
π . This is sharp.

We refer to [9, Remark 2.7] for more numerical values of Cm for some small
m . The part (i) of Theorem 1.1 is proved in [7]. Hamada1 observed that the func-
tion f = ( f1, f2, . . . , fn) , i.e. f (z) where z = (z1, . . . ,zn) , given by f1(z1, . . . ,zn) =
2
π arctan 2x

1−x2−y2 , z1 = x+ iy , and f2(z) = . . . = fn(z) = 0 is an extremal for the esti-
mate in the part (ii). It can be concluded from the proof of Theorem 1.2 below, but we
leave the straightforward details to the interested reader.

REMARK 1.2. After writing a final version of this paper in order to summarize
our results we discovered Claim 1.1. We also realized that the proof of the part (i) in
Theorem 1.2 can be based on Claim 1.1, the proof of the part (iii) can be derived from
Proposition 4.3, and from Remark 1.4, one can obtain the part (ii). Bearing in mind that
some readers (for pedagogical and methodological reasons) may find it interesting to
see different evidence, we decided to keep the original proof of this theorem.

1in communication with the second author
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REMARK 1.3. 1. Hamada proved in [7] that if f : Bn → Bm is a C1 mapping,
and suppose f is C1 at a and b = f (a) ∈ Sm−1 , then there exists a nonnega-
tive number λ ∈ R such that Jf (a′)T b′ = λa′ and Jf (a′) maps Ta′(S2n−1) into
Tb′(S2m−1) , where a′ and b′ are the real version of a and b , respectively.

2. If in addition f is pluriharmnic on Bn , then

λ � 1− ( f (0)′)T b′

2
� 1−| f (0)|

2
,

where ( f (0)′)T b′ is the product of the row matrix ( f (0)′)T and the column ma-
trix b′ which also denotes the corresponding scalar product.

3. If further f (0) = 0, then the lower bound of such eigenvalue λ is an absolutely
constant 1/2.

4. In Theorem 1.2, we find a new lower bound which is related to the dimensions
n . Furthermore, if n = 1, then

C2 =
2
π

>
1
2
.

5. It should be pointed out that, we give Theorem 1.4 below, which shows that if
n > 1 then λ � 2

π >C2n . This shows that if n > 1, then the estimate in Theorem
1.2 is not sharp for pluriharmonic mappings.

Let ϕξ (z) = A ξ−z
1−ξ z

be the holomorphic automorphism of Bn , where A = sξ In +

ξ ξ ′
1+sξ

, sξ =
√

1−|ξ |2 . We have the following theorem.

THEOREM 1.3. Let f be a pluriharmonic self-mapping of Bn having differen-
tiable extension to a boundary point a ∈ Sn−1 such that f (ξ ) = 0 , ξ ∈ Bn , b = f (a) ∈
Sn−1 and p = ϕξ (a) . Assume that a′ , b′ , ξ ′ and p′ are the real version of a, b , ξ
and p, respectively. Then there exists a positive number λ such that

Jf (a′)
T b′ = λJT

ϕξ
(a′)p′

and

λ � 2
π

� C2n,

where C2n is given by (2.3) . If in particular ξ = 0 , then Theorem 1.3 coincides
with Theorem 1.2 . Moreover, there exists a positive number λ = λ ( f ,a,b) such that
Jf (a′)T b′ = λa′ .

Let
s−(x) = cot

(π
4

(x+1)
)

, x ∈ (−1,1).

The readers can verify directly that s− is decreasing function on (−1,1) and 2
π s−(x) �

1−x
2 , for all x ∈ [0,1) . Thus, the following theorem shows that our estimate is better

than the corresponding result given by [7].
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THEOREM 1.4. Let f : Bn → Bm be a pluriharmonic function having differen-
tiable extension to a boundary point a ∈ Sn−1 such that b = f (a) ∈ Sn−1 . Then

|Dr f (a)| � 2
π

s−, where s− = s−(|Pb( f (0))|).

Here by Dr f (a) , we denote the radial derivative of f at the direction a .
If c ∈ C

n we define the space spanned by c as {zc : z ∈ C} and denote it with [c] .

REMARK 1.4. The projection Pc of Cn onto [c] is given as follows: Pcz = 〈z,c〉
〈c,c〉c .

Let f b be defined by f b(z) = 〈 f (z),b〉 . In our approach we use crucial property
of pluriharmonic functions: f b is a complex-valued harmonic on [a]∩Bn under hy-
pothesis of the theorem. We remark here in addition that if one set fb = Pb ◦ f , then
| fb(0)| � | f (0)| and therefore s−(| f (0)|) � s = s−(| fb(0)|) . Given | f (0)| be known,
the above inequality is sharp. Hence C2n < 2

π = C2 , where n > 1. Furthermore, The-
orem 1.4 shows that: If λ0 =: minλ ( f ,a,b) under the family of all pluriharmonic
mappings which satisfying the hypothesis of Theorem 1.3, then λ0 = 2

π s−(| f (0)|) . It
is easy to see that a pluriharmonic mapping f : B

n → B
m is harmonic between B2n and

B2m . Therefore, one can easily deduce from Theorem 1.3 and Theorem 1.4 that [12,
Theorem 1.1 ] holds true.

The following results generalized the corresponding results given in [12], [24]and
[30].

THEOREM 1.5. Suppose f : Bn → Bm is differentiable at the point a ∈ Sn−1 and
let b = f (a) ∈ Sm−1 . Then the following results hold:

(i) There exists a nonnegative λ � 0 such that f ′(a)T b = λa;

(ii) If Z ∈ Ta(Rn) , then | f ′(a)Z| � λ |〈Z,a〉| .
If in addition f is a harmonic function, then

(iii) λ > c0 , where c0 = 1−| f (0)|
2n−1 ;

(iv) for Z ∈ Ta(Rn) , we have | f ′(a)Z| � c0|〈Z,a〉| .
Let D be a domain of Rn and a ∈ ∂D , the boundary of D . If there is a half space

Ha = {y : 〈y−a,na〉< 0} , where na is a unit vector such that D⊂Ha , then we say that
D touches Ha at a .

THEOREM 1.6. Let D be a domain in Rn , and let f : D → D′ ⊂ Rm be differen-
tiable at a point a ∈ ∂D.

(I) Suppose D touches Ha at a and b = f (a) and D′ = f (D) touches Hb at b.
Then there exists a nonnegative λ � 0 such that f ′(a)T nb = λna .
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(II) If in particular, D is the unit ball Bn and that f is harmonic in Bn , then we have
λ � c0 and for Z ∈ Ta(Rn) ,

| f ′(a)Z| � c0|〈Z,a〉|,
where c0 = d( f (0))

2n−1 and d( f (0)) = dist( f (0),bD′) . If D′ is also the unit ball,

then c0 = 1−| f (0)|
2n−1 .

REMARK 1.5. According to Claim 1.1, it is easy to see that

λ = | f ′(a)T nb| = 〈 f ′(a)na,nb〉,
and thus, λ � | f ′(a)na| .
Concerning the proof of Theorem 1.6, we give the following comments:

REMARK 1.6. The statement (I) is based on Claim 1.1. Moreover, in the proof
of (II) we use that fact: u(x) = 〈 f (x)−b,nb〉 is a non-negative harmonic function, on
which we apply the Harnack’s inequality.

The proof of Theorems 1.2–1.6 will be given in Section 3.

1.2. Note added in proof

After writing a final version of our manuscript Hamada turned our attention on the
arxiv paper [3]. He made great effort in considering several versions of manuscript and
gave very useful comments which improved exposition. In [3], the authors generalize
the classical Schwarz lemmas of planar harmonic mappings into the sharp forms of
Banach spaces, and present some applications to sharp boundary Schwarz type lemmas
for pluriharmonic mappings in Banach spaces (cf. also Section 5).

1.3. Boundary Schwarz lemma on complex Hilbert balls

Let Bj be the unit ball of a complex Hilbert space Hj for j = 1,2, respectively.
Note that if f is C1 at z0 ∈ bB1 with values in H2 , then the adjoint operator Df (z0)∗
is defined by

Re

(
〈Df (z0)∗w,z〉H1

)
= Re

(
〈w,Df (z0)z〉H2

)
for z ∈ H1,w ∈ H2,

where 〈·, ·〉Hj is the inner product of Hj, j = 1,2. The following result was obtained in
[6, Proposition 1.8].

PROPOSITION 1.7. Let B j be the unit ball of a complex Hilbert space Hj , for
j = 1,2 , respectively. Let f : B1 → B2 be a pluriharmonic mapping. Assume that f is
of class C1 at some point z0 ∈ B1 and f (z0) = w0 ∈ B2 . Then there exists a constant
λ ∈ R such that D f (z0)∗w0 = λ z0 . Moreover,

λ �
1−Re

(〈 f (0),w0〉
)

2
> 0.
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By using this Proposition and the arguments similar to those in the proof of [3, Theorem
3.3], the authors obtain a better estimate:

PROPOSITION 1.8.

λ � max

{
2
π
−|| f (0)||, 1−Re(〈 f (0),w0〉)

2

}
.

In particular if f (0) = 0 , then λ � 2/π .

Recall the conclusion of (ii) and (iii) in Theorem 1.2, we also have λ � 2/π holds
true.

THEOREM 1.9. ([3, Theorem 3.3]) Suppose that BX and BY are the unit balls of
the complex Banach spaces X and Y , respectively, and f : BX →BY is a pluriharmonic
mapping. In addition, let f be differentiable at b ∈ bBX with ‖ f (b)‖Y = 1 . Then we
have

‖Df (b)b‖Y � max

{
2
π
−|| f (0)||, 1−|| f (0)||

2

}
. (1.5)

Our Theorem 1.9 in more specific setting yields a better estimate. We leave it to
the interested reader to check it.

Further, Mutavdžić and the second author combining the method developed in
the arxiv paper [3], and slightly improved the estimates given in Proposition 1.7, and
Theorem 1.9, and showed

λ � 2
π

s−(b) =
2
π

cot
(π

4
(1+b)

)
> 0, where b = Re

(
〈 f (0),w0〉

)
,

and ‖Df (b)b‖Y � 2s−(‖ f (0)‖/π) , respectively. They also communicated at Belgrade
seminar [37] that the corresponding version of Theorem 1.2 holds for harmonic func-
tions with an optimal estimate λ � cn .

2. Preliminaries

It is well-known that a harmonic function u ∈ L∞(Bn) has the following integral
representation

u(x) = P[ f ](x) =
∫

Sn−1
P(x,ζ ) f (ζ )dσ(ζ ),

where f is the boundary function of Sn−1 , and

P[x,ζ ] =
1−‖x‖2

‖x− ζ‖n , ζ ∈ Sn−1

is the Poisson kernel and σ is the unique normalized rotation invariant Borel measure
on Sn−1 . According to [9], we know that if u is a harmonic self-mapping of Bn such
that u(0) = 0, then

‖u(x)‖ � U(rN), (2.1)
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where r = ‖x‖ , N = {0, · · · ,0,1} and U is a harmonic function of Bn into [−1,1]
defined by

U(x) = P[χS+ − χS− ](x) (2.2)

where χ is the indicator function and S+ = {x∈ Sn−1 : xn � 0} , S− = {x ∈ Sn−1 : xn �
0} . We refer to [1, Chapter 6] for more details.

Recall that the hypergeometric function pFq is defined for |x| < 1 by the power
series ([14, (2.1.2)])

pFq[a1,a2, . . . ,ap;b1,b2, . . . ,bq;x] =
∞

∑
n=0

(a1)n · · · (ap)n

(b1)n · · ·(bq)n

xn

n!
.

Here (a)n is the Pochhammer symbol and given as follows (a)n = Γ(n+a)
Γ(a) .

The following result is the so-called Heinz-Schwarz inequalities.

LEMMA C. [9, Lemma 2.3] The function V (r) = ∂U(rN)
∂ r , 0 � r � 1 is decreasing

on the interval [0,1] , and we have

V (r) � V (1) = Cm =:
n!

(
1+m− (m−2)2F1

[
1
2 ,1; 3+m

2 ;−1
])

23m/2Γ
[

1+m
2

]
Γ

[
3+m

2

] . (2.3)

We refer the readers to [9, Remark 2.7] for more details on the constant Cm and
related functions, when m = 2,3,4.

The following lemma is useful and will be used in the proof of our main results.

LEMMA D. ([25, Theorem 2.2]) For given a ∈ Bn , let A = sIn + aaT

1+s , where

s =
√

1−|a|2 and In is the unit square matrix of order n. Then

ϕa(z) = A
a− z

1−aT z

is a biholomorphic automorphism of Bn which interchanges 0 and a. Moreover, ϕa is
biholomorphic in a neighborhood of Bn , and

A2 = s2In +aaT , Aa = a, ϕ−1
a = ϕa, Jϕa(z) = A

[
− In

1−aT z
+

(a− z)aT

(1−aT z)2

]
.

3. Proof of the main results

Proof of Theorem 1.2

It follows from [7, Theorem 1.2] that Jf (a′)β ∈Tb′(S2n−1) for any β ∈ Ta′(S2n−1) .
Assume that Jf (a′)T b′ = λa′ + β for some λ ∈ R and β ∈ Ta′(S2n−1) , where a′ and
b′ are the real version of a and b . Then

|β |2 = (λa′ + β )T β = (Jf (a′)T b′)T β = b′ T Jf (a′)β = 0
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by the above argument. Therefore, we have

Jf (a′)T b′ T = λa′

for some λ ∈ R .
Now we show that λ � C2n , where C2n is a constant depending only on the di-

mensions n .
In view of invariance property of harmonic function, see [1, Chapter 1], by using

unitary transformation, if needed we can assume that a′ = e1 = b′ , where e1 ∈ R
2n .

For ζ ∈ D define v(ζ ) = Re〈 f (ζ ,0, · · · ,0),e1〉 . Then v maps D into (−1,1) and
Drv(1) = Re〈 f ′(e1)e1,e1〉 = Re〈e1, f ′T (e1)e1〉 = Reλ = λ .

Recall hence a proof of the part (iii) can be derived from Proposition 4.3, and from
Remark 1.4 the conclusion (ii) follows. But we prefer here to give our first approach.

For x ∈ B2n define u(x) = Re〈 f (x),e1〉 . Then u maps B2n into (−1,1) and
Dru(1) = Re〈 f ′(e1)e1,e1〉 = Re〈e1, f ′T (e1)e1〉 = Reλ = λ , where here for simplicity
reason, by abusing notation, we write e1 instead of real version e′1 .

Now letting w(x) = 1−u(x) , x ∈ B2n . Since u is harmonic and it maps B2n into
(−1,1) , u(0) = 0 and u(e1) = 1, using (2.1) we have

w(x) = 1−u(x) � 1−U(rN), for r = |x| < 1.

Next, using (2.2), Lemma 3, and [9, Lemma 2.4], we find

lim
|x|→1−

1−u(x)
1−|x| � lim

r→1−
1−U(rN)

1− r
=

∂U(rN)
∂ r

∣∣∣∣
r=1

� C2n.

Thus ∂u
∂x1

(e1) = λ � C2n. If n = 1, then U(rN) = 4arctan(r)/π . Therefore

∂U(rN)
∂ r

∣∣∣∣
r=1

=
4

π(1+ r2)

∣∣∣∣
r=1

=
2
π

.

To show this estimate is sharp for n = 1, consider the function

f (z) = u(z)+ iv(z) =
2
π

arctan
2x

1− x2− y2 ,

where z = x+ iy ∈ D . Then f is harmonic and maps D into itself such that f (1) = 1,
v = Im( f ) = 0 and

ux(1) = fz(1)+ fz(1) =
2
π

,

uy(1) =
1
i
( fz(1)− fz(1)) = 0.

Thus

Jf (1)T =

⎛
⎝ux(1), vx(1)

uy(1), vy(1)

⎞
⎠ .
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For a′ = (1,0)T and b′ = (1,0)T ∈ T , we have

Jf (1)T b′ = fx(1)a′ =
2
π

a′.

This shows that λ = 2
π , and the estimate is sharp.

The proof is completed. �

Proof of Theorem 1.3

Recall that we assume ϕξ (a) = p ∈ Sn−1 . Let g(z) = f ◦ϕξ (z) . Then g is a
pluriharmonic self-mapping of Bn satisfying

g(0) = f ◦ϕξ (0) = f (ξ ) = 0,

and
g(p) = f ◦ϕξ (p) = f (a) = b ∈ S

n−1.

According to Theorem 1.2, we know that there exists a nonnegative number λ ∈ R

such that
Jg(p′)T b′ = λ p′. (3.1)

Since Jg(p′) = Jf (a′)Jϕξ (p′) , by the property of transpose operation we have

(1) JT
g (p′) = (Jf (a′)Jϕξ (p′))T = JT

ϕξ
(p′)JT

f (a′) .

Hence by (3.1) we find

(2) JT
ϕξ

(p′)JT
f (a′)b′ = λ p′ .

Since a = ϕξ (p) and the automorphism ϕξ of Bn has property ϕξ ◦ϕξ = Id , we have
p = ϕξ (a) , and Jϕξ (p′)Jϕξ (a′) = Id . Then

(3) JT
ϕξ

(a′)JT
ϕξ

(p′) = Id .

According to (2) and (3), we see that JT
f (a′)b′ = λJT

ϕξ
(a′)p′ .

This completes the proof. �
We advise the readers to recall the projection of Pa in Remark 1.4, and recall

Remark 1.6 regarding the following proofs.

Proof of Theorem 1.4

Recall that in Remark 1.4, we set fb = Pb ◦ f and let f b be defined by f b(z) =
〈 f (z),b〉 . Then fb(z) = 〈 f (z),b〉b is a vector-valued harmonic on the unit disk Ua :=
[a]∩Bn in [a] , and it maps Ua in the unit disk Ub in [b] .

Now, let Fb(z) = 〈 f (az),b〉 and set Fb(z) = 〈 f (az),b〉b . Then Fb is a vector-
valued harmonic on the unit disk D and it maps D into Ub = [b]∩Bn . Since Fb maps
D into itself and it is a complex-valued harmonic function on D , by the planar version,
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i.e., Proposition 4.4 below, we find first |DrFb(1)| � 2
π s− , where s− = s−(|Fb(0)|) .

Next, since the projection decreases the distances

| f (ar)− f (a)| � |Fb(r)−Fb(1)|
letting r → 1, we have

|Dr f (a)| � 2
π

s−.

Using Example 4.2 below, we show that this estimate is sharp.
Set Ra(λa) = λ and let

fa,b = R−1
b ◦ vc ◦Ra ◦Pa,

where c ∈ (−1,1) , |c| = |Rb(Pb f (0))| , and vc is defined in Example 4.2. Then f 0 =
fa,b maps Bn onto (−b,b) . Moreover, we have f 0 is pluriharmonic on Bn and f 0(a) =
b . Since |Dr( f 0)′a(a)| = 2

π s−(c) , we see that it is the extremal function. �

Proof of Theorem 1.5

For z ∈ Rn ,z �= 0, let Hz be a hyper plane throughout z and orthogonal on z .
Let L be a linear functional on the tangent space Ta(Rn) defined by L(X) =

〈 f ′(a)X ,b〉 . Then there exists a vector X0 such that L(X) = 〈X ,X0〉 .
According to the assumption, we see that f ′(a) maps Ta(Ha) into Tb(Hb) , and

therefore L is zero on Ta(Sn−1) , and X0 is orthogonal on Ta(Sn−1) . Hence X0 = λa ,
where λ > 0. Moreover,

L(X) = 〈 f ′(a)X ,b〉 = 〈X ,λa〉. (3.2)

By the definition of adjoint operator, i.e.,

L(X) = 〈 f ′(a)X ,b〉 = 〈X , f ′(a)T b〉
and by (3.2), we get

〈X , f ′(a)T b〉 = 〈X ,λa〉,
where X ∈ Ta(Ha) . Hence (i) holds true.

We now prove (ii) as follows: Using Euclidean motions, we can assume that a =
b = e1 . It follows from (i) that

f ′(e1)T e1 = λe1. (3.3)

Therefore
〈 f ′(e1)e1,e1〉 = 〈e1, f ′(e1)T e1〉 = 〈e1,λe1〉 = λ (3.4)

and consequently | f ′(e1)e1| � λ .
If Z ∈ Te1(R

n) , then we have the following representation Z = Z1 + Z2 , where
Z1 ∈ Te1(He1) , and Z2 = (cosα)e1 and cosα = 〈Z,e1〉 . Then

f ′(e1)Z = f ′(e1)Z1 + f ′(e1)Z2
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and therefore by (3.4), we have

〈 f ′(e1)Z,e1〉 = 〈 f ′(e1)Z2,e1〉 = 〈 f ′(e1)(cosα e1),e1〉 = λ 〈Z,e1〉.

Hence | f ′(e1)Z| � λ |〈Z,e1〉| and this completes the proof of (ii).
Assume further that f is harmonic in Bn . Then the proof of (iii) was already given

in [24] and [30]. The proof of (iv) now directly follows from (ii) and (iii). �

Proof of Theorem 1.6

For Y,Y0 ∈ Tb(Rm) , set L(Y ) = 〈Y,Y0〉 . If A is a linear operator from Ta(Rn) into
Tb(Rm) , then the following function

L1(X) = 〈A(X),Y0〉 = L(A(X))

is a bounded liner function on Ta(Rn) , and thus, there is a point X0 ∈ Ta(Rn) such that
L1(X) = 〈X ,X0〉 , where X ∈ Ta(Rn) .

It is easy to see that X0 = ATY0 . Next, we specify that Y0 = nb and A = f ′(a) .
Using Euclidean motions, we can assume that a = b = 0, Ta(Rn) = Rn−1 , and

Tb(Rm) = H
m = {u = (u1, . . . ,um) ∈ R

m : um > 0}.

Here we can chose that na = en and nb = em .
According to the assumption of (I), we see that the m-th coordinate function fm(x)

has minimum 0 at x = 0 on D , and hence, for X ∈ Rn−1 , we have

0 = 〈 f ′(a)X ,em〉 = 〈X , f ′(a)T em〉 = 〈X ,X0〉.

This shows that X0 = f ′(a)T em is orthogonal on Rn−1 . In our setting, it equals to λen ,
where λ > 0.

In the general case, we have

0 = 〈 f ′(a)X ,nb〉 = 〈X , f ′(a)T nb〉 = 〈X ,X0〉,

which shows that X0 = f ′(a)T nb is orthogonal on Ta(∂D) . Therefore, in the general
case it also equals to λna , where λ > 0. This proves (I).

Before we prove (II), we need the following theorem.

THEOREM 3.1. Suppose f is a Euclidean harmonic mapping from the unit ball
Bn ⊂R

n onto a bounded domain D = f (Bn) , which contains the ball Bn( f (0);R0) and
there is a half space Hb which touches a point b∈ ∂D such that D = f (B) ⊂Hb . Then

(i1) | f (z)−b| � (1−|z|)c̃nR0 , z ∈ Bn , where c̃n = 1
2n−1 .

(i2) if in addition f is differentiable at the point a ∈ Sn−1 and b = f (a) , then

−〈 f ′(a)a,nb〉 � c̃nR0.
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This result has been announced in [24, Theorem 1.3]. Sometimes, we refer to this
result as a version of Harnack’s lemma. In [24] the second author of this paper stated
this result under the condition that D = h(B) is convex. But, modification of the proof
of [24, Theorem 1.1] (planar case) shows that (i1) also holds under the hypothesis of
Theorem 3.1.

Proof of (i1). Consider harmonic function u(x) = 〈 f (x) − b,nb〉 . Since u ∈
L∞(Bn) , we see that u has the following Poisson integral representation:

u(x) = P[ f ](x) =
∫

Sn−1
P(x,ζ ) f (ζ )dσ(ζ ),

where f is the boundary function of Sn−1 , and P[x,ζ ] is the Poisson kernel. Since u
is a nonnegative harmonic function on B , it follows from the Harnack’s inequality that:

u(x) � 1− r
(1+ r)n−1 u(0), (3.5)

where r = |x| . Then | f (x)− b| � u(x) . Let l(t) = f (0)+ tnb , t � 0, be a half line
which intersects the sphere S( f (0),R0) and ∂Hb , respectively at the points x0 and x1 .
Then by hypothesis x0 ∈ D and x1 /∈ D , and note that

u(0) = 〈 f (0)−b,nb〉 = | f (0)− x1| � | f (0)− x0| = R0,

we get that u(0) � dD( f (0)) , and hence

u(x) � 1− r
(1+ r)n−1 dD( f (0)) � (1− r)dD( f (0))c̃n, (3.6)

and

| f (x)−b| � u(x) � 1− r
(1+ r)n−1 dD( f (0)) � (1− r)dD( f (0))c̃n.

proof of (i2). Since f is differentiable at the point a , we have

f (ra)− f (a) = f ′(a)(ra−a)+o(1− r)= (r−1) f ′(a)a+o(1− r).

Then
f (ra)− f (a)

1− r
= − f ′(a)a+o(1).

By using (3.6) and the definition of u , we have 〈− f ′(a)a+o(1),nb〉� c̃nR0 . If r tends
to 1, then −〈 f ′(a)a,nb〉 � c̃nR0 .

We are now ready to prove the part (II).
According to the assumption, D is the unit ball Bn , we have Ha is defined by na =

−a . By (I) there exists a positive λ > 0 such that f ′(a)T nb = λna and in particular,

λ = | f ′(a)T nb| = 〈 f ′(a)na,nb〉 = −〈 f ′(a)a,nb〉.
Hence by (i2), λ � c̃nR0 . Using a similar approach as in the proof of Theorem 1.5, we
can prove that:

| f ′(a)Z| � c0|〈Z,a〉|,
where c0 = d( f (0))

2n−1 and dD′( f (0)) = dist( f (0),bD′) . This completes the proof. �
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4. Appendix 1

In this section, we outline some results in the planar case related to a boundary
version of Schwarz lemma (see for example [21]). For further results of this type see
also the paper [10, Theorem 6], in which the authors have considered a boundary ver-
sion of Schwarz lemma for α -harmonic functions, and in particular the special case
α = 0.

Recall that is convenient to use notation s = s(b) = tan(π
4 (b+1)) , s+ = s+(b) =

tan(π
4 (|b|+1)) . Note if a = tan bπ

4 , then s = s(b) = 1+a
1−a .

PROPOSITION 4.1. Suppose f : D → D is a differentiable function. Fix b ∈ T ,
assume that f has a continuous extension at b, such that f (b) = c ∈ T . If f is differ-
entiable at b, and if there is a real function ϕ : [0,1] → [0,1] , such that ϕ ′(1) exists
and | f (rb)| � ϕ(r) for r near 1 , then

|Λ f (b)| � |Dr f (1)| � ϕ ′(1),

where Λ f = | fz|+ | fz | , and Dr f is the radial derivative of f .

We remark here that since f has a continuously extension at b , we see that
| f (rb)| → 1 as r → 1, and by the hypothesis ϕ : [0,1] → [0,1] , we have ϕ(1) = 1.

Proof. By using rotations, it is not loss of generalities to assume that b = c = 1.
According to the triangle inequality

| f (r)− f (1)| = | f (r)−1| � 1−ϕ(r) = ϕ(1)−ϕ(r)

one has
| f (r)− f (1)|

1− r
� ϕ(1)−ϕ(r)

1− r
.

Hence when r → 1, we get |Λ f (b)| � |Dr f (1)| � ϕ ′(1) . �

Fix b ∈ (−1,1) and let a = tan bπ
4 . For r ∈ (0,1) , let

Mb(r) =
4
π

arctan
a+ r
1+ar

and mb(r) =
4
π

arctan
a− r
1−ar

.

The following theorem was given in [18].

THEOREM E. ([18, Theorem 6]) Let u : D → (−1,1) be a harmonic function
such that u(0) = b. Then

mb(|z|) � u(z) � Mb(|z|), for all z ∈ D, (4.1)

and the above inequalities are sharp.
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EXAMPLE 4.2. Set φ0 = i 2
π lnA0 , where A0 = 1+z

1−z , and let Ta(z) = z+a
1+az be the

Möbius transformation. Suppose φa = φ0 ◦Ta and set ua = Reφa .
Let

Θ = {z : z = iy, y ∈ [−1,1]}
be an “interval” of the y-axis. It is easy to see that φ0 maps Θ onto the interval
[−1,1] . Elementary calculations show that (φ0)′(z) = i 4

π
1

1−z2
, and thus, (φa)′(z) =

−(φ0)′(Ta)
1−|a|2
(1−az)2 . Moreover, |(φ0)′(z)| attains its minimum at the points ±i on T

and is equal to 2
π , while the minimum |T ′

a(z)| on T equals to e−(a) = |T ′
a(1)| = 1−|a|

1+|a| .
Furthermore, if a ∈ Θ , then min |Drua| on T equals to 2

π e−(a) .

We remark here that if we fix a ∈ (−1,1) , and set va(z) = −Reφ0(iTa) , then va

maps the closed unit disk D onto the interval [−1,1] . It also maps the interval [−1,1]
onto itself. Furthermore, it fixes the points −1,0 and 1.

PROPOSITION 4.3. Let u : D → (−1,1) be a harmonic function such that u(0) =
b and a = tan bπ

4 . Assume that u has a continuously extension to the boundary point

z0 ∈ T , and u(z0) = ±1 . If u is differentiable at z0 , then |Dru(z0)| � 2
π

1−|a|
1+|a| .

Proof. Case 1. Suppose first that b ∈ [0,1) . If we set Ta(r) = a+r
1+ar , then ϕ(r) :=

A(r) = 4
π arctanTa(r) and therefore

A′(r) =
4
π

1−a2

(1+ar)2 +(a+ r)2 .

If u(z0) = 1, then u(rz0) > 0 for r near 1, and by Theorem 5, we have u(rz0) �
A(r) =: Mb(r) . Since in particular A′(1) = 2

π
1−a
1+a , by Proposition 4.1, we see that

|Dru(z0)| � A′(1) =
2
π

1−a
1+a

.

Case 2. If b ∈ (−1,0) , then we consider v = −u , and by Case 1, we have again
|Dru(z0)| � 2

π
1−|a
1+|a| . �

PROPOSITION 4.4. Let u : D → D be a harmonic function such that u(0) = b.
Assume that u has a continuously extension to the boundary point z0 ∈T , u(z0)= c∈T

and a = tan |Re(cb)|π
4 . If u is differentiable at z0 , then |Dru(z0)| � 2

π
1−|a|
1+|a| .

Proof. Consider the function v = Re(cu) . Then function v is real-valued har-
monic, v(z0) = 1 and v(0) = Re(cb) . Now we can apply Proposition 4.3 on v . �

Note here that a = |a| and Pcb = 〈b,c〉c = b , |v(0)|� |b| and therefore s−(|Pcb|)�
s−(v(0)) = 1−|a|

1+|a| = e−(|a|) .
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5. Appendix 2

In this section we give some additional explanations for the convenience of the
reader.

Let G ⊂ Cn , f = ( f1, . . . fm) : G → Cm , fi = ui + ivi , i = 1, . . . ,m , and G′ = {z′ :
z ∈G} . The “Real version” of f , denoted by fre , is defined on G′ by fre(z′) = f (z)′ =
(u1, . . . ,um,v1, . . . ,vm)(z′) . In the literature the 2m×2n Jacobian matrix of f at z0 in
terms of real coordinates is also denoted by Jf (z′0) . Thus the linear operator f ′re(z0)
can identified by the matrix Jf (z′0) .

The conjugate transpose of an m×n matrix AAAAA is formally defined by(
AAAAAH)

i j = AAAAA ji,

where the subscript (i, j) -th entry, for 1 � i � n and 1 � j � m , and the overbar de-
notes a scalar complex conjugate. This definition can also be written as

AAAAAH =
(
AAAAA
)T = AAAAATAAAAAH =

(
AAAAA
)T = AAAAAT,

where AAAAAT denotes the transpose and AAAAA denotes the matrix with complex conjugated
entries. Note that 〈AAAAAx,y〉m =

〈
x,AAAAAHy

〉
n holds for any m-by-n matrix AAAAA , any vector

x ∈ C
n , and any vector y ∈ C

m . Here, 〈·, ·〉m denotes the standard complex inner prod-
uct on C

m , and similarly for 〈·, ·〉n .
Each complex m×n matrix A determines a linear map of Cn to Cm . The adjoint

of this map corresponds to the conjugate transpose of A: A∗ = AT , which is called the
Hermitian of A (sometimes denoted by AH ).

Trigonometric identities and s−

Tangents and cotangents of sums are given by

tan(α ±β ) =
tanα ± tanβ
1∓ tanα tanβ

, (5.1)

cot(α ±β ) =
cotα cotβ ∓1
cotβ ± cotα

(5.2)

Hence cot(α ±β ) =
1∓ tanα tanβ
tanα ± tanβ

and in particular since tan(π/4) = 1, we find

cot(π(1+ β )/4) =
1− tan(β π/4)
1+ tan(β π/4)

, and tan(π(1−α)/4) = cot(π(1+ α)/4) .

Recall that we use notation

s−(x) = cot
(π

4
(x+1)

)
, x ∈ (−1,1).

If we set y = tan(xπ/4) , we have s−(x) = 1−y
1+y .
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