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ON MULTI-INDEX WHITTAKER FUNCTION,
RELATED INTEGRALS AND INEQUALITIES

MUSHARRAF ALI, JORDANKA PANEVA—KONOVSKA AND TIBOR K. POGANY *

(Communicated by L. Mihokovic)

Abstract. A new generalization of Whittaker function M) ,(z) is introduced and studied by

(1):p
(04, 37)
introduced in [1]. The related Euler—type integral representation and the Laplace-Mellin and

Hankel integral transforms are also presented. Functional two—sided bounding inequality is es-
tablished for the multi-index Mittag-Leffler function, and in continuation functional lower bound
is derived for the associated ML-extended Whittaker function.

means of the extended multi-index confluent hypergeometric function of the first kind ®

1. Introduction and preliminaries

The Whittaker functions M) . (z) are the linearly independent solutions of the
Whittaker differential equation [2, 3, 4]

1 2
I 71— H Al )
w s+ —=——=)w=0 w=M ,
+ ( 2 + Z 4 ) AU (Z)
where z = 0 is a branching point for My ,(z), and z = oo is an essential singularity.
These functions can be represented via the confluent hypergeometric function (Kummer
function)

(@) 2" _
Fila;c;z) = ®(a;c;2) = —, ceC\Z, , (1.1)
1Fi[asc;2) = P(ase;z) PINERT \Z
namely, there holds
z 1
My (@) =2 e i0(p—A+ Si2u+ Liz), (12)

where A € C, min{R(u),R(u — 1)} > —%. These kind of functions have important
roles in applications of mathematics to physical and technical problems, and they are
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firmly identified via (1.2) by the confluent hypergeometric functions, having roles in
several branches of applied mathematics and theoretical physics for example, fluid me-
chanics, atomic structure theory and electromagnetic diffraction.

In the sequel we need the Euler function of the first kind (or beta function)

1
B(s,1) — / S 1=x)" s, min{SR(s),R()} >0, (1.3)
0
and the Euler function of the second kind (gamma function)
r(r) = / Fle dy,  R(r) > 0.
0

These are connnected via the formula

T(s)T'()

B(S,l) = m

The quotient I'(r+ o) /T(a) = (), R(ax) >0 (whereitis defined that (0)g = 1),
is known as the Pochhammer symbol. It is used in the hypergeometric functions’ series
definition e.g. 1Fy in (1.1).

As forany a,b € C, R(c) > R(a) > 0 the transformation

(@), Bl(a+n,c—a)
(¢)n B(a,c —a)

enables to rewrite the Kummer function into

(i)=Y Blatne—a)Z = g )2 %) >0, (1.4)

=0 Bla,c—a) n!

and by the same manner the familiar Gauss hypergeometric function series definition
reads

B(b+n,c—b)

Z"
Bcb) a0 @ >0 Re)>R(EB) >0 (15

2 F (a,b;c;z) = 2 (a)n

n=0

Euler’s integral representation formulae for @ and ,F; are (see [5, 2])

1
®(a;c;2) = ! a)/o X1 —x) e o™ dx (1.6)

B(a,c—

1 L . »
2F1(a7b§c§2)=m/0 (L= x) TP (1 = ),

respectively. The parameters’ ranges are the same as in the series representations of
these special functions.
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2. Generalization model of Whittaker function M, ,

The model of generalization of the Whittaker function M, ,(z) starts with insert-
ing a function A(x) in the integrand of beta function integral (1.3) so, that the resulting
integral

By, (s,1) :/le"’l(l —x)"'h(x)dx (2.1)

converges in some sense. Replacing now the beta function B(a + n,c —a) which con-
tains the summation index in the numerator in (1.4) with B, (a+ n,c — a) we obtain a
h-extended Kummer-type function

By(a+n,c—a)"
B(a,c—a) n!’

Oy (asc;2) = Y,

n=0

and after that by the same way from (1.5) we arrive at the associated /-extended Gaus-
sian hypergeometric series

By(b+n,c—b)7"

Filabieia) = 2@ g5 a5y

n=0

Next, using the integral form of By(-,-) in both previous sums by the integration—
summation order change we infer the integral representations formulae coupled to that
series. Precisely, we arrive at

1 ! .
(i) = g /O (1 = x)7 e h(x) d 2.2)
1
Fh(aab;c;z) = mA .Xbil(l —x)cibil(l —Zx)fah(x)dx.

Finally, by virtue of (2.2) and the definition (1.2), we resume the definition of the h-
extended Whittaker function:

1 z
My un(2) =230, (U — A+ 3:2u + 152) (2.3)
Htie s

1
- HA=3 (] 226 () dx. (2.4
B(u—?H—%,LH—?H—%)/ox (1= e hix) @9

The parameter space of the model @, (and a fortiori for Mj, ,,.;,) contains R(c) >
R(a) > 0 and depends on the behavior of 7.

In the sequel we give a brief overview of the evolution of this #-model. A list of
Whittaker functions by the above exposed and another methods for a few sort of special
functions have been explored in [6, 7, 8, 9] and the references cited therein.

In 1997, Chaudhry et al. [10] presented the so—called p-extension of the beta
function by introducing the exponential factor %, (x) = exp ( X(I—fx)) in the integrand
of (1.3), denoting the related h-functions by B),,®,,F,. In 2013, Nagar et al. [8]
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generalized the Whittaker function of first kind by utilizing the extended confluent hy-
pergeometric function @, defined by Chaudhry ez al. [11] as follows:

M, 1:p(2) =z”+%e’%d>p(u—7t+ L2u+1:z).

Here ®,, is the outcome of the exponential kernel function’s use, that is when £, (x) =
exp (x(l_—fx)) . The parameters involved are the same as in (1.1), additionally p > 0. By

setting p = 0, this definition clearly reduces to the classical Whittaker function (1.2).
In 2018, Shadab et al. [12] presented the case of the beta function specifying

h(x) :E“<_x(1lix)>’

where E, stands for the classical Mittag-Leffler function with one parameter [13, 14]

Zn

Ea(Z)ZZm, z€C, a>0.

n=0

Obviously, their specification covers the one by Nagar et al. in [8]. In [12] the related
extended Kummer ®,, o and Gaussian F), o functions, in both—series and integral form
are listed (compare and follow the #-modeling for their case stepwise).

More recently, Ali et al. [1] presented the generalization of beta function of
the type (2.1) with h(x) being the multi-index (3s-parametric) Mittag-Leffler func-

tion E(( )) (13)( x). This function, introduced and mainly studied by Paneva-Konovska
[19, 17, 18], is represented by the series

(T)n - (% )n Z
) . zeC, 2.5
(an(6) &) é) T(Bi + oan) - T(B, + o) (n)*’ = >

forall s € Ny ={2,3,...},1 <i<s (see also Kiryakova [16, 15] for the particular
case of 2s-parametric Mittag-Leffler function E(q,) g, (z) with % = 1). When s =1
and oy =, B =B, y1 =7, the function (2.5) is the 3-parametric Mittag-Leffler func-
tion EZ B (z), if additionaly y = 1 then (2.5) reduces to the 2-parametric Mittag-Leffler
function E, g(z), and at last Eq1(z) is the classical Mittag-Leffler function Eq(z)
with 1 parameter (for details see e.g. [18]). The parameters are under the conditions
o, Bi, vi € C, R(oy) >0 for i =1,--- 5. In all the results listed below the h-extended
beta function, where & is the 3s-parameter multi-index Mittag-Leffler function, is

1
(%).p _ —1 r—1 (%) )4
B g, (@ r>—/0 XN TG (- x(l—x))dx’

provided %R(g) >0, R(r) > 0; p > 0. Accordingly, the generalizations of extended
Kummer and Gauss functions, respectively are [1]

(1)-p
B (a+n,c—a) n
(n).p ) — (04, ’ z
Plaufiy () = X B e ar

n=0

(2.6)
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Bl
b+n,c—b)
() (@)nB g 3 !
F(a,,ﬁz)(a bieiz) = gb B(b,c—b) n!’

2.7)

where p >0, R(c) > R(a), R(b) >0, o; >0, Bj,7; € R and in both cases |z| <1,
while outside of the unit disk we take the analytic continuation.

REMARK 2.1. It is observed that, for y; = --- = 7%, = | and further s =2, if we
set (o, 0)=(1,0),and (B;,B1) = (1,1), then (2.6) and (2.7) reduce to the extensions
of Gauss and confluent hypergeometric functions defined by Chaudhry et al. [11].

The related integral forms for q)E )P /3)(“ ¢;z) and F((a%)ﬁ)(“ b;c;z) [1] are also

the outcomes of the #-model when 7 is the multi-index Mittag-Leffler function (2.5).
Thus,

. 1 ya— ( )c a— 1 N
)P (geciz) = (%), p
q)(%ﬁi)(a’c’Z) - /0 E(a,-)7(ﬁi) < - ( )> dx, (2.8)

B(a,c—a) x(l—x

1] — b1 o
(1-x) (%)7(/3,-)(_ p )dx, (2.9)

(%).p
F (a bic;z) = o B(b,c—b)(1—z0)a E(ai)7 x(L—x)

(0,

provided |arg(1 —z)| < m, while the ranges of other involved parameters remain the
same as above.

REMARK 2.2. It is easily seen that in (2.5), for 7, = --- = % = 1 we get the
known extension of beta function defined by Ghayasuddin et al. [20]. Further, the case
when s = 2, on setting (0;,00) = (¢,0), and (B;,5:) = (1,1), yields other earlier
considered extensions of the Euler beta function. Next, o« = 1 reduces the Mittag-
Leffler function to exponential function e, and taking p = 0 we get (1.3).

Furthermore, different extensions of beta, Gauss and confluent hypergeometric
functions have been presented and explored by several researchers, see for details [1,
10, 11, 12, 20] among others.

3. New generalization of extended Whittaker function

In this section, we study a new generalization of extended Whittaker function re-
garding generalized extended Kummer function considered in [1]. Some basic proper-
ties of this extended Whittaker function are proposed.

The Whittaker function M; ,(z) is defined in terms of the Kummer function,
power and exponential functions product, see (1.2). So, it is completely natural to con-
sider the h-extension of the Whittaker function via the /-extended Kummer function,
consult (2.3) and (2.4). The most general variant of the input % is the 3s-parameter
multi-index extended Kummer-type function [1], which results are appropriate to (2.6)
and (2.8), are listed in brief manner in the previous section. So we have following
definition.
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DEFINITION 3.1. The ML-extended Whittaker function M(g)’p (z) we define

(06,Bi)A.u
as
(%), (Ve ¥)s
(s @ =Moo g au®
1z i) . .
=#t3e ”I’Ezqﬁ) (W—A+L2u+1:2), 3.1)

provided R(u) > -1 R(u+A)>-1 1 eC; 2ueC\Z", where s € N, and
1 <i<s. Here @Ez?ﬁ) means the extended Kummer function (2.6).

We note that, If y; = ... =9 = 1 and further for s =2, by setting (o, ) =(1,0),
and fB; = B, =1 in (3.1) this definition reduces to the extension of Whittaker function
defined by Nagar er al. [8], which further for p = 0 gives the classical Whittaker
function M), ,(z).

The integral representation of the ML-extended Whittaker function we obtain by
inserting expression (2.6) into (3.1). Thus,

1 z
- = et /1 it A=) o
M - 2(1— 2
(RN Ty e A
s (__ P
£ e _x)>dx’ (3.2)
where R(u) > R(u+A)>—4, p>0,and ; >0, B, 3 €R.

X—da

The substitution =7 — x in (3.2) results in alternative formula, viz.

)0 drred b (x—a) A (b— xR e
M2, (2) = 2#/ 1 ¢
DEL (b_a) a B(u—?t+§,u+?t+§)
pms (__pb—a)
E(ai)v(ﬁi)( (x—a)(b_x)>dx
A more elegant formula follows by setting a = —1,b=1:
1 -1 a1
(1).p _ e /1 L+ A=) 72 o s ¢ 4p
M(O{i:ﬁi)’laﬂ(z)_ qu B(I.l—l-l—%,u—l-l—l-%) ezE(a,-),([},-)( 1_x2>dx'

X

Further, on substituting 7~ + x in (3.2), we obtain another form integral representa-

+x
tion:
Ut3a—% o A3 .
Mg)gm 7) = - 12e2 T / . 21161%
i) A Bu—A+lu+a+1)yJo (1+x)2
s p(1+x)?
E(an,(m)( X )d’“'
We note that, if 71 =--- = % = 1 and on taking s =2, (01, 00) = (1,0) and B; = B, =

1, all variants of (3.2) we re-obtain the integral representations by Nagar et al. [8].
Further, p = 0 yields the integral representations for the classical Whittaker function

M}L7”(Z).
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THEOREM 3.2. Forall p > 0 we have

(). - (%):p
M(aiJ?i)JL:IJ(_Z) - (_1)# M((X“ﬁ,) 'u(z) .

7

Proof. The Kummer-type transformation of the confluent hypergeometric func-
tion, given in [22, p. 44, Eq. (1.18)] (see also [21]) reads,

D(a;c;2) =e*P(c—a;c;—2),

and it is completely transmitted to all the successors that arose by #-modeling. There-
fore, there holds

q)ggt)ﬁl) (Cl C Z) - ez q)ggt)ﬁl) (C &6 _Z).

Now, having in mind the definition of ML-extended Whittaker function, we conclude
that

(%), _ (n).p
Mgy (3= (= )u+zez¢(Yﬁ (H=A+ 320+ 1:—2)
= (—1)HF e 2@22’8@ (L= (=A)+3:2u+1;z).

The rest is obvious. [

Our next goal is to present integral transforms images of ML—extended Whittaker
function. Firstly let us consider the integral

Q[f3k,1] :/wa’“le*’Xf(x)dx

for some convenient input function f(x). The resulting function @[f;k,?] is the so—
called Laplace—Mellin transform of f, as both the Laplace exponential, and the Mellin
power kernel is contained in the integrand, provided the integral converges.

Obviously, we could consider this integral as the Laplace transform of x¥~! f(x),
and also as the Mellin transform of the function e ™ f(x) separately. Therefore, the
Laplace transform .Z[f](¢t) = @[f;1,¢], and the Mellin transform .# [f](k) = @[f;k,0]
for certain suitable input function f.

THEOREM 3.3. For p >0, 2t —a >0 and R(k+ p) > —5, we have
(1)-p _ k=1 —tx g (%)-P
(P[M(/L,ﬁ, l“(ax) k,t] _/0 M( ﬁ)/”l(ax)dx

a“+7r(k+#+%) %).p
- (l+%)k+u+% F( ﬁl)(”+x+27” x+2’2”+1’2t+a) 3.3)

2t—a
2t+a

where ’arg | <.
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Proof. Applying the integral representation (3.2) of ML—expanded Whittaker func-
tion, we obtain

1
(r)-p = at*z NTRE S ()
o uleid] = W—A+§u+l+5/ax e

. u—A— NUHFA—L axu (%) p
/Ou (l u) Te E( )(ﬁz)( u(l—u))du

@ IT(k+p+4) /1 HoR=3 (] — y)H+r=3
= u —Uu
(149 B —A+ L u+A+1)

dau \ k) 0 »
(1 EWs (— :
( 2t+a> i (=) &

Finally, applying the integral representation (2.9) we obtain (3.3). [

The Laplace transform result follows by setting kK =1 in (3.3). In turn, for t =0
the formula (3.3) becomes the Mellin transform of I\\/JIE 1, lf ) (ax). Therefore, the
following corollaries can be written, respectively.

COROLLARY 3.4. For p > 0,2t —a >0 and R(u) > —%, the following identity
holds true:

D‘Z[Mgzlﬁ),l,u(ax)]() ( )H+2 ]"(‘u_|_ )(Zt—ka)*”*%
Flr

<ﬁﬂ“+x+w“ At p2u+1570),

2t—a
2t+a

where ’arg | <.

COROLLARY 3.5. For p>0,0 <a <2 and R(k+ ) > —5, we have

1
A I (@))() =252 D (et )

RO (AL - A+ 52 +132).
Finally, putting a = 2¢ in (3.3), we produce the corollary given below.

COROLLARY 3.6. For p >0 and R(k+ ) > —1, there follows:

o MP (ax);k,

a _
(00,82 'ﬁzakr@+#+%>ﬁkﬂu+l+yu A+ 32u+151).

2

Let us consider now the real hypergeometric representation of the Legendre func-
tion of the first kind [23, p. 43, Eq. (29)]
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where the parametric space is the one determined by the Gaussian function, that is
u,v € R and z > 1. Next, we call Hankel transform of the order v of some suitable
function f, the convergent integral [24, p. 3]

A0 = [ x1ule0 s,

where the transform kernel function is the Bessel function of the first kind Jy (z) of the

order v:
(—1)" (%)2n+v

M =2, Tntv+)nl

n=0

Now, we present Hankel transform results for the ML—extended Whittaker function.

THEOREM 3.7. For A,u€ C;R(u£A) > —1 and R(u +v) > —3 there holds
true:
a“ﬁ,)(ﬂ A+i+nu+i+i)
S0 Bu—A+3,u+A+3)
(u+v+n+5)P_v ( 1 )
(a2+4)2+ 3rin w3 \Vag2 11/

3.4
a’+ G

Proof. Considering (3.1) and (2.6), expanding ME a) B, u( x) in terms of general-
ized extended beta function and by the legitimate change of integration and summation
order we acquire

B (= A+ 3 +nputA+1)

YNy (0
xM x)Jy(ax)dx =
/0 (ai’ﬁi)’l’“( az) ngz) (.U—)L—l-j,.u-l-l—Fg)n.

/ x“+"+%e_%Jv(ax)dx

0

v B al),ﬁ, (M=A+irnuratd)
S0 Bu—A+iu+i+i)n!

-7 [x’“‘+”+§lv (ax)] (%) )

Applying the known Laplace transform result [25, p. 182, Eq. (9)]

_Tu+v+1) 5
X[XHJV(LUC)KS) - (a2 —l—s2)ﬂ+l Pﬂ <\/az——|—s2>,

where R(u +v) > —1 and R(s) > |F(a)| we obtain our stated result (3.4). O
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REMARK 3.8. If s=2, ;1 =9 =1, (0q,00) = (1,0) and B; = B, = 1, we de-
duce from (3.4) the Hankel transform result for the extended Whittaker function defined
by Nagar et al. [8], which reads

ZBp(u—/l+§+n,u+/l+%)

S0 B —A+5,u+A+3)
.F(u+v+n+%) pv < 1 )
@+ E i s \Vaa2 e 1)

Ay M up(¥)] (@) =

4. Functional bounding inequalities upon I\\/JIEE)[’;) A #(x)

In this part of the article we establish functional bounding inequalities upon the

ML-extended Whittaker function Mgg)g) Au (x) which starting pointis the Fox—Wright
representation of this special function. For these considerations we need the precise
definition of the Fox-Wright function, which is a generalized hypergeometric function

[26], [27, p. 4, Eq. 2.4)]:

(o) (00

. n ]
(bl’Bl)’ 7(b"’B") b“B’) k=0 T r(bj+kBj) '
j=1
where A; >0, j=1,---,m; B;>0,l=1,---,n. The convergence conditions and the

radius of convergence of the series (4.1) follow from the asymptotic of involved gamma

functions. So, (4.1) converges for all z € C when A=1 +Z?:13,/ - 2;-":1Aj >0.If

A =0, then the series converges for |z| < p, and |z| = p when R(u) > 5 where

p= (HAjAf) (HB?) . =Y bj— Y aj+ m2—n
=1 j=1 ==

The Fox—Wright function extends the generalized hypergeometric function ,F,

s

(@) X

Ia\l
N—
]

-
i
7| oy

»
v
(=)
=P
=
>
:‘_/
=

namely, if A, = By =1 then the Fox—Wright function ,,'¥,, reduces to the generalized
hypergeometric function (up to the multiplicative constant), i. e.

() =l (6 )

with
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Define the parameter domain [28, p. 134, Eq. (35)]

- B - 24; _A2
mD;:{(aj,Ai,bi,Bi): H(1+h_jj) H(1—|— ) /(l_i_%) J

J=1 Jj=1

& Hlaj?f(l +%)AJ”% <T1;-2)"}. (4.2)
J=

For all (a;,A;,b;,B;) € »ID, there holds [28, p. 134, Corollary]

ool <, EZ’:’;}%

x)g‘l’o—‘f‘l(l—elxl), XER,  (43)

when 2a;+A; > 1,2by+B; > 1; j=1,---;m;k=1,---,n and A;, By € [0,1]; the
bilateral equality occurs for x = 0. Here the constants W and ‘¥'; are respectively

wer{@ ]

Now, we re-call the Fox—Wright function representation of the multi-index Mittag-
Leffler function, in our setting written [18, p. 146, Theorem 8.6, Eq. (8.36)]

(a +Ai)}
(bi+Bi) !

E((Z;i))7;§tﬁi)(z) = 1"[ ((;l)) } sPos— 1((&_7 ai()z/i,(ll{ Do ‘z) , (4.4)

where a; > 0; B;,7; € C and R(y;) > 0, while (1), = (n1,---,n,) with n; =n for
i=1,...,s

Our next step is to use the exponential bounding inequality (4.3) for a subclass
of Fox—Wright functions ,,'¥',,, m < n, established in [28]. Collecting all these facts,
we formulate our first inequality result for a specific real argument multi-index Mittag-
Leffler function.

THEOREM 4.1. For all the positive integers s and (04,0, %) € Db, and all
x € R, where

= {(enfim): [T+ 5 2 <2 [T+ < TLB- 59},

j=1 j=1 j=1
(4.5)
when additionally Bj € [0,1],7; >0, 2Bj+0o; > 1; j=1,---,5, we have

F[(%-))}GWX <F[((1%))]E<(Y))X<ﬁl (x KF[(%)} —F[(gié))} (1=e).
(4.6)

Proof. The parameter domain (DY, one restricts to a simpler form when in (4.2)
we use the substitution (y;,1,0,B;) — (aj,A;,b;,B;) and m=s, n=2s—1. Now,
collecting the previously exposed results we immediately arrive the statement of the
theorem. [
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REMARK 4.2. In particular, under the conditions of Theorem 4.1, the case % = 1
(forall i =1,...,s) gives the corresponding corollary referring to the 2s-parametric
ML function E 4, (g,)(z) - In this case the inequality (4.6) is reduced to the following:

{Eﬁ?)} [a+ﬂ'>}|X|<E( 0.(8) () < F[E;?))] F[(aﬁ)sﬁ)}(l—e"“)-

The case s =1 is connected with the 3-parametric ML function Eg ﬁ(z). Then the
inequality (4.6) takes the following simple form:

al)
1 . Tors M Y 1 Y ||
mp e P S Eq (%) < gy — (1—eM).

If additionally y = 1, the inequality (4.6) becomes

Z

T(B)
1 B Xl 1 1
e P S Eqp() < gy - (1—e"),

and if also 8 = 1, the inequality (4.6) turns out to be

er(‘”l I <Eq(x)<1— m (1 —e\X\).

In the most particular case & = 8 = y =1 the inequality would be connected with the
exponential function, but in this case the parameters do not satisfy the condition (4.5).

Now, it remains to apply the left-hand-side of the delivered two-sided inequality
to the multi-index ML-extended Whittaker function.

THEOREM 4.3. For all the positive integers s and (o4, B, %) € D5, x>0 we

have
M ) =Gt Te T D — A+ b2+ 1), 4.7

where the constant

B(u—A+3.2u+1) _r(1), T[(B), (% +1)]
B(u—?H—%iH—)H—%) | gy exe{#r (o + ﬁi>,<n>]}’

provided B; € [0,1],7; >0, 2Bj+o; > 1; j=1,---,s

p:

Proof. Let us apply the lower bound in (4.6) to the multi-index Mittag-Leffler
function in the integrand in the integral representation, viz.

IPTTEY S SARAVTES I S
(%).p T S L O ) LA (R A
Mg iy, (0) =2 2/ B(u_A+%’“+A+%>E<m>«ﬁ»( Jai

] rlg)ete
B(u—A+3u+A+3)

1
/ tuflf% (1 _ t)”+l7%6m
0
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cexpd LB, (it D] p
e P{]"[(ai_;_ﬁi)’(%)} t(l—z)}dt

1 tu—k—%ext
> 1 1 / 1 dta

where the estimate
p

t(1—1)

>4p, p=0,1€(0,1),

was used. The last integral we clearly recognize as the Kummer function’s integral
form (up to a multplicative constant), compare (1.6). However, this is equivalent to the
theorem’s assertion. [J

The uniform lower bound of the weight function xH+3e=3 is zero for positive
values of the argument earned by the inequality (4.6). However, a functional upper
bound cannot be established by virtue of the right-hand-side estimate in (4.6).

5. Concluding remarks

In this research note we present an extension of Whittaker function based on the
use of the multi-index Mittag-Leffler extended confluent hypergeometric function of the
Kummer type, which was investigated in [1]. First we derive some basic properties of
the extended Whittaker function, then we focus to a so—called % -extension model of the
hypergeometric type functions which series and integral representations are obtained.
The Whittaker functions also belong to this function class, therefore taking % to be the

multi-index Mittag-Leffler function, we study the extensions of that kind of extension

for real argument Whittaker function I\\/JIEE)[’;) s (x). Next, Laplace-Mellin and Hankel

integral transform results are presented with some associated corollaries.

We close the exposition with a separate section devoted to functional inequalities:
firstly, a bilateral bounding inequality is established for the real argument multi-index
Mittag-Leffler function E ((Z:,))S( B) (x). In accordance with our knowledge the only such
upper bound result is [17, p. 1090, Theorem 2.1., Eq. (2.3)] exposed also in the mono-
graph [18, p. 140, Theorem 8.4.].

Secondly, with the aid of the obtained inequality for the ML-function, we finally

inf(er) a functional lower bound for the multi-index ML-extended Whittaker function
Mgy 5.2

Thirdly, the readers’ attention is referred to the structure of the parameters’ domain
;D5 ;. Namely, the exhaustive discussion of the shape of the parameters space in
[28, pp. 131-133] is based on the Gautschi quotient and Gurland’s ratio, which gives
precise, but hardly handleable constraint inequalities. These inequalities are modestly
weaken getting ,,D/, by [28, p. 134, Lemma 2] together with the bilateral inequality
[28, p. 134, Lemma 3], which is a consequence of a Lazarevi¢-Lupas inequality [29]
from one, and of a Chao Ping Chen—Feng Qi’s result [30] from the other side.
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