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THE t –MODIFICATION OF HOMOGENEOUS SYMMETRIC

MEANS CONCERNING COMPLETE ELLIPTIC INTEGRALS

MIAO-KUN WANG ∗ AND JIA-HUI WU

(Communicated by G. Nemes)

Abstract. In the article, we establish a monotonicity criterion for the t -modification of homo-
geneous symmetric mean, and provide several novel inequalities for certain homogeneous sym-
metric means concerning the complete elliptic integrals. Besides, we also give the answer to a
conjecture recently proposed by Nishimura.

1. Introduction

As is well known, for r ∈ (0,1) , Legendre’s complete elliptic integrals K (r) and
E (r) of the first and second kinds are defined by

K (r) =
∫ π/2

0
(1− r2 sin2 θ )−1/2dθ =

∫ 1

0
[(1− t2)(1− r2t2)]−1/2dt,

E (r) =
∫ π/2

0
(1− r2 sin2 θ )1/2dθ =

∫ 1

0

(
1− r2t2

1− t2

)1/2

dt

have always been playing an important role and wide applications in mathematics and
physics as well as many other natural and human social sciences [1, 5, 6, 9, 10, 13,
15, 17, 18, 20]. In the past few years, the complete elliptic integrals have been studied
deeply in the theory of mean values, and some elegant inequalities for K (r) and E (r)
were derived in the literatures [2, 3, 4, 7, 8, 14, 23, 26].

Let M : (0,∞)× (0,∞) �→ (0,∞) be a continuous real-valued function. Then M is
said to be a homogeneous symmetric mean (cf. [9, Definition 8.1]) if M satisfies

min{a,b}� M(a,b) � max{a,b}, M(a,b) = M(b,a), M(λa,λb) = λM(a,b)

for all a,b∈ (0,∞) and λ > 0. M is said to be a strict homogeneous symmetric mean if
min{a,b}< M(a,b) < max{a,b} for all a �= b . Many classical means, for example, the
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geometric mean G(a,b) =
√

ab , arithmetic mean A(a,b) = (a+b)/2, contra-harmonic
mean C(a,b) =

(
a2 +b2

)
/(a+b) , logarithmic mean

L(a,b) =

⎧⎨
⎩

a−b
loga− logb

, a �= b,

a, a = b,

and arithmetic-geometric mean

AGM(a,b) = lim
n→∞

an = lim
n→∞

bn

of two positive real numbers a and b are the strict homogeneous symmetric means,
where the sequences {an}∞

n=0 and {bn}∞
n=0 are given by

a0 = a, b0 = b,

an+1 = A(an,bn) =
an +bn

2
, bn+1 = G(an,bn) =

√
anbn.

It follows from the Gauss identity [5, Theorem 4.4]

AGM(1,r)K (
√

1− r2) =
π
2

(1.1)

that

AGM(a,b) =
π/2∫ π/2

0
(a2 cos2 θ +b2 sin2 θ )−1/2dθ

=
{ πa

/[
2K

(√
1− (b/a)2

)]
, a � b,

πb
/[

2K
(√

1− (a/b)2
)]

, a < b.

Due to the formula of the circumference of an ellipse, another important bivariate
homogeneous symmetric mean T (a,b) (cf. [21] or [9, pp. 13]), named Toader mean,
was reintroduced by Wang et al. in [24]:

T (a,b) =
2
π

∫ π/2

0
(a2 cos2 θ +b2 sin2 θ )1/2dθ =

⎧⎪⎨
⎪⎩

2aE

(√
1− (b/a)2

)
/π , a � b,

2bE
(√

1− (a/b)2
)

/π , a < b.

By proving sharp bounds for Toader mean in terms of other classical means, Barnard,
Pearce and Richards [7, 8], and Wang and Chu et. al [11, 12, 23, 25] have found many
new inequalities for the complete elliptic integral E (r) , as well as the perimeter of an
ellipse.

It was proved in [5, Subsection 4.11] and [11, Theorem 3.1] that the inequalities

G(a,b) < L(a,b) < AGM(a,b) < A(a,b) < T (a,b) < C(a,b) (1.2)
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hold for all a,b > 0, and each inequality becomes equality if and only if a = b .
In 1994, in order to research the asymptotic behavior for AGM(a,b) and K (r) ,

Vamanamurthy and Vuorinen [22] introduced the t -modification M(a,b; t) (called t -th
M mean) of a strict homogeneous symmetric mean M(a,b) as follows

M(a,b;t) =

{
[M(at ,bt)]1/t , t �= 0,

G(a,b) =
√

ab, t = 0.
(1.3)

It is apparent from (1.3) that M(a,b;0)= G(a,b) and M(a,b;1)= M(a,b) for any strict
homogeneous symmetric mean M , and G(a,b;t) = G(a,b) and A(a,b; t) is the clas-
sical power (Hölder) mean of order t . Vamanamurthy and Vuorinen [22] also proved
that

THEOREM 1.1. ([22, Theorem 1.2]) (1) The t -th arithmetic-geometric mean
AGM(a,b; t) is strictly increasing with respect to t ∈ R;

(2) The t -th logarithmic mean L(a,b;t) is strictly increasing with respect to t ∈
R .

THEOREM 1.2. ([22, Theorems 1.1, 1.3, 3.4 and 3.6]) The double inequalities

A(a,b;0) < AGM(a,b) < A

(
a,b;

1
2

)
(1.4)

and

L(a,b;1) < AGM(a,b) < L

(
a,b;

3
2

)
(1.5)

hold for all a,b > 0 with a �= b with the optimal parameters 0 , 1/2 , 1 and 3/2 .
Moreover, for a,b > 0 with a �= b, one has

AGM(a,b) <
π
2

L(a,b).

Ten years later, Alzer and Qiu [2] proved that the double inequality

A(a,b;λ ) < T (a,b) < A(a,b;μ) (1.6)

holds for all a,b > 0 with a �= b if and only if λ � 3/2 and μ � log2/ log(π/2) =
1.5349 · · ·.

Inspired by inequalities (1.2) and (1.6) together with Theorems 1.1 and 1.2, it is
natural to propose the following Question 1.3.

QUESTION 1.3. What is the simple and practical criterion for the homogeneous
symmetric mean M to distinguish the monotonicity of the function t �→ M(a,b; t) for
fixed a,b > 0 with a �= b? What are the best possible parameters α,β ∈ R such that
the double inequality C(a,b;α) < T (a,b) <C(a,b;β ) holds for all a,b > 0 with a �= b
if C(a,b; t) is strict monotone with respect to t ∈ R for fixed a,b > 0 with a �= b?
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The authors [22] also gave the Question 1.4 as follows.

QUESTION 1.4. ([22, Problems 3.6(1)]) Is it true that AGM(a,b; t) � L(a,b) for
some t ∈ (0,1)?

The main purpose of this paper is to answer the Questions 1.3 and 1.4. In what
follows, we denote r′ =

√
1− r2 for r ∈ (0,1) , K = K (r) and E = E (r) .

Recall that the complete elliptic integrals K and E satisfy the differential formu-
las and Landen identity (cf. [5, Appendix E, pp. 474–475])

dK

dr
=

E − r′2K
rr′2

,
dE

dr
=

E −K

r
, E

(
2
√

r
1+ r

)
=

2E − r′2K
1+ r

.

In order to prove our main results, we need two lemmas which we present at the
end of this section.

LEMMA 1.5. ([5, Theorem 1.25]) Let a,b ∈ R with a < b and f ,g : [a,b] → R

be continuous and differentiable on (a,b) such that g′ �= 0 on (a,b) . If the derivative
ratio f ′/g′ is strictly increasing (decreasing) on (a,b) , then the functions

f (x)− f (a)
g(x)−g(a)

,
f (x)− f (b)
g(x)−g(b)

are also strictly increasing (decreasing, respectively) on (a,b) .

LEMMA 1.6. ([5, Theorem 3.21(8), Exercises 3.43(13),(46)], [2, Theorem 15]
and [19, Theorem 3.3]) Let r ∈ (0,1) . Then the following statements are true:

(1) The function r �→ r′[K (r)−E (r)]/r2 is strictly decreasing on (0,1);

(2) The function r �→ r′cE (r) is strictly increasing from (0,1) onto (π/2,∞) if c �
−1/2 ;

(3) The function r �→ [E (r)− r′2K (r)]/[r2K (r)] is strictly decreasing from (0,1)
onto (0,1/2);

(4) The function r �→ r′1/4(E (r)− r′2K (r))/r2 is strictly decreasing from (0,1)
onto (0,π/4);

(5) The function r �→ 2E (r)− r′2K (r) is strictly increasing from (0,1) onto (π/2,2) .

2. Answers to Questions 1.3 and 1.4

THEOREM 2.1. Let M(a,b) be a strict homogeneous symmetric mean of two pos-
itive numbers a and b. Then M(a,b;t) is strictly increasing (decreasing) with respect
to t ∈ R for fixed a,b > 0 with a �= b if the function r �→ [logM(1,r)]/[logG(1,r)] is
strictly increasing (decreasing) on (0,1) .
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Proof. Since M(a,b;−t) = 1/M(1/a,1/b;t) for t ∈ R , hence it suffices to prove
that the function t �→ M(a,b;t) is strictly increasing (decreasing) on (0,∞) for fixed
a,b > 0 with a �= b if the function r �→ [logM(1,r)]/[logG(1,r)] is strictly increasing
(decreasing) on (0,1) .

Without loss of generality, we assume that 0 < a < b . Let r = (a/b)t . Then the
function t �→ r = (a/b)t is strictly decreasing from (0,∞) onto (0,1) , and

logb− logM(a,b; t)
logb− loga

=
logbt − logM(at ,bt)

t log(b/a)
=

logM(1,(a/b)t)
log(a/b)t

=
1
2

logM(1,r)
logG(1,r)

.

Therefore, Theorem 2.1 directly follows from the above identity and monotonicity of
the function t �→ r = (a/b)t . �

Making use of Theorem 2.1, we get Corollary 2.2 as follows.

COROLLARY 2.2. Let a,b > 0 with a �= b. Then the following statements are
true:

(1) The function t �→C(a,b;t) is strictly increasing on R;

(2) The function t �→ L(a,b;t) is strictly increasing on R;

(3) The function t �→ T (a,b;t) is strictly increasing on R;

(4) The function t �→ AGM(a,b;t) is strictly increasing on R .

Proof. (1) Let r ∈ (0,1) and

f (r) =
1
2

logC(1,r)
logG(1,r)

=
log(1+ r2)− log(1+ r)

logr
. (2.1)

Then it follows from (2.1) that

f ′(r) =
[2r/(1+ r2)−1/(1+ r)] logr− (1/r)[log(1+ r2)− log(1+ r)]

(logr)2

=
1

r(logr)2 f1(r), (2.2)

where

f1(r) =
r(r2 +2r−1)
(1+ r2)(1+ r)

logr+ log

(
1+ r
1+ r2

)
.

It is easy to verify that

f1(0+) = f1(1−) = 0, (2.3)

f ′1(r) =
log(1/r)

(1+ r2)2(1+ r)2 f2(r), (2.4)

f2(r) = r4−4r3−6r2−4r+1,
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f2(0+) = 1, f2(1−) = −12, (2.5)

and
f ′2(r) = 4r3−12r2−12r−4 < 0 (2.6)

for all r ∈ (0,1) .
Equations (2.5) and (2.6) imply that exists r0 ∈ (0,1) such that f2(r) > 0 for

r ∈ (0,r0) and f2(r) < 0 for r ∈ (r0,1) , so that f1(r) is strictly increasing on (0,r0)
and strictly decreasing on (r0,1) by (2.4). This together with (2.3) leads to the conclu-
sion that f1(r) > 0 for all r ∈ (0,1) . Then from (2.2) we known that f (r) is strictly
increasing on (0,1) . Therefore, part (1) follows from the monotonicity of f (r) and
Theorem 2.1.

(2) Let r ∈ (0,1) , and

g(r) =
1
2

logL(1,r)
logG(1,r)

=
log [(r−1)/ logr]

logr
, (2.7)

g1(r) = log

[
log(1/r)

1− r

]
, g2(r) = log

1
r
, g3(r) =

g′1(r)
g′2(r)

.

Then g(r) = g1(r)/g2(r) , g1(1−) = g2(1−) = 0 and

g3(r) =
r logr− (r−1)

(r−1) logr
.

Differentiating g3 leads to

g′3(r) =
−r[logr]2 + r2−2r+1

r(r−1)2(logr)2 =
[(1− r)/ log(1/r)]2 − r

r(1− r)2 > 0

due to L(1,r) = (1− r)/[log(1/r)] > G(1,r) =
√

r for all r ∈ (0,1) . Hence g3(r) is
strictly increasing on (0,1) , so is g by application of Lemma 1.7. Therefore, part (2)
directly follows from (2.7) and Theorem 2.1.

(3) Let r ∈ (0,1) , and

h(r) =
1
2

logT (1,r)
logG(1,r)

=
log(2/π)+ logE (r′)

logr
,

h1(r) = −[
log(2/π)+ logE (r′)

]
, h2(r) = log(1/r).

Then h(r) = h1(r)/h2(r) , h1(1−) = h2(1−) = 0, and

h′1(r)
h′2(r)

=
r2[K (r′)−E (r′)]

r′2E (r′)
=

r[K (r′)−E (r′)]
r′2

1
E (r′)/r

.

It follows from Lemma 1.6(1) and (2) that h′1(r)/h′2(r) is strictly increasing on
(0,1) , so is h(r) by Lemma 1.5. Applying Theorem 2.1, we obtain that the function
t �→ T (a,b; t) is strictly increasing on R .
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(4) Let r ∈ (0,1) . Then the identity (1.1) leads to

logAGM(1,r)
logG(1,r)

=
log(π/2)− logK (r′)

log
√

r
.

Let

J(r) =
1
2

logAGM(1,r)
logG(1,r)

, J1(r) = logK (r′)− log
π
2

, J2(r) = log
1
r
.

Then J(r) = J1(r)/J2(r) , J1(1−) = J2(1−) = 0 and

J′1(r)
J′2(r)

=
E (r′)− r2K (r′)

r′2K (r′)

is strictly increasing in (0,1) due to Lemma 1.6(3), so is J(r) by Lemma 1.5. There-
fore, by Theorem 2.1, we obtain the assented result. �

THEOREM 2.3. Let a,b > 0 with a �= b. Then one has

(1) T (a,b) < C(a,b;1/2);

(2) T (a,b) > (2/π)C(a,b) .

Proof. Since T (a,b) and C(a,b) as well as C(a,b; t) are strict homogeneous sym-
metric means, without loss of generality, we assume that a = 1 + r , b = 1− r for
r ∈ (0,1) . Then

T (1+ r,1− r) =
2
π

(1+ r)E
(

2
√

r
1+ r

)
=

2
π

(2E − r′2K ),

C

(
1+ r,1− r;

1
2

)
=

(
2√

1+ r+
√

1− r

)2

=
2

1+ r′
,

C(1+ r,1− r) =
(1+ r)2 +(1− r)2

(1+ r)+ (1− r)
= 1+ r2.

Let

f (r) =
T (1+ r,1− r)

C (1+ r,1− r;1/2)
=

1
π

(1+ r′)(2E − r′2K ),

and

g(r) =
T (1+ r,1− r)
C(1+ r,1− r)

=
2(2E − r′2K )

π(1+ r2)
.

Then differentiating f and g lead to

f ′(r) =
1
π

[
− r

r′
(2E − r′2K )+ (1+ r′)

E − r′2K
r

]

=
1
π

r
r′

[
−(2E − r′2K )+

r′(E − r′2K )
r2 (1+ r′)

]
,



594 M.-K. WANG AND J.-H. WU

g′(r) =
2
π

(1+ r2)(E − r′2K )/r−2r(2E − r′2K )
(1+ r2)2 =

2
π

r′2(E − r′2K )−2r2E

r(1+ r2)2

=
2
π

rE
(1+ r2)2

[
r′2(E − r′2K )

r2E
−2

]
.

Lemma 1.6(2), (4) and (5) show that the function r �→ r′2(E − r′2K )/(r2E ) =[
r′1/4(E − r′2K )/r2

]
/[r′−7/4E ] is strictly decreasing from (0,1) onto (0,1/2) , and

the function r �→ −(2E − r′2K )+(1+ r′)r′(E − r′2K )/r2 is strictly decreasing from
(0,1) onto (−2,0) , so that both f and g are strictly decreasing on (0,1) . Moreover,

lim
r→0+

f (r) = lim
r→0+

g(r) = 1, lim
r→1−

f (r) = lim
r→1−

g(r) =
2
π

.

Consequently, for a,b > 0 with a �= b ,

max

{
2
π

C(a,b),
2
π

C(a,b;1/2)
}

< T (a,b) < min{C(a,b),C(a,b;1/2)} .

Therefore, Theorem 2.3 follows. �

REMARK 2.4. Inequality (1.2) shows that

C(a,b;0) = G(a,b) < T (a,b) < C(a,b) = C(a,b;1)

for all a,b > 0 with a �= b . Noting that

T (1,r′) =
2
π

E (r) = 1− 1
4
r2 − 3

64
r4 +o(r4)

and

C(1,r′;t) =
[
1+ r′2t

1+ r′t

]1/t

= 1− 1
4
r2 +

3(t−1)
32

r4 +o(r4).

It follows from Corollary 2.2(1) and Theorem 2.3(1) together with

lim
r→0+

C(1,r′;t)−T (1,r′)
r4 =

3(2t−1)
64

that the inequality C(a,b,t) > T (a,b) for all a,b > 0 with a �= b if and only if t � 1/2.
On the other hand, the limiting value

lim
r→1−

T (1,r′)
C(1,r′;t)

=
2
π

for t > 0 implies that there does not exist t ∈ (0,1) such that T (a,b) > C(a,b; t) for
all a,b > 0 with a �= b .

By Corollary 2.2(1) and Remark 2.4, we obtain the following Corollary 2.5 imme-
diately.
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COROLLARY 2.5. Let α,β ∈ R , then the double inequality

C(a,b;α) < T (a,b) < C(a,b;β )

holds for all a,b > 0 with a �= b if and only if α � 0 and β � 1/2 .

THEOREM 2.6. There does not exist t ∈ (0,1) such that AGM(a,b; t) � L(a,b)
for all a,b > 0 .

Proof. Let us consider the ratio AGM(a,b;t)/L(a,b) for t ∈ (0,1) . Without loss
of generality, we suppose that a = 1, b = r ∈ (0,1] . Then

AGM(1,r;t) =
[

π/2

K (
√

1− r2t)

]1/t

, L(1,r) =
1− r

log(1/r)
.

Making use of the limiting behavior of the function K (r) (cf. [5, equation (3.4)])

lim
r→1−

[
K (r)− log

(
4
r′

)]
= 0

and the L’Hôpital’s rule we obtain

lim
r→0+

AGM(1,r;t)
L(1,r)

= lim
r→0+

(π/2)1/t log(1/r)

(1− r)
[
K (

√
1− r2t)

]1/t

= lim
r→0+

(π/2)1/t log(1/r)[
K (

√
1−r2t)

log(4/rt)

]1/t

1

[log(4/rt)]1/t
= lim

r→0+

(π/2)1/t log(1/r)
[log(4/rt)]1/t

= lim
r→0+

(π/2)1/t(−1/r)
[log(4/rt)](1/t)−1(−1/r)

= lim
r→0+

(π/2)1/t

[log(4/rt)](1/t)−1
= 0.

This completes the proof of Theorem 2.6. �

3. A note on sharp bounds for K (r)

In 2018, by establishing a discrete monotonicity theorem for means, Nishimura
[16] provided several bounds for the complete elliptic integral K (r) of the first kind
as follows:

THEOREM 3.1. ([16, Corollay 3.2, 3.3 and Theorem 3.6]) Inequalities

1
A(1,r;1/2)

<
2
π

K (r′), (3.1)

1
L(1,r;2)

<
2
π

K (r′) <
1

L(1,r;1)
(3.2)
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and
1

A(1,r)1/4L(1,r)3/4
<

2
π

K (r′) (3.3)

hold for all r ∈ (0,1) .

Furthermore, Nishimura [16] conjectured that the inequalities (3.1)-(3.3) are the
best possible in the sense of certain constants, and proposed the following Conjecture
3.2.

CONJECTURE 3.2. ([16, Conjectures 3.1, 3.2 and 3.3]) (1) The constant 1/2 is
the best possible constant such that the inequality (3.1) holds for all r ∈ (0,1) .

(2) The double inequality

1
L(1,r;α)

<
2
π

K (r′) <
1

L(1,r;β )

holds for all r ∈ (0,1) with the best possible constants α = 2 and β = 1.
(3) The inequality

1

A(1,r)λ L(1,r)1−λ <
2
π

K (r′)

holds for all r ∈ (0,1) with the best possible constant λ = 1/4.

REMARK 3.3. According to (1.1), inequalities (3.1), (3.2), (3.3) can be rewritten
as

AGM(1,r) < A(1,r;1/2), (3.4)

L(1,r;1) < AGM(1,r) < L(1,r;2), (3.5)

AGM(1,r) < A(1,r)1/4L(1,r)3/4, (3.6)

respectively. Obviously, (1.4) shows that 1/2 in (3.4) is the optimal constant. Compar-
ing (1.5) to (3.5), one has that, for α,β ∈ R , the double inequality

1
L(1,r;α)

<
2
π

K (r′) <
1

L(1,r;β )
(3.7)

holds for all r ∈ (0,1) with the best possible constant α = 3/2 and β = 1.
For the sharpness of the constant 1/4 in (3.6), if we let t ∈ (0,1) , then

AGM(1,r) =
π/2

K (r′)
= 1− 1

2
(1− r)− 1

16
(1− r)2 +o[(1− r)2]

and

A(1,r)tL(1,r)1−t = 1− 1
2
(1− r)+

t−1
12

(1− r)2 +o(1− r)2

as r �→ 1. Therefore, inequality

1
A(1,r)tL(1,r)1−t <

2
π

K (r′)

holds for large r which tends to 1 only for t � 1/4.
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