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(Communicated by A. C. Peterson)

Abstract. In this article, we prove new retarded dynamic inequalities on time scales that contain
some integral and discrete inequalities reported in the literature. These inequalities can be used
as handy tools for the study of qualitative properties of solutions of dynamic equations on time
scales. Some examples are included to demonstrate the applications of our results.

1. Introduction

In 2006, Pachpatte [14] established the inequality:

w(t) � c(t)+
∫ t

a
f (s)w(s)ds+

∫ b

a
g(s)w(s)ds, (1.1)

for all t ∈ [a,b] ⊆ R . After that, in 2014, Kender et al. [8] established the following
further generalizations of inequality (1.1) where the linear term of the unknown function
ω(t) has been replaced by nonlinear term ω p(t) in both sides of the inequality as
follows:

wp(t) � c(t)+
∫ t

a
f (s)w(s)ds+

∫ b

a
g(s)wp(s)ds, (1.2)

for all t ∈ [a,b] ⊆ R . Recently, in 2017, El-Deeb and Ahmed [5] studied the retarded
version of the inequality (1.2), where they replaced the non-retarded case t with the
retarded case α(t) as follows:

wp(t) � c(t)+
∫ α(t)

a
f (s)w(s)ds+

∫ b

a
g(s)wp(s)ds, (1.3)

for all t ∈ [a,b] ⊆ R , where α(t) � t and α(a) = a .
The main aim of this article is to extend the inequalities obtained in [5, 8, 14] to

contain corresponding integral inequalities and discrete inequalities as special cases.
Our main results will be proved by employing some useful inequalities which will be
presented in Section 2 and Theorem 3.1.
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The study of dynamic equations on time scales which goes back to Stefan Hilger
[6] and is an area of mathematics has recently received a lot of attention. The general
idea is to prove a result for a dynamic equation or a dynamic inequality where the do-
main of the unknown function is a so-called time scale T , which may be an arbitrary
nonempty closed subset of the real numbers R ; see [2, 3]. One of the purposes of the
theory of time scales is to unify continuous and discrete analysis. The three most pop-
ular examples of calculus on time scales are differential calculus, difference calculus,
and quantum calculus (see [7]), i.e., when T = R , T = N and T = qZ = {qk : k∈Z,q >
1}∪{0} where q > 1. The book on the subject of time scales by Bohner and Peterson
[4] summarizes and organizes much of time scale calculus. During the past decade a
number of dynamic inequalities have been established by some authors which are mo-
tivated by some applications, for example, we refer the reader to [1, 4, 10, 11, 13] for
contributions, and the references cited therein.

2. Some preliminaries and lemmas

For completeness, we recall the following concepts related to the notion of time
scales. A time scale T is an arbitrary nonempty closed subset of the real numbers.
The time scales calculus was initiated by Hilger in his Ph.D. thesis in order to unify
discrete and continuous analysis [6]. The cases when T = R and T = Z represent the
classical theories of differential and difference calculus. First we define the forward
jump operator σ : T → T by

σ(t) := inf{s ∈ T : s > t}, (2.1)

and second, the backward jump operator ρ : T → T by

ρ(t) := sup{s ∈ T : s < t}. (2.2)

In this definition, we put inf /0 = supT and sup /0 = infT , where /0 is the empty
set. A point t ∈ T with infT < t < supT , is said to be left-dense if ρ(t) = t and is
right-dense if σ(t) = t , points that are simultaneously right-dense and left-dense are
said to be dense, is left-scattered if ρ(t) < t and right-scattered if σ(t) > t , points that
are simultaneously right-scattered and left-scattered are said to be isolated. A function
g : T→R is said to be right-dense continuous (rd-continuous) provided g is continuous
at right-dense points and at left-dense points in T , left-sided limits exist and are finite.
The set of all such rd-continuous functions is denoted by Crd(T) . A function f : T→R

is said to be left-dense continuous (ld-continuous) provided f is continuous at left-
dense points and at right-dense points in T , right-sided limits exist and are finite. The
set of all such ld-continuous functions is denoted by Cld(T) .

The forward and backward graininess functions μ and ν for a time scale T are
defined by μ(t) := σ(t)− t , and ν(t) := t−ρ(t) , respectively.

Given a time scale T , we introduce the sets T
κ , Tκ , and T

κ
κ as follows. If T has

a left-scattered maximum t1 , then T
κ = T−{t1} , otherwise T

κ = T . If T has a right-
scattered minimum t2 , then T

κ = T−{t2} , otherwise T
κ = T . Finally, T

k
κ = T

κ ∩Tκ .
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Let f : T → R be a real-valued function on a time scale T . Then for all t ∈ Tκ ,
we define f Δ(t) to be the number (if it exists) with the property that given any ε > 0
there is a neighborhood U of t such that

|[ f (σ(t))− f (s)]− f Δ(t)[σ(t)− s]|� ε|σ(t)− s|, ∀s ∈U.

For f : T → R , we define the function f σ : T → R by f σ (t) = f (σ(t)) for all t ∈ T ,
that is, f σ = f ◦σ . Similarly, we define the function f ρ : T → R by f ρ(t) = f (ρ(t))
for all t ∈T , that is, f ρ = f ◦ρ . A time scale T is said to be regular if the following two
conditions are satisfied simultaneously: (1) σ(ρ(t)) = t and (2) ρ(σ(t)) = t , ∀t ∈ T .
The product and quotient rules for the derivative of the product f g and the quotient
f/g (where ggσ 	= 0, here gσ = g ◦σ ) of two differentiable functions f and g , are
given as the following:

( f g)Δ(t) = f Δ(t)g(t)+ f (σ(t))gΔ(t) = f (t)gΔ(t)+ f Δ(t)g(σ(t))

and (
f
g

)Δ
(t) =

f Δ(t)g(t)− f (t)gΔ(t)
g(t)g(σ(t))

.

A function F : T → R is called a delta antiderivative of f : T → R provided that
FΔ(t) = f (t) holds for all t ∈ T

κ , and the delta integral of f is defined by

∫ b

a
f (t)Δt = F(b)−F(a).

We will frequently use the following useful relations between calculus on time scales
T and differential calculus on R , difference calculus on Z , and quantum calculus on
qZ . Note that if

(i) T = R , then

σ(t) = t, μ(t) = 0, f Δ(t) = f ′(t),
∫ b

a
f (t)Δt =

∫ b

a
f (t)dt; (2.3)

(ii) if T = Z , then

σ(t) = t +1, μ(t) = 1, f Δ(t) = Δ f (t),
∫ b

a
f (t)Δt =

b−1

∑
t=a

f (t); (2.4)

(iii) and if T = qZ = {qk : k ∈ Z}∪{0} , q > 1, then

σ(t)= qt, μ(t)= (q−1)t,
∫ b

a
f (t)Δt = (q−1)

logq(b)−1

∑
k=logq(a)

qk f (qk), ∀a,b∈ qN0 .

(2.5)
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It can be shown (see [4]) that if g∈Crd(T) , then the Cauchy integral G(t) :=
∫ t
t0

g(s)Δs

exists, t0 ∈ T , and satisfies GΔ(t) = g(t) , t ∈ T . An infinite integral is defined as

∫ ∞

a
f (t)Δ(t) = lim

b→∞

∫ b

a
f (t)Δt.

Now, we will give the definition of the generalized exponential function and its
derivatives. We say that p : T → R is regressive provided 1 + μ(t)p(t) 	= 0 for all
t ∈ T

κ , we define the set ℜ of all regressive and rd-continuous functions. We define
the set ℜ+ of all positively regressive elements of ℜ by ℜ+ = {p∈ ℜ : 1+μ(t)p(t) >
0,∀t ∈T} . The set of all regressive functions on a time scale T forms an Abelian group
under the addition ⊕ defined by p⊕ q = p+ q+ μ pq . If p ∈ ℜ , then we can define
the exponential function by

ep(t,s) = exp

(∫ t

s
ξμ(τ)(p(τ))Δτ

)
, s, t ∈ T,

where ξh(z) is the cylinder transformation, which is defined by

ξh(z) =

{
Log(1+hz)

h , h 	= 0,

z, h = 0.

If p ∈ ℜ , then ep(t,s) is real-valued and nonzero on T . If p ∈ ℜ+ , then ep(t,t0) is
always positive.

Note that

• if T = R , then

ea(t,t0) = exp

(∫ t

t0
a(s)ds

)
; (2.6)

• if T = Z , then

ea(t,t0) =
t−1

∏
s=t0

(
1+a(s)

)
; (2.7)

• if T = qN0 , then

ea(t,t0) =
t−1

∏
s=t0

(
1+(q−1)sa(s)

)
. (2.8)

In the following, we present the basic lemmas that will be needed in the proof of
our main results.

LEMMA 2.1. ([9]) If p,q ∈ ℜ and a, b, c ∈ T , then

1. ep(t, t) = 1 and e0(t,s) = 1 ;

2. ep(σ(t),s) = (1+ μ(t)p(t))ep(t,s);
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3. if p ∈ ℜ+ , then ep(t,t0) > 0 , ∀t ∈ T;

4.
∫ b
a p(t)ep(c,σ(t))Δt = −∫ b

a [ep(c, ·)]Δ(t)Δt = ep(c,a)− ep(c,b).

LEMMA 2.2. (See [9]) If p ∈ ℜ and fix t ∈ T , then the exponential function
ep(t,t0) is the unique solution of the following initial value problem:{

yΔ(t) = p(t)y(t),
y(t0) = 1.

(2.9)

LEMMA 2.3. (See [9]) Let t0 ∈ T
κ and k : T×T

κ → R be continuous at (t, t) ,
where t > t0 and t ∈ T

κ . Assume that kΔ(t, ·) is rd-continuous on [t0,σ(t)] . If for any
ε > 0 , there exists a neighborhood U of t , independent of τ ∈ [t0,σ(t)] , such that

|[k(σ(t),τ)− k(s,τ)]− kΔ(t,τ)[σ(t)− s]| � ε|σ(t)− s|, ∀s ∈U.

If kΔ denotes the derivative of k with respect to the first variable, then

f (t) =
∫ t

t0
k(t,τ)Δτ

yields

f Δ(t) =
∫ t

t0
kΔ(t,τ)Δτ + k(σ(t),t).

LEMMA 2.4. ([9]) Suppose u, b ∈Crd and a ∈ ℜ+ . Then

uΔ(t) � a(t)u(t)+b(t), t � t0, t ∈ T
κ

yields

u(t) � u(t0)ea(t,t0)+
∫ t

t0
ea(t,σ(τ))b(τ)Δτ, t � t0, t ∈ T

κ .

LEMMA 2.5. ([12]) If x � 0 and p � 1 , then

x
1
p � m1x+m2, (2.10)

where m1 = 1
pK

1−p
p , m2 = p−1

p K
1
p and K > 0 .

Now we are ready to state and prove our main results.

3. Main results

In this section, we will state and prove the main results and investigate some dy-
namic Gronwall-Bellman inequalities on time scales.

First, we prove the basic theorem that will be needed in the proofs of the main
results and can be considered as the extension of [3, Theorem 5.37, page 139] on time
scales.
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THEOREM 3.1. In the following by f Δ(t,s) we mean the delta derivative of f (t,s)
with respect to t . Similarly, f ∇(t,s) is understood. If f , f Δ and f ∇ are continuous,
and u,h : T → T , then the following formulas holds ∀t ∈ T

κ

(i)

[∫ h(t)
u(t) f (t,s)Δs

]Δ
=

∫ h(t)
u(t) f Δ(t,s)Δs+hΔ(t) f (σ(t),h(t))−uΔ(t) f (σ(t),u(t));

(ii)

[∫ h(t)
u(t) f (t,s)Δs

]∇
=

∫ h(t)
u(t) f ∇(t,s)Δs+h∇(t) f (ρ(t),h(t))−u∇(t) f (ρ(t),u(t));

(iii)

[∫ h(t)
u(t) f (t,s)∇s

]Δ
=

∫ h(t)
u(t) f Δ(t,s)∇s+hΔ(t) f (σ(t),h(t))−uΔ(t) f (σ(t),u(t));

(iv)

[∫ h(t)
u(t) f (t,s)∇s

]∇
=

∫ h(t)
u(t) f ∇(t,s)∇s+h∇(t) f (ρ(t),h(t))−u∇(t) f (ρ(t),u(t)) .

Now we are ready to state and prove our main results, which give us the time scales
version of the inequalities proved in [5], [8] and [14].

THEOREM 3.2. Let a,b ∈ T
k
k with a < b and ω , g , f , c , αi ∈Crd([a,b]

Tk ,R+)
and c, αi be delta-differentiable on T with cΔ(t) � 0 , αΔ

i (t) � 0 , αi(t) � t , i = 1,2 ,
α1(a) = a, α2(a) = b and p � 1 be a constant. If

ω p(t) � c(t)+
∫ α1(t)

a
g(s)ω(s)Δs+

∫ α2(t)

a
f (s)ω p(s)Δs, (3.1)

for all t ∈ [a,b]
Tk , then

ω(t) �
{

Λ1eη1(t,a)+
∫ t

a
eη1(t,σ(s))Ξ1(s)Δs

} 1
p

, (3.2)

where Λ1 is the best possible constant i.e., it cannot be replaced with a smaller num-
ber such that (3.2) remains true for all relevant functions and given by the following
equation:

Λ1 =
c(a)+

∫ b
a f (s)

(∫ s
a eη1(s,σ(λ ))Ξ1(λ )Δλ

)
Δs

1− ∫ b
a f (s)eη1(s,a)Δs

, (3.3)

such that ∫ b

a
f (s)eη1 (s,a)Δs < 1, (3.4)

and

Ξ1(t) = cΔ(t)+m2[αΔ
1 (t)g(α1(t))+ αΔ

2 (t) f (α2(t))], (3.5)

η1(t) = m1[αΔ
1 (t)g(α1(t))+ αΔ

2 (t) f (α2(t))], (3.6)

where m1 , m2 are defined as in Lemma 2.5, and eη1(t,a) is a solution of the initial
value problem (2.9) in Lemma 2.2 when p(t) replaced by η1 .
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Proof. Define a function z1(t) by

z1(t) = c(t)+
∫ α1(t)

a
g(s)ω(s)Δs+

∫ α2(t)

a
f (s)ω p(s)Δs. (3.7)

We observe that z1(t) � 0 nondecreasing on [a,b]
Tk . From (3.7), we get

z1(a) = c(a)+
∫ b

a
f (s)ω p(s)Δs. (3.8)

Then from (3.1), (3.7) and by using the monotonicity of z1(t) , we get

ω(t) � z
1
p
1 (t),ω(αi(t)) � z

1
p
1 (αi(t)) � z

1
p
1 (t), i = 1,2. (3.9)

From (3.7), (3.9), and using Theorem 3.1, we have:

zΔ
1 (t) = cΔ(t)+ [αΔ

1 (t)g(α1(t))+ αΔ
2 (t) f (α2(t))]ω(α(t))

� cΔ(t)+ [αΔ
1 (t)g(α1(t))+ αΔ

2 (t) f (α2(t))]z
1
p
1 (t). (3.10)

Therefore, using Lemma 2.5. From (3.10), we get that

zΔ
1 (t) � m1[αΔ

1 (t)g(α1(t))+ αΔ
2 (t) f (α2(t))]z1(t)

+(cΔ(t)+m2[αΔ
1 (t)g(α1(t))+ αΔ

2 (t) f (α2(t))]).
= η1z1(t)+ Ξ1(t), (3.11)

where Ξ1(t) and η1(t) are defined as in (3.5) and (3.6) respectively. Now an application
of Lemma 2.3 to (3.11), yields

z1(t) � z1(a)eη1(t,a)+
∫ t

a
eη1(t,σ(s))Ξ1(s)Δs. (3.12)

From (3.9) and (3.12), we get that

ω p(t) � z1(a)eη1(t,a)+
∫ t

a
eη1(t,σ(s))Ξ1(s)Δs. (3.13)

From (3.8) and (3.13), we have

z1(a) = c(a)+
∫ b

a
f (s)ω p(s)Δs

� c(a)+
∫ b

a
f (s)

[
z1(a)eη1(s,a)+

∫ s

a
eη1(s,σ(λ ))Ξ1(λ )Δλ

]
Δs

� c(a)+ z1(a)
∫ b

a
f (s)eη1(s,a)Δs

+
∫ b

a
f (s)

(∫ s

a
eη1(s,σ(λ ))Ξ1(λ )Δλ

)
Δs. (3.14)

Thus from (3.14), we obtain
z1(a) � Λ1, (3.15)

where Λ1 is defined as in (3.3). Then we get the required inequality (3.2) from (3.13)
and (3.15). The proof is complete. �
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REMARK 3.1. By taking T = R , α1(t) = t , α2(t) = b , αΔ
1 (t) = 1, αΔ

2 (t) = 0,
p = 1 and using the relation (2.3), then Theorem 3.2 reduces to [14, Theorem 1.5.1].
If we put T = R , α1(t) = t , α2(t) = b , αΔ

1 (t) = 1, αΔ
2 (t) = 0, and using the relation

(2.3), then Theorem 3.2 reduces to [8, Theorem 2.1]. If we put T = R , α2(t) = b ,
αΔ

2 (t) = 0, and using the relation (2.3), then Theorem 3.2, reduces to [5, Theorem 2.1].

THEOREM 3.3. Let a,b ∈ T
k
k with a < b and ω , g , f , c , αi ∈Crd([a,b]

Tk ,R+)
and c, α be delta-differentiable on T with cΔ(t) � 0 , αΔ

i (t) � 0 , αi(t) � t , i = 1,2 ,
α1(a) = a, α2(a) = b and k(t,s) , kΔ(t,s) ∈ Crd([a,b]

Tk × [a,b]
Tk ,R+) for a � s �

t � b and p � 1 be a constant. If

ω p(t) � c(t)+
∫ α1(t)

a
k(t,s)ω(s)Δs+

∫ α2(t)

a
g(s)ω p(s)Δs, (3.16)

for all t ∈ [a,b]
Tk , then

ω(t) �
{

Λ2eη2(t,a)+
∫ t

a
Ξ2(s)eη2(t,σ(s))Δs

} 1
p

, (3.17)

where Λ2 is the best possible constant i.e., it cannot be replaced with a smaller num-
ber such that (3.17) remains true for all relevant functions and given by the following
equation:

Λ2 =
c(a)+

∫ b
a g(s)

(∫ s
a eη2(s,σ(τ))Ξ2(τ)Δτ

)
Δs

1− ∫ b
a g(s)eη2(s,a)Δs

, (3.18)

such that ∫ b

a
g(s)eη2(s,a)Δs < 1, (3.19)

and

Ξ2(t) = cΔ(t)+m2

[
αΔ(t)k(σ(t),α(t))+

∫ α(t)

a
kΔ(t,τ)Δτ

]
, (3.20)

η2(t) = m1

[
αΔ(t)k(σ(t),α(t))+

∫ α(t)

a
kΔ(t,τ)Δτ + αΔ

2 (t)g(α2(t))
]
, (3.21)

where m1,m2 are defined as in Lemma 2.5, and eη2(t,a) is the solution of the initial
value problem (2.9) in Lemma 2.2 when p(t) replaced by η2(t) .

Proof. Define a function z2(t) by

z2(t) = c(t)+
∫ α1(t)

a
k(t,s)ω(s)Δs+

∫ α2(t)

a
g(s)ω p(s)Δs. (3.22)

We observe that z2(t) � 0 is nondecreasing on [a,b]
Tk . From (3.22), we get

z2(a) = c(a)+
∫ b

a
f (s)ω p(s)Δs. (3.23)
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Then from (3.16), (3.22) and by using the monotonicity of z1(t) , we obtain

ω(t) � z
1
p
2 (t),ω(αi(t)) � z

1
p
2 (αi(t)) � z

1
p
2 (t), i = 1,2. (3.24)

Using Lemma 2.3 and Theorem 3.1 in (3.22). From (3.24), we have

zΔ
2 (t) = cΔ(t)+ αΔ

1 (t)k(σ(t),α1(t))ω(α1(t))+
∫ α1(t)

a
kΔ(t,τ)ω(τ)Δτ

+αΔ
2 (t)g(α2(t))wp(α2(t))

� cΔ(t)+ αΔ
1 (t)k(σ(t),α1(t))z

1
p
2 (t)+

∫ α1(t)

a
kΔ(t,τ)z

1
p
2 (τ)Δτ

+αΔ
2 (t)g(α2(t))z2(t)

� cΔ(t)+
[

αΔ
1 (t)k(σ(t),α1(t))+

∫ α1(t)

a
kΔ(t,τ)Δ1τ

]
z

1
p
2 (t)

+αΔ
2 (t)g(α2(t))z2(t). (3.25)

Using Lemma 2.5 in (3.25), the inequality (3.25) can be written as,

zΔ
2 (t) � cΔ(t)+m1

[
αΔ

1 (t)k(σ(t),α1(t))+
∫ α1(t)

a
kΔ(t,τ)Δτ

+αΔ
2 (t)g(α2(t))

]
z2(t)

+m2

[
αΔ

1 (t)k(σ(t),α1(t))+
∫ α1(t)

a
kΔ(t,τ)Δτ

]
= η2(t)z2(t)+ Ξ2(t), (3.26)

where η2(t) and Ξ2(t) are defined as in (3.21) and (3.20) respectively. Now, using
Lemma 2.4 in (3.26), yields that

z2(t) � z2(a)eη2(t,a)+
∫ t

a
eη2(t,σ(τ))Ξ2(s)Δτ. (3.27)

From (3.24) and (3.27), we get that

ω p(t) � z2(a)eη2(t,a)+
∫ t

a
eη2(t,σ(τ))Ξ2(τ)Δτ. (3.28)

From (3.23) and (3.28), we have

z2(a) = c(a)+
∫ b

a
g(s)ω p(s)Δs

� c(a)+
∫ b

a
g(s)

[
z2(a)eη2(s,a)+

∫ s

a
eη2(s,σ(τ))Ξ2(τ)Δτ

]
Δs

� c(a)+ z2(a)
∫ b

a
g(s)eη2(s,a)Δs

+
∫ b

a
g(s)

(∫ s

a
eη2(s,σ(τ))Ξ2(τ)Δτ

)
Δs. (3.29)
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Thus from (3.29), we obtain

z2(a) �
c(a)+

∫ b
a g(s)

(∫ s
a eη2(s,σ(τ))Ξ2(τ)Δτ

)
Δs

1− ∫ b
a g(s)eη2(s,a)Δs

= Λ2, (3.30)

for all t ∈ [a,b]
Tk , we get the required inequality (3.17) from (3.28) and (3.30). The

proof is complete. �

REMARK 3.2. By taking T = R , α1(t) = t , αΔ
1 = 1, α2(t) = b , αΔ

2 (t)= 0, p = 1
and using the relation (2.3), then Theorem 3.3 reduces to [14, Theorem 1.5.2 (b1)]. If
we put T = R and α1(t) = t , αΔ

1 = 1, α2(t) = b , αΔ
2 (t) = 0, and using the relation

(2.3), then Theorem 3.3 reduces to [8, Theorem 2.2]. If we put T = R and using the
relation (2.3), then Theorem 3.4, reduces to [5, Theorem 2.2].

THEOREM 3.4. Let ω , αi and c be defined as in Theorem 3.3, k1(t,s) , k2(t,s) ,
kΔ
1 (t,s) and kΔ

2 (t,s) ∈ Crd([a,b]
Tk × [a,b]

Tk ,R+) for a � s � t � b and p � 1 be a
constant. Assume that a,b ∈ T

k
k with a < b. If

ω p(t) � c(t)+
∫ α1(t)

a
k1(t,s)ω(s)Δs+

∫ α2(t)

a
k2(t,s)ω p(s)Δs, (3.31)

for all t ∈ [a,b]
Tk , then

ω(t) �
{

Λ3eη3(t,a)+
∫ t

a
Ξ3(s)eη3(t,σ(s))Δs

} 1
p

, (3.32)

where Λ3 is the best possible constant i.e., it cannot be replaced with a smaller num-
ber such that (3.32) remains true for all relevant functions and given by the following
equation:

Λ3 =
c(a)+

∫ b
a k2(a,s)

(∫ s
a Ξ3(λ )eη3(s,σ(λ ))Δλ

)
Δs

1− ∫ b
a k2(a,s)eη3(s,a)Δs

, (3.33)

such that ∫ b

a
k2(s,a)eη3(s,a)Δs < 1, (3.34)

and

η3(t) = m1

[
αΔ

1 (t)k1(σ(t),α1(t))+
∫ α1(t)

a
kΔ
1 (t,s)Δs

]
+ αΔ

2 (t)k2(σ(t),α2(t))

+
∫ α2(t)

a
kΔ
2 (t,s)Δs, (3.35)

Ξ3(t) = cΔ(t)+m2

[
αΔ

1 (t)k1(σ(t),α1(t))+
∫ α1(t)

a
kΔ
1 (t,s)Δs

]
, (3.36)

where m1 , m2 are defined as in Lemma 2.5, and eη3(t,a) is a solution of the initial
value problem (2.9) in Lemma 2.2, when p(t) replaced by η3(t) .
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Proof. Define a function z3(t) by

z3(t) = c(t)+
∫ α1(t)

a
k1(t,s)ω(s)Δs+

∫ α2(t)

a
k2(t,s)ω p(s)Δs. (3.37)

We observe that z3(t) � 0 nondecreasing on [a,b]
Tk . From (3.37), we get

z3(a) = c(a)+
∫ b

a
f (s)ω p(s)Δs. (3.38)

Then from (3.31), (3.37) and by using the monotonicity of z1(t) , we obtain

ω(t) � z
1
p
3 (t),ω(α(t)) � z

1
p
3 (α(t)) � z

1
p
3 (t). (3.39)

From (3.37), (3.39) and by using Theorem 3.1, we have

zΔ
3 (t) = cΔ(t)+ αΔ

1 (t)k1(σ(t),α1(t))ω(α1(t))+
∫ α1(t)

a
kΔ
1 (t,s)ω(s)Δs

+αΔ
2 (t)k2(σ(t),α2(t))ω p(α2(t))+

∫ α2(t)

a
kΔ
2 (t,s)ω p(s)Δs

� cΔ(t)+ αΔ
1 (t)k1(σ(t),α1(t))z

1
p
3 (t)+

∫ α1(t)

a
kΔ
1 (t,s)z

1
p
3 (s)Δs

+αΔ
2 (t)k2(σ(t),α2(t))z3(t)+

∫ α2(t)

a
kΔ
2 (t,s)z3(s)Δs

� cΔ(t)+
[

αΔ
1 (t)k1(σ(t),α1(t))+

∫ α1(t)

a
kΔ
1 (t,s)Δs

]
z

1
p
3 (t)

+
[

αΔ
2 (t)k2(σ(t),α2(t))+

∫ α2(t)

a
kΔ
2 (t,s)Δs

]
z3(t). (3.40)

By applying Lemma 2.5 on z
1
p
3 (t) in (3.40), we have

zΔ
3 (t) � cΔ(t)+m1

[
αΔ

1 (t)k1(σ(t),α1(t))+
∫ α1(t)

a
kΔ
1 (t,s)Δs

]
z3(t)

+m2

[
αΔ

1 (t)k1(σ(t),α1(t))+
∫ α1(t)

a
kΔ
1 (t,s)Δs

]

+
[

αΔ
2 (t)k2(σ(t),α2(t))+

∫ α2(t)

a
kΔ
2 (t,s)Δs

]
z3(t)

�
{

m1

[
αΔ

1 (t)k1(σ(t),α1(t))+
∫ α1(t)

a
kΔ
1 (t,s)Δs

]

+αΔ
2 (t)k2(σ(t),α2(t))+

∫ α2(t)

a
kΔ
2 (t,s)Δs

}
z3(t)

+cΔ(t)+m2

[
αΔ

1 (t)k1(σ(t),α1(t))+
∫ α1(t)

a
kΔ
1 (t,s)Δs

]
= η3(t)z3(t)+ Ξ3(t). (3.41)
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Therefore, using Lemma (2.4) in (3.41), we get that

z3(t) � z3(a)eη3(t,a)+
∫ t

a
Ξ3(s)eη3(t,σ(s))Δs. (3.42)

From (3.39) and (3.42), we get that

ω p(t) � z3(a)eη3(t,a)+
∫ t

a
Ξ3(s)eη3(t,σ(s))Δs. (3.43)

From (3.38) and (3.43), we have

z3(a) � c(a)+
∫ b

a
k2(a,s)

[
z3(a)eη3(s,a)

+
∫ s

a
Ξ3(λ )eη3(s,σ(λ ))Δλ

]
Δs

� c(a)+ z3(a)
∫ b

a
k2(a,s)eη3(s,a)Δs

+
∫ b

a
k2(a,s)

(∫ s

a
Ξ3(λ )eη3(s,σ(λ ))Δλ

)
Δs. (3.44)

Thus from (3.44), we obtain
z3(a) � Λ3, (3.45)

where Λ1 is defined as in (3.33). Then we get the required inequality (3.32) from (3.43)
and (3.45). The proof is complete. �

REMARK 3.3. By taking T = R , α1(t) = t , αΔ
1 (t) = 1, α2(t) = b , αΔ

2 (t) = 0,
p = 1, c(t) = any constant and using the relation (2.3), then Theorem 3.3 reduces to [14,
Theorem 1.5.2 (b2)]. If we put T = R , α1(t) = t , αΔ

1 (t) = 1, α2(t) = b , αΔ
2 (t) = 0,

and using the relation (2.3), then Theorem 3.3 reduces to [8, Theorem 2.3]. If we put
T = R and using the relation (2.3), then Theorem 3.3, reduces to [5, Theorem 2.3].

4. Applications

In this section, we present some applications of Theorem 3.4 to obtain the explicit
estimates on the solutions of certain dynamic equations, and also prove the uniqueness
and global existence of solutions for a class of nonlinear dynamic integral equations.

EXAMPLE 4.1. Consider the following nonlinear dynamic integral equation with
several delay in time scales:

ω p(t) = h(t)+ Ω(t,
∫ α1(t)

a
Ψ1(s,ω(s),k1)Δs,

∫ α2(t)

a
Ψ2(s,ω p(s),k2)Δs),

ω p(a) = r̃ (4.1)
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if,

|h(t)| � c(t),
|Ω(t,u, ν̃)| � |u|+ |ν̃|,

|Ψ1| � k1(t,s)ω(s),
|Ω2| � k2(t,s)ω(s), (4.2)

where ω , αi , c ∈Crd([a,b]
Tk ,R+) and αi , c is delta-differentiable on T

k with αi(t)�
t , αΔ

i (t) � 0 cΔ(t) � 0, α1(a) = a , α2(a) = b and k1(t,s) , kΔ
1 (t,s) , k2(t,s) , kΔ

2 (t,s)
∈Crd([a,b]

Tk × [a,b]
Tk ,R+) for a � s � t � b and p � 1 be constants, then we have

the explicit bound estimation of the solution ω of (4.1) as the following:

ω(t) �
{

Λ3eη3(t,a)+
∫ t

a
Ξ3(s)eη3(t,σ(s))Δs

} 1
p

, (4.3)

for all t ∈ [a,b]
Tk , where Λ3 , Ξ3 and η3(t) are defined as in Theorem 3.4.

Proof. From (4.1), (4.2), we have

|ω(t)|p � c(t)+
∫ α1(t)

a
k1(t,s)|ω(s)|Δs+

∫ α2(t)

a
k2(t,s)|ω(s)|pΔs. (4.4)

Now applying Theorem 3.4, to (4.4), we get

ω(t) �
{

Λ3eη3(t,a)+
∫ t

a
Ξ3(s)eη3(t,σ(s))Δs

} 1
p

.

This is the desired estimation in (4.3). The proof is complete. �
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