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Abstract. By making use of the operator K m,r,s
λ1 ,λ2

f (z) which was previously defined as a general-

ization of Dziok-Srivastava operator [19, 17], the new class S∗(φ ,m,r,s,λ1 ,λ2) was introduced
and sharp upper bounds of |a3 − μa2

2| for the functions belonging to it were determined. Fur-
thermore, Fekete-Szegö inequalities for certain classes of functions defined through fractional
derivatives were also solved out in the sight of Owa-Srivastava fractional calculus operators.

1. Introduction

Historically, Fekete and Szegö had proposed a new inequality for the coefficients
of univalent analytic functions on 1933. Interstingly, several researchers later on have
obtained the Fekete-Szegö inequality for functions belonging to several classes of uni-
valent functions [1, 2, 3, 4] and bi-univalent functions [5, 6, 7]. See also [8, 9, 10]. For
instance, Srivastava et al. [11] have obtained the Fekete-Szegö inequality for a subclass
of q -starlike functions with respect to symmetrical points. See also [12, 13, 14, 15, 16].

Recently, there has been a rising interest in finding the way to correlating Fekete-
Szegö inequality with hypergeometric functions, which is the main theme of this study.
The hypergeometric functions was found in 1655 by John Wallis and its importance is
stemmed from its applications in many subjects such as, numerical analysis, dynamical
system and mathematical physics.

Let A be the class of analytic functions of the form

f (z) = z+
∞

∑
k=2

akz
k; (z ∈ U = {z ∈C : |z| < 1}), (1.1)

and S be the subclass of A consisting of univalent functions in U . A function f (z)
is said to be in the class S ∗ of starlike functions of order zero in U , if ℜ{ z f ′(z)

f (z) } > 0
for z ∈ U .
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For two analytic functions f (z) = z+ ∑∞
k=2 akzk and g(z) = z+ ∑∞

k=2 bkzk in the
open unit disc U = {z ∈C : |z| < 1} , the Hadamard Product (or convolution) f ∗ g of
f and g is defined by

f (z)∗ g(z) = ( f ∗ g)(z) = z+
∞

∑
k=2

akbkz
k. (1.2)

Let p(z) and q(z) be analytic in U , then the function p(z) is said to be subordinate to
q(z) in U , written by

p(z) ≺ q(z); (z ∈ U),

if there exists a function w(z) which is analytic in U with w(0) = 0 and |w(z)| < 1;
z ∈ U , such that p(z) = q(w(z)) for z ∈ U . From the definition of the subordinations,
it is easy to show that the above subordination implies that

p(0) = q(0) and p(U) ⊂ q(U).

For complex parameters α1, . . .αr and β1, . . .βs (β j �= 0,−1,−2, . . . ; j = 1 . . .s) ,
Dziok and Srivastava [17] defined the generalized hypergeometric function rFs(α1, . . . ,αr;
β1, . . . ,βs;z) by

rFs(α1, . . . ,αr;β1, . . . ,βs;z) =
∞

∑
k=0

(α1)k . . . (αr)k

(β1)k . . . (βs)k

zk

k!
; (1.3)

(r � s+1;r,s ∈ N0 = N∪0;z ∈ U),

where (x)k is the Pochhammer symbol defined, in terms of Gamma function Γ , by

(x)k =
Γ(x+ k)

Γ(x)
=

{
1 if k = 0,

x(x+1) . . .(x+ k−1) if k ∈ N,

Dziok and Srivastava [17, 18] defined also the linear operator

H(α1, . . . ,αr;β1, . . . ,βs) f (z) = z+
∞

∑
k=2

Γkakz
k, (1.4)

where

Γk =
(α1)k−1 . . . (αr)k−1

(β1)k−1 . . . (βs)k−1(k−1)!
. (1.5)

In 2014, Alhindi and Darus [19] generalized Dziok-Srivastava operator by introducing
the following operator:

K m,r,s
λ1,λ2

f (z) = z+
∞

∑
k=2

(1+ λ1(k−1))m−1

(1+ λ2(k−1))m Γkakz
k, (1.6)

where Γk is given in (1.5), α1, . . .αr and β1, . . .βs (β j �= 0,−1,−2, . . . ; j = 1 . . . s)
are complex parameters, see also [20, 21]. In 2017, Cang and Liu introduced two
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subclasses of meromorphically multivalent functions associated with Dziok-Srivastava
operator [22]. Later on, Wanas and Majeed defined a new class for higher-order deriva-
tives of multivalent analytic functions associated with Dziok-Srivastava operator [23,
24]. Recently, Yan and Liu derived certain geometric properties of analytic functions
associated with the Dziok-Srivastava operator [25].

In this paper, Fekete-Szegö inequality for functions that belong to the new subclass
S∗(φ ,m,r,s,λ1,λ2) is determined, which will be introduced in the next section. More-
over, some applications associated with functions defined by fractional derivatives are
also discussed. In order to prove our main results, the following lemmas are recalled as
follows:

LEMMA 1.1. [26, 27] If p(z) = 1+ d1z+ d2z+ d3z+ . . . (z ∈ U) is a function
with positive real part, then for any complex number v,

|d2− vd2
1 | � 2max{1, |2v−1|},

and the result is sharp for the functions given by

p(z) =
1+ z2

1− z2 , p(z) =
1+ z
1− z

.

LEMMA 1.2. [28] If p(z) = 1+d1z+d2z2 . . . is an analytic function with positive
real part in U , then

|d2− vd2
1| �

⎧⎪⎨
⎪⎩
−4v+2 if v � 0,

2 if 0 � v � 1,

4v−2 if v � 1.

When v < 0 or v > 1 , the equality holds if and only if p(z) is (1 + z)/(1− z)
or one of its rotations. If 0 < v < 1 , then, the equality holds if and only if p(z) is
(1+ z2)/(1− z2) or one of its rotations. If v=0, the equality holds if and only if

p(z) =
(1

2
+

1
2

λ
)1+ z

1− z
+
(1

2
− 1

2
λ
)1− z

1+ z
; (0 � λ � 1),

or one of its rotations. If v = 1 , the equality holds if and only if

1
p(z)

=
(1

2
+

1
2

λ
)1+ z

1− z
+
(1

2
− 1

2
λ
)1− z

1+ z
; (0 � λ � 1).

Also the above upper bound is sharp, and it can be improved as follows when 0 < v < 1 :

|d2− vd2
1 |+ v|d1|2 � 2; (0 < v � 1/2),

and
|d2− vd2

1 |+(1− v)|d1|2 � 2; (1/2 < v � 1).
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2. Main results

By making use of the operator K m,r,s
λ1,λ2

f (z) , the class S∗(φ ,m,r,s,λ1,λ2) is defined
as follows:

DEFINITION 2.1. Let φ(z) = 1+B1z+B2z2 + . . . be univalent starlike function
with respect to ’1’ which maps the unit disk U onto a region in the right half plane
which is symmetric with respect to the real axis, and let B1 > 0. Then the function
f ∈ A is in the class S∗(φ ,m,r,s,λ1,λ2) if

z(K m,r,s
λ1,λ2

f (z))′

K m,r,s
λ1,λ2

f (z)
≺ φ(z); z ∈ U, (2.1)

where K m,r,s
λ1,λ2

f (z) is defined by (1.6).

2.1. Fekete and Szegö inequality

In this section, Fekete-Szegö type inequality for functions f (z) in the class S∗(φ ,m,
r,s,λ1,λ2) is investigated in the following theorems:

THEOREM 2.2. If f (z) given by (1.1) belongs to S∗(φ ,m,r,s,λ1,λ2) then

|a3− μa2
2|

� (1+2λ2)m

4(1+2λ1)(m−1) B1max

{
1,

∣∣∣∣∣B2

B1
+B1− μ4

(1+2λ1)(m−1)(1+ λ2)2m

(1+2λ2)m(1+ λ1)2(m−1) B1

∣∣∣∣∣
}

The result is sharp.

Proof. Let f ∈ S∗(φ ,m,r,s,λ1,λ2) , then there exists a Schwarz function w(z)∈A
such that

z(K m,r,s
λ1,λ2

f (z))′

K m,r,s
λ1,λ2

f (z)
= φ(w(z)); (z ∈ U). (2.2)

If p1(z) is analytic and has positive real part in U and p1(0) = 1, then

p1(z) =
1+w(z)
1−w(z)

= 1+d1z+d2z
2 +d3z

3 + . . . ; z ∈ U. (2.3)

From (2.3), we obtain

w(z) =
d1

2
z+

1
2

(
d2− d2

1

2

)
z2 + . . . . (2.4)

Let

p(z) =
z(K m,r,s

λ1,λ2
f (z))′

K m,r,s
λ1,λ2

f (z)
= 1+b1z+b2z

2 + . . . (z ∈ U), (2.5)
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which gives

b1 =
(1+ λ1)m−1

(1+ λ2)m a2 and b2 =
4(1+2λ1)m−1

(1+2λ2)m a3−
(

(1+ λ1)m−1

(1+ λ2)m

)2

a2
2. (2.6)

Since φ(z) is univalent and p ≺ φ , therefore using (2.4), we obtain

p(z) = φ(w(z))

= 1+
B1d1

2
z+
{

1
2

(
d2− d2

1

2

)
B1 +

1
4
d2

1B2

}
z2 + . . . . (2.7)

Then, from (2.5),(2.6) and (2.7), we may write

(1+ λ1)m−1

(1+ λ2)m a2 =
B1d1

2
,

1
2

(
d2− d2

1

2

)
B1 +

1
4
d2

1B2 =
4(1+2λ1)m−1

(1+2λ2)m a3−
(

(1+ λ1)m−1

(1+ λ2)m

)2

a2
2.

Therefore we have

a3− μa2
2 =

1
8

(1+2λ2)m

(1+2λ1)m−1 B1[d2− vd2
1], (2.8)

where

v =
1
2

[
1− B2

B1
−B1 + μ

4(1+2λ1)m−1(1+ λ2)2m

(1+2λ2)m(1+ λ1)2(m−1) B1

]
.

Now, our result is followed by an application of Lemma 1.1. Also, the result is sharp
for the functions

z(K m,r,s
λ1,λ2

f (z))′

K m,r,s
λ1,λ2

f (z)
= φ(z2),

z(K m,r,s
λ1,λ2

f (z))′

K m,r,s
λ1,λ2

f (z)
= φ(z).

This completes the proof of Theorem 2.2. �

Next, by using Lemma 1.2, we can obtain the following theorem.

THEOREM 2.3. If f (z) given by (1.1) belongs to S∗(φ ,m,r,s,λ1,λ2) then

|a3− μa2
2| �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4

(1+2λ2)m

(1+2λ1)m−1

[
B2 +B2

1− μ 4(1+2λ1)m−1(1+λ2)2m

(1+2λ2)m(1+λ1)2(m−1) B
2
1

]
if μ � σ1,

1
4

(1+2λ2)m

(1+2λ1)m−1 B1 if σ1 � μ � σ2,

− 1
4

(1+2λ2)m

(1+2λ1)m−1

[
B2 +B2

1− μ 4(1+2λ1)m−1(1+λ2)2m

(1+2λ2)m(1+λ1)2(m−1) B
2
1

]
if μ � σ2,
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where

σ1 :=
1
4

(1+2λ2)m(1+ λ1)2(m−1)

(1+2λ1)m−1(1+ λ2)2m

1
B1

[
−1+

B2

B1
+B1

]
,

and

σ2 :=
1
4

(1+2λ2)m(1+ λ1)2(m−1)

(1+2λ1)m−1(1+ λ2)2m

1
B1

[
1+

B2

B1
+B1

]
.

The result is sharp.

Proof. First, let μ � σ1 , then

|a3− μa2
2| � 1

4
(1+2λ2)m

(1+2λ1)m−1 B1 [−2v+1]

=
1
4

(1+2λ2)m

(1+2λ1)m−1

[
B2 +B2

1− μ
4(1+2λ1)m−1(1+ λ2)2m

(1+2λ2)m(1+ λ1)2(m−1) B
2
1

]
.

When σ1 � μ � σ2 , using the above calculations, we obtain

|a3− μa2
2| �

1
4

(1+2λ2)m

(1+2λ1)m−1 B1.

Finally, if μ � σ2 , then we have

|a3− μa2
2| � 1

4
(1+2λ2)m

(1+2λ1)m−1 B1 [2v−1]

= −1
4

(1+2λ2)m

(1+2λ1)m−1

[
B2 +B2

1− μ
4(1+2λ1)m−1(1+ λ2)2m

(1+2λ2)m(1+ λ1)2(m−1) B
2
1

]
.

To show that these bounds are sharp, we define the functions Kφn(n = 2,3 . . .) by

z(K m,r,s
λ1,λ2

Lφn(z))
′

K m,r,s
λ1,λ2

Lφn(z)
= φ(zn−1); Lφn(0) = 0 = [Lφn ]

′(0)−1,

and the functions Fλ , Gλ by

z(K m,r,s
λ1,λ2

Fλ (z))′

K m,r,s
λ1,λ2

Fλ (z)
= φ

(
z(z+ λ )
1+ λ z

)
; Fλ (0) = 0 = [Fλ ]′(0)−1,

and
z(K m,r,s

λ1,λ2
Gλ (z))′

K m,r,s
λ1,λ2

Gλ (z)
= φ

(
−z(z+ λ )

1+ λ z

)
; Gλ (0) = 0 = [Gλ ]′(0)−1.

It is obvious that the functions Lφn ,Fλ ,Gλ ∈ S∗(φ ,c) . Also, we write Lφ := Lφ2 . If
μ < σ1 or μ > σ2 , then the equality holds if and only if f is Lφ or one of its rotations.
When σ1 < μ < σ2 , then the equality holds if and only if f is Lφ3 or one of its rotations.
If μ = σ1 , then equality holds if and only if f is Fλ or one of its rotations. If μ = σ2 ,
then the equality holds if and only if f is Gλ or one of its rotations. This completes
the proof of Theorem 2.3.

If σ1 < μ < σ2 , in view of Lemma 1.2, Theorem 2.3 can be improved. �
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THEOREM 2.4. Let f (z) given by (1.1) belongs to S∗(φ ,m,r,s,λ1,λ2) , and σ3

be given by

σ3 :=
1
4

(1+2λ2)m

(1+2λ1)m−1

1
B1

[
B2

B1
+B1

]
If σ1 < μ � σ3 , then

∣∣a3− μa2
2

∣∣+ 1

B2
1

[
(B1−B2)

(1+ λ1)2(m−1)(1+2λ2)m

4(1+ λ2)2m(1+2λ1)m−1

−B2
1
(1+ λ1)2(m−1)(1+2λ2)m

4(1+ λ2)2m(1+2λ1)m−1 + μB2
1

]
� (1+2λ2)m

4(1+2λ1)m−1 B1.

If σ3 < μ � σ2 , then

∣∣a3− μa2
2

∣∣+ 1

B2
1

[
(B1 +B2)

(1+ λ1)2(m−1)(1+2λ2)m

4(1+ λ2)2m(1+2λ1)m−1

+B2
1
(1+ λ1)2(m−1)(1+2λ2)m

4(1+ λ2)2m(1+2λ1)m−1 − μB2
1

]
� (1+2λ2)m

4(1+2λ1)m−1 B1.

2.2. Applications to functions defined by fractional derivatives

In this section, a new subclass of S∗(φ ,m,r,s,λ1,λ2) is introduced in order to
prove the following theorems.

DEFINITION 2.5. For a fixed g ∈A , let Sg(φ ,m,r,s,λ1,λ2) be the class of func-
tions f ∈ A for which ( f ∗ g) ∈ S∗(φ ,m,r,s,λ1,λ2) .

DEFINITION 2.6. [29] Let f (z) be analytic in a simply connected region of the
z-plane containing origin. The fractional derivative of f of order ζ is defined by

0D
ζ
z f (z) :=

1
Γ(1− ζ )

d
dz

∫ z

0
(z−ρ)−1 f (ρ)dρ ; (0 � ζ < 1),

where the multiplicity of (z−ρ)−ζ is removed by requiring that log(z−ρ) is real for
(z−ρ) > 0.

Owa and Srivastava [30], [31] used Definition 2.6 to introduce a fractional deriva-
tive operator Ωζ : A → A defined by

(Ωζ f )(z)) = Γ(2− ζ )zζ
0Dζ

z f (z), (ζ �= 2,3,4, . . .).

The class Sζ (φ ,m,r,s,λ1,λ2) consists of the functions f ∈ A for which Ωζ f ∈
S∗(φ ,m,r,s,λ1,λ2) . The class Sζ (φ ,m,r,s,λ1,λ2) is a special case of the class Sg(φ ,m,
r,s,λ1,λ2) when

g(z) = z+
∞

∑
k=2

Γ(k+1)Γ(2− ζ )
Γ(k+1− ζ )

zk; (z ∈ U).
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Now, applying Theorem 2.3 for the function ( f ∗g) = z+g2a2z2 +g3a3z3 + . . . , we get
the following theorem after changing the parameter μ :

THEOREM 2.7. Let g(z) = z+ ∑∞
k=0 gkzk(gk > 0) . If f (z) given by (1.1) belongs

to Sg(φ ,m,r,s,λ1,λ2) , then

|a3−μa2
2|�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4

(1+2λ2)m

g3(1+2λ1)m−1

[
B2 +B2

1− μ g3
g2
2

4(1+2λ1)m−1(1+λ2)2m

(1+2λ2)m(1+λ1)2(m−1) B
2
1

]
if μ � η1,

1
4

(1+2λ2)m

g3(1+2λ1)m−1 B1 if η1 � μ � η2,

− 1
4

(1+2λ2)m

g3(1+2λ1)m−1

[
B2 +B2

1− μ g3
g2
2

4(1+2λ1)m−1(1+λ2)2m

(1+2λ2)m(1+λ1)2(m−1) B
2
1

]
if μ � η2,

where

η1 :=
1
4

g2
2(1+2λ2)m(1+ λ1)2(m−1)

g3(1+2λ1)m−1(1+ λ2)2m

1
B1

[
−1+

B2

B1
+B1

]
,

and

η2 :=
1
4

g2
2(1+2λ2)m(1+ λ1)2(m−1)

g3(1+2λ1)m−1(1+ λ2)2m

1
B1

[
1+

B2

B1
+B1

]
.

The result is sharp.

Since

Ωζ f (z) = z+
∞

∑
k=2

Γ(k+1)Γ(2− ζ )
Γ(k+1− ζ )

zk,

We have

g2 :=
Γ(3)Γ(2− ζ )

Γ(3− ζ )
=

2
2− ζ

(2.9)

and

g3 :=
Γ(4)Γ(2− ζ )

Γ(4− ζ )
=

6
(2− ζ )(3− ζ )

. (2.10)

For g2,g3 given by (2.9) and (2.10) respectively, Theorem 2.7 is reduced to the follow-
ing :

THEOREM 2.8. Let ζ < 2 . If f (z) given by (1.1) belongs to S∗(φ ,m,r,s,λ1,λ2) .
Then

|a3− μa2
2| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
24

(2−ζ )(3−ζ )(1+2λ2)m

(1+2λ1)m−1

[
B2 +B2

1− 3
2 μ
(

2−ζ
3−ζ

)
4(1+2λ1)m−1(1+λ2)2m

(1+2λ2)m(1+λ1)2(m−1) B
2
1

]
if μ � η1,

1
24

(2−ζ )(3−ζ )(1+2λ2)m

(1+2λ1)m−1 B1

if η1 � μ � η2,

− 1
24

(2−ζ )(3−ζ )(1+2λ2)m

(1+2λ1)m−1

[
B2 +B2

1
3
2 μ
(

2−ζ
3−ζ

4(1+2λ1)m−1(1+λ2)2m

(1+2λ2)m(1+λ1)2(m−1) B
2
1

]
if μ � η2,
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where

η∗
1 :=

1
6

(3− ζ )
(2− ζ )

(1+2λ2)m(1+ λ1)2(m−1)

(1+2λ1)m−1(1+ λ2)2m

1
B1

[
−1+

B2

B1
+B1

]
,

and

η∗
2 :=

1
6

(3− ζ )
(2− ζ )

(1+2λ2)m(1+ λ1)2(m−1)

(1+2λ1)m−1(1+ λ2)2m

1
B1

[
1+

B2

B1
+B1

]
.

The result is sharp.

Conclusion

In this research study, the Fekete-Szego inequality was correlated with a certain
class of hypergeometric function. Thus, based on the generalized hypergeometric op-
erator K m,r,s

λ1,λ2
f (z) which was introduced earlier [19], the class S∗(φ ,m,r,s,λ1,λ2) was

derived in the light of starlike functions. The Fekete-Szegö inequality was obtained
for the first two coefficients of the function f (z) ∈ S∗(φ ,m,r,s,λ1,λ2) . Moreover,
the classes Sg(φ ,m,r,s,λ1,λ2) and Sζ (φ ,m,r,s,λ1,λ2) were defined as subclasses of
S∗(φ ,m,r,s,λ1,λ2) . Then, the Fekete-Szegö inequality was investigated again includ-
ing some fractional derivatives.
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[21] K. R. ALHINDI, M. DARUS, Certain properties of an operator involving the generalized hypergeo-
metric functions, Proceedings of the Pakistan Academy of Sciences 52, no. 3, 227–232 (2015).

[22] Y. L. CANG, J. L. LIU, Some Subclasses of Meromorphically Multivalent Functions Associated with
the Dziok-Srivastava Operator, Filomat 31, no. 8, 2449–2458 (2017).

[23] A. K. WANAS, A. H. MAJEED, Differential Subordinations for Higher Order Derivatives of Multi-
valent Analytic Functions Associated with Dziok-Srivastava Operator, Oradea Fasc. Math. XXV (1),
33–42, (2018).

[24] A. K. WANAS, H. A. MEHDI, Strong Differential Subordination Results for Multivalent Analytic
Functions Associated with Dziok-Srivastava Operator, (2019).

[25] C. M. YAN, J. L. LIU, Geometric Properties of Certain Analytic Functions Associated with the Dziok-
Srivastava Operator, Symmetry 11, no. 2, 259 (2019).

[26] F. R. KEOGH, E. P. MERKES, A coefficient inequality for certain classes of analytic functions, Pro-
ceedings of the American Mathematical Society, vol. 20, 8–12, (1969).

[27] R. J. LIBERA, E. J. ZŁOTKIEWICZ,Coefficient bounds for the inverse of a function with derivative in
ρ , Proceedings of the American Mathematical Society, vol. 87, no. 2, 251–257, (1983).
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