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ON NEW SHARP BOUNDS FOR THE TOADER–QI MEAN INVOLVED IN

THE MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

CEN LI, ZHI-MING LIU AND SHEN-ZHOU ZHENG ∗

(Communicated by L. Mihoković)

Abstract. Let A(a,b) , G(a,b) , L (a,b) and TQ(a,b) be the arithmetic, geometric, logarithmic
and Toader-Qi means of a,b > 0 with a �= b , respectively. Let Iv (x) be the modified Bessel
functions of the first kind of order v . We prove the double inequality√

sinh t
t

Uq (t) < I0 (t) <

√
sinh t

t
Up (t)

holds for t > 0 , or equivalently,√
L (a,b)Uq (a,b) < TQ(a,b) <

√
L (a,b)Up (a,b),

holds for a,b > 0 with a �= b , if and only if p � 11/15 and 0 < q � 2/π , where

Up (t) = pcosh t−4

(
p− 2

3

)
cosh

t
2

+3p− 5
3
,

Up = pA−4

(
p− 2

3

)√
A+G

2
G+

(
3p− 5

3

)
G.

These improve some known results, in which
√

LU2/π is the sharpest lower mean bound for
TQ .

1. Introduction

Throughout the paper, we assume that a,b > 0 with a �= b . The arithmetic mean,
geometric mean, logarithmic mean, exponential mean and p -order power mean of a
and b are defined by

A ≡ A(a,b) =
a+b

2
, G ≡ G(a,b) =

√
ab,

L ≡ L(a,b) =
a−b

lna− lnb
, I ≡ I (a,b) = e−1

(
bb

aa

)1/(b−a)

,

Ap ≡ Ap (a,b) =
(

ap +bp

2

)1/p

if p �= 0 and A0 ≡ A0 (a,b) =
√

ab,
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respectively. Clearly, A(a,b) = A1 (a,b) and G(a,b) = A0 (a,b) . It is a well-known
fact that p �→ Ap (a,b) is increasing on R . More generally, for a bivariate mean M :
(0,∞)2 → (0,∞) and p ∈ R , the “ p -order M mean” is defined by

Mp ≡ Mp (a,b) = M1/p (ap,bp) if p �= 0 and M0 ≡ M0 (a,b) = lim
p→0

Mp (a,b)

(see [1]), which satisfies

Mλ
λ p (a,b) = M1/p

(
aλ p,bλ p

)
= Mp

(
aλ ,bλ

)
for λ ∈ R . For instance,

L3/2 ≡ L3/2 (a,b) = L2/3
(
a3/2,b3/2

)
, (1.1)

I3/4 ≡ I3/4 (a,b) = I4/3
(
a3/4,b3/4

)
(1.2)

are (3/2)-order logarithmic mean and (3/4)-order exponential mean, respectively.
There are many inequalities among these classical means. We would like to men-

tion the following inequalities:

G < L < A1/3 < A2/3 < I < Aln2, (1.3)

√
AG <

√
LI <

L+ I
2

<
A+G

2
, (1.4)

I >

(
L8/5 +A8/5

2

)5/8

>
L+A

2
, (1.5)

where the inequality L < A1/3 was prove in [2], the inequality A2/3 < I was shown in
[3], the inequality I < Aln2 appeared in [4], the inequalities (1.4) were established in
[5], while (1.5) is due to Yang [6] and Sándor [7]. More inequalities involving these
elementary means can be seen in [8], [9], [10].

In 1988, Toader [11] introduced a family of means defined, for the strictly mono-
tonic function f : (0,∞) → R and n ∈ R , by

Mf ,n (a,b) = f−1
(

2
π

∫ π/2

0
f (rn (θ ))dθ

)
, (1.6)

where

rn (θ ) =

{(
an cos2 θ +bn sin2 θ

)1/n
if n �= 0,

acos2 θ bsin2 θ if n = 0

and f−1 is the inverse of the function f . This family of means includes two well-known
members, that are,

M1/x,2 (a,b) =
π/2∫ π/2

0

(
a2 cos2 θ +b2 sin2 θ

)−1/2
dθ

= AGM (a,b) , (1.7)

Mx,2 (a,b) =
2
π

∫ π/2

0

(
a2 cos2 θ +b2 sin2 θ

)1/2
dθ = T (a,b) , (1.8)
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where AGM (a,b) is the classical Gaussian arithmetic-geometric mean related to the
complete integrals of the first kind (see [12], [13], [14]), while T (a,b) is the Toader
mean involved the complete integrals of the second kind, see [15]. There are a number
of papers on the bounds for the two means in terms of other elementary means, for
example,

L < AGM < L3/4A1/4 < L3/2, (1.9)

A3/2 < T < A(ln2)/(lnπ−ln2), (1.10)

where the inequalities (1.9) appeared in [16], [17], [18], while the double inequality
(1.10) was proven in [19], [17]. The latest results on this topic can be found in [20],
[21], [22], [23], [24].

Toader’s family of means (1.6) also includes a somewhat strange member, that is,

Mxq,0 (a,b) =
(

2
π

∫ π/2

0
aqcos2 θ bq sin2 θ dθ

)1/q

for q �= 0.

Qi in [25, Lemma 2.1] and [26] revealed the surprising relationship between this mean
and modified Bessel functions of the first kind as follows:

Mx,0 (a,b) =
2
π

∫ π/2

0
acos2 θ bsin2 θ dθ =

√
abI0

(
ln

√
b
a

)
(1.11)

and

Mxq,0 (a,b) =
(

2
π

∫ π/2

0
aqcos2 θ bq sin2 θ dθ

)1/q

=
√

abI1/q
0

(
q ln

√
b
a

)
, (1.12)

where

Iv (z) =
∞

∑
n=0

1
n!Γ(v+n+1)

( z
2

)2n+v
for z ∈ C and v ∈ R\ {−1,−2, . . .}

denotes the modified Bessel functions of the first kind (see [27]) and Γ(z) is the classi-
cal gamma function. So the mean Mx,0 (a,b) given by (1.11) is called Toader-Qi mean
and denoted by

TQ ≡ TQ(a,b) =
2
π

∫ π/2

0
acos2 θ bsin2 θ dθ =

√
abI0

(
ln

√
b
a

)
(1.13)

(see [29, Theorem 3.3]). Subsequently, the Toader-Qi mean immediately attracted at-
tention of some scholars. Qi et. al. [26] established the chain of inequalities for this
mean:

L < TQ <
A+G

2
<

2A+G
3

< I. (1.14)

Yang and Chu [29, Theorem 3.3] presented a series of sharp inequalities for the Toader-
Qi mean TQ(a,b) and I0 (t) , for example, the inequalities√[

2
π

A+
(

1− 2
π

)
G

]
L < TQ <

√
[λ0A+(1−λ0)G]L, (1.15)
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L3/4A1/4 < TQ <
3
4
L+

1
4
A (1.16)

hold with λ0 = 0.6766 . . .. In [30], [31], Yang et. al. proved further the double inequal-
ity √

e
π
√

LI < TQ <
√

LI (1.17)

holds with the best contant
√

e/π = 0.930 . . . , and

L3/2 < TQ. (1.18)

Recently, Yang, Tian and Zhu [32] gave an improvement of (1.17). More precisely, they
proved

24/3
√

π

√
LA2/3 < TQ <

√
LA3/2 (1.19)

and √
LA(ln2)/ lnπ < TQ <

√
LA3/2. (1.20)

Thus, the chain of inequalities given in [29, (3.84)] can be extended to

L < AGM < L3/4A1/3 < L3/2 < TQ <
√

LA3/2

<
√

LI <
L+ I

2
< A1/2 < T1/3 < I3/4,

(1.21)

where L3/2 and I3/4 are given by (1.1) and (1.2), respectively, whiles T1/3 = T (a1/3,

b1/3)3 . More inequalities for the Toader-Qi mean can be found in [29, Theorem 3.3]
and [33].

The aim of this paper is to find the best constants p,q > 0 such that the double
inequality √

L(a,b)Uq (a,b) < TQ(a,b) <
√

L(a,b)Up (a,b), (1.22)

where

Up = pA−4

(
p− 2

3

)√
A+G

2
G+

(
3p− 5

3

)
G. (1.23)

More precisely, we have the following main result.

THEOREM 1.1. Let p,q > 0 . (i) If p � 11/15 then double inequality

√
2
pπ

L(a,b)Up (a,b) < TQ(a,b) <
√

L(a,b)Up (a,b) (1.24)

holds. The lower and upper bounds are sharp.
(ii) The double inequality (1.22) holds if and only if p � 11/15 and q � 2/π .
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Let b > a > 0 and t = ln
√

a/b . Then those means above-mentioned can be
represented in terms of hyperbolic functions:

L(a,b)√
ab

=
sinh t

t
,

I (a,b)√
ab

= exp
( t

tanht
−1
)

,
TQ(a,b)√

ab
= I0 (t) , (1.25)

Up (a,b)√
ab

= pcosh t−4

(
p− 2

3

)
cosh

t
2

+3p− 5
3

:= Up (t) . (1.26)

Correspondingly, Theorem 1.1 can be equivalently stated as follows.

THEOREM 1.1 ′ . Let p,q > 0 and Up (t) be defined by (1.26).
(i) If p � 11/15 then the double inequality√

2
pπ

sinh t
t

Up (t) < I0 (t) <

√
sinht

t
Up (t) (1.27)

holds for t > 0 . The lower and upper bounds are sharp.
(ii) The double inequality√

sinht
t

Uq (t) < I0 (t) <

√
sinh t

t
Up (t) (1.28)

holds for t > 0 if and only if p � 11/15 and 0 < q � 2/π .

The rest of this paper is organized as follows. In Section 2, we list two tools and
prove several lemmas. In Section 3, we will prove Theorem 1.1 ′ instead of Theorem
1.1. In Section 4, we will compare the bounds for TQ(a,b) given in Theorem 1.1 with
certain known ones to show that our new bounds are better than these ones.

2. Tools and lemmas

To prove our results, we need two tools. The first tool was due to Biernacki and
Krzyz [34], which plays an important role in dealing with the monotonicity for the ratio
of power series.

LEMMA 2.1. ([34]) Let A(t)= ∑∞
k=0 aktk and B(t)= ∑∞

k=0 bktk be two real power
series converging on (−r,r) (r > 0 ) with bk > 0 for all k . If the sequence {ak/bk} is
increasing (decreasing) for all k , then the function t �→ A(t)/B(t) is also increasing
(decreasing) on (0,r) .

The second tool is another monotonicity rule for the case when the sequence
{ak/bk}k�0 is piecewise monotonic presented recently in [35, Theorem 1]. The fol-
lowing lemma is a corollary of [35, Theorem 1], which was slightly modified in [36],
[37].

LEMMA 2.2. ([35, Corollary 2.3]) Let A(t) = ∑∞
k=0 aktk and B(t) = ∑∞

k=0 bktk be
two real power series converging on R with bk > 0 for all k . If for certain m ∈ N ,
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the sequences {ak/bk}0�k�m and {ak/bk}k�m both are non-constant, and they are in-
creasing (decreasing) and decreasing (increasing), respectively,, then there is a unique
t0 ∈ (0,∞) such that the function A/B is increasing (decreasing) on (0,t0) and de-
creasing (increasing) on (t0,∞) .

The following three lemmas will be used to prove Theorem 1.1 ′ .

LEMMA 2.3. ([29, Lemma 2.8]) There holds

I0 (t)2 =
∞

∑
n=0

(2n)!
22nn!4

t2n. (2.29)

LEMMA 2.4. ([38, Problems 85, 94]) If the two given sequences {an}n�0 and
{bn}n�0 satisfy the conditions

bn > 0;
∞

∑
n=0

bnt
n converges for all values of t; lim

n→∞

an

bn
= s.

Then, the series ∑∞
n=0 antn converges too for all values of t , and in addition

lim
t→∞

∑∞
n=0 antn

∑∞
n=0 bntn

= s.

LEMMA 2.5. For p > 0 , let

un =
p24n− (3p−2)32n +(3p−5/3)22n− (p−2/3)

22n (2n+1)!
and vn =

(2n)!
22nn!4

.

Then
lim
n→∞

un

vn
=

π
2

p.

Proof. Since

un =
p24n− (3p−2)32n +(3p−5/3)22n− (p−2/3)

22n (2n+1)!
∼ p

24n

22n (2n+1)!

as n → ∞ , we have

un

vn
∼ p

24nn!4

(2n)!(2n+1)!
:= psn, as n → ∞.

It thus suffices to show limn→∞ sn = π/2. Using the duplication formula for the gamma

Γ(2z) = (2π)−1/2 22z−1/2Γ(z)Γ(z+1/2)

(see [39, (6.1.18)]), sn can be simplified to

sn =
24nΓ(n+1)4

Γ(2n+1)Γ(2n+2)
=

(2π)24nΓ(n+1)4

2n24n+1Γ(n)Γ(n+1/2)Γ(n+1)Γ(n+3/2)

=
π
2

Γ(n+1)2

(n+1/2)Γ(n+1/2)2
,
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which, by the asymptotic formula listed in [39, (6.1.47)]:

Γ(z+a)
Γ(z+b)

∼ za−b, as z → ∞,

sn tends to π/2 as n → ∞ . This completes the proof. �

LEMMA 2.6. Let

αn = 6
(
7n2 +14n+3

)
32n−20

(
3n2 +6n+2

)
22n +2

(
15n2 +30n+11

)
,

βn = 12×24n +
(
63n2 +126n+27

)
32n

−36
(
3n2 +6n+2

)
22n +3

(
15n2 +30n+11

)
.

Then for n∈N we have that αn,βn > 0 and αn/βn is decreasing with α1/β1 = 11/15 ,
limn→∞ (αn/βn) = 0

Proof. (i) Since the third term of the expression of αn is positive for n � 1, to
prove αn > 0 for n � 1, it suffices to show the sum of the first and second term is also
positive, that is,

α ′
n := 6

(
7n2 +14n+3

)
32n−20

(
3n2 +6n+2

)
22n > 0

for n � 1. Using the binomial theorem we have(
3
2

)2n

=
(

1+
5
4

)n

> 1+n
5
4

+
n(n−1)

2

(
5
4

)2

> 1+
5n
4

(2.30)

for n � 1. It is deduced that

22nα ′
n = 6

(
7n2 +14n+3

)(3
2

)2n

−20
(
3n2 +6n+2

)
> 6

(
7n2 +14n+3

)(
1+

5
4
n

)
−20

(
3n2 +6n+2

)
=

1
2

(
105n3 +174n2−27n−44

)
,

which is clearly positive for n � 1.
Similarly, since the first and fourth terms of the expression of βn are obviously

positive for n � 1, it suffices to show the sum of the second and third terms is also
positive, that is,

β ′
n :=

(
63n2 +126n+27

)
32n−36

(
3n2 +6n+2

)
22n > 0

for n � 1. Applying the inequalities (2.30) we derive

2−2nβ ′
n =

(
63n2 +126n+27

)(3
2

)2n

−36
(
3n2 +6n+2

)
>
(
63n2 +126n+27

)(
1+

5
4
n

)
−36

(
3n2 +6n+2

)
=

45
4

(
7n3 +10n2−5n−4

)
> 0 for n � 1,
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which proves βn > 0 for n � 1.
(ii) Due to βn > 0 for n � 1, to get that the sequence αn/βn is decreasing, it

suffices to prove

γn :=
αnβn+1−αn+1βn

24n � 0 for n � 1.

Direct computation yields

γn = 504
(
7n2−4n−24

)
32n−2880

(
3n2 +4n−1

)
22n

+180
(
21n4 +126n3 +254n2 +208n+60

)(3
2

)2n

−36
(
45n4 +270n3 +558n2 +464n+124

)
2−2n +360

(
15n2 +28n+8

)
,

with γ1 = 111780, γ2 = 1576260, γ3 = 78160545/4. Since the sum of the third,
fourth and fifth terms is clearly positive for n � 1, to prove γn > 0 for n � 1, we only
need to prove the sum of the first and second terms is also positive, that is,

γ ′n := 504
(
7n2−4n−24

)
32n−2880

(
3n2 +4n−1

)
22n > 0

for n � 3. Using the first inequality of (2.30) we have

2−2nγ ′n = 504
(
7n2−4n−24

)(3
2

)2n

−2880
(
3n2 +4n−1

)
> 504

(
7n2−4n−24

)[
1+

5
4
n+

n(n−1)
2

25
16

]
−2880

(
3n2 +4n−1

)
=

9
4
P4 (n) ,

where
P4 (n) = 1225n4 +35n3−6892n2−8536n−4096,

which is actually positive for n � 3 due to

P4 (n) = 1225(n−3)4 +14735(n−3)3 +59573(n−3)2 +83357(n−3)+8438 > 0,

so is γ ′n . Thus the proof is finished. �

3. Proofs of Theorem 1.1 ′

We are now in a position to prove Theorem 1.1 ′ .

Proof. We prove the desired results by considering the monotonicity of the ratio

Fp (t) =

(
t−1 sinh t

)
Up (t)

I0 (t)2
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on (0,∞) . Using “product into sum” formulas and expanding in power series give

sinh t
t

Up (t) = p
sinh(2t)

2t
− (3p−2)

sinh(3t/2)
3t/2

+
(

3p− 5
3

)
sinh t

t
−
(

p− 2
3

)
sinh(t/2)

t/2

= p
∞

∑
n=0

22n

(2n+1)!
t2n− (3p−2)

∞

∑
n=0

(3/2)2n

(2n+1)!
t2n

+
(

3p− 5
3

) ∞

∑
n=0

t2n

(2n+1)!
−
(

p− 2
3

) ∞

∑
n=0

2−2n

(2n+1)!
t2n

=
∞

∑
n=0

p22n− (3p−2)(3/2)2n +(3p−5/3)− (p−2/3)2−2n

(2n+1)!
t2n

:=
∞

∑
n=0

unt
2n,

where

un =
p24n− (3p−2)32n +(3p−5/3)22n− (p−2/3)

22n (2n+1)!
.

By Lemma 2.3 we see that I0 (t)2 = ∑∞
n=0 vnt2n , where

vn =
(2n)!
22nn!4

.

Then

lim
t→0

Fp (t) = lim
t→0

(
t−1 sinht

)
Up (t)

I0 (t)2 =
u0

v0
= 1,

and by Lemmas 2.4 and 2.5,

lim
t→∞

Fp (t) = lim
t→∞

(
t−1 sinht

)
Up (t)

I0 (t)2 = lim
n→∞

un

vn
=

pπ
2

if p > 0.

By Lemmas 2.1 and 2.2, to confirm the monotonicity of Fp (t) , we have to observe
the monotonicity of the sequence {un/vn}n�0 , which depends on the sign of wn =
un+1− (vn+1/vn)un due to vn > 0. An easy check shows w0 = 0 and

vn+1

vn
=

1
2

2n+1

(n+1)3
.

Therefore, for n � 1 we have

22n+2 (2n+3)!wn = p24n+4− (3p−2)32n+2 +(3p−5/3)22n+2− (p−2/3)

−22 (2n+3)(2n+2)× 1
2

2n+1

(n+1)3

×(p24n− (3p−2)32n +(3p−5/3)22n− (p−2/3)
)

=
βn

3(n+1)2
p− αn

3(n+1)2
=

βn

3(n+1)2

(
p− αn

βn

)
,
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where αn and βn are defined in Lemma 2.6. Since αn,βn > 0 and αn/βn is decreas-
ing for n � 1 shown as in Lemma 2.6, we will distinguish two cases to discuss the
monotonicity of Fp (t) as follows.

Case 1. While p � maxn�1{αn/βn} = 11/15. Clearly, wn � 0 for n � 1. This
together with w0 = 0 implies that the sequence {un/vn}n�0 is increasing, so is Fp (t)
on (0,∞) by Lemma 2.1. Then we have

1 = lim
t→0

Fp (t) < Fp (t) < lim
t→∞

Fp (t) =
pπ
2

for t > 0, which proves the double inequality (1.27).
Case 2. While 0 < p < 11/15. Since θn := p−αn/βn is increasing for n � 1 and

θ1 = p−α1/β1 < 0, θ∞ = limn→∞ θn = p > 0, we see that there is an integer n0 > 1
such that θn � 0 for 1 � n � n0 and θn > 0 for n > n0 . In view of sgnwn = sgnθn and
w0 = 0, we find that the sequence {un/vn} is decreasing for 0 � n � n0 and increasing
for n > n0 . By Lemma 2.2, there is a t0 > 0 such that the ratio Fp (t) is decreasing on
(0,t0) and increasing on (t0,∞) . This yields

Fp (t) < max

{
lim
t→0

Fp (t) , lim
t→∞

Fp (t)
}

= max
{

1,
pπ
2

}
for t > 0. In particular, if min{1,2/(pπ)} = 1, that is, 0 < p � 2/π , then Fp (t) < 1,
which proves the right hand side inequality of (1.28).

It remains to prove the necessity for the double inequality (1.28) to hold. In fact,
the necessary condition for the left hand side inequality of (1.28) to hold follows from
the limit relation

lim
t→0

I0 (t)2− (t−1 sinht
)
Up (t)

t4
= v2−u2 = − 1

480
(15p−11) � 0.

While the necessary condition for the left hand side inequality of (1.28) easily is ob-
tained by the following limit relation

lim
t→∞

(
t−1 sinh t

)
Uq (t)

I0 (t)2 =
qπ
2

� 1,

which completes the proof. �

4. Comparisons of certain bounds for TQ(a,b)

In this section, we are ready to compare our new bounds given in Theorem 1.1 for
the Toader-Qi mean with certain known bounds.

4.1. Comparing with the lower bounds given in (1.15), (1.18) and (1.20)

LEMMA 4.1. There hold

√
LA(ln2)/ lnπ <

√
L

[
2
π

A+
(

1− 2
π

)
G

]
<
√

LU2/π < TQ. (4.31)



MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND 619

Proof. The first inequality of (4.31) follows from [32, Eq. (18)]. To prove the
second, we note that

U2/π =
2
π

A−4

(
2
π
− 2

3

)√
A+G

2
G+

(
3

2
π
− 5

3

)
G.

Then

U2/π −
[

2
π

A+
(

1− 2
π

)
G

]
=

8(π −3)
3π

(√
A+G

2
G−G

)
> 0.

REMARK 4.2. Lemma 4.1 tells us that our new lower bound
√

LU2/π for TQ is

stronger than
√

LA(ln2)/ lnπ and
√

L [2A/π +(1−2/π)G] .

To compare L3/2 with
√

LU2/π , we need the following lemma.

LEMMA 4.3. Let q > 0 and Uq (t) be defined by (1.26). The inequality

[
sinh(3t/2)

3t/2

]2/3

<

√
sinht

t
Uq (t) (4.32)

holds for t > 0 if and only if q � 8/15 = 0.533 . . . .

Proof. Let

Hq (t) = ln

[
sinh(3t/2)

3t/2

]4/3

− ln

[
sinht

t
Uq (t)

]
.

Differentiation yields

H ′
8/15 (2s) =

h(s)
6s(8cosh(2s)+8coshs−1)sinh(3s)sinh(2s)

,

where

h(s) = 48scosh(4s) sinh(3s)+4sinh(4s)sinh(3s)− sinh(3s)sinh(2s)
−48ssinh(4s)cosh(3s)−6ssinh(3s)cosh(2s)+12scosh(3s)sinh(2s)
+8sinh(3s) sinh(2s)coshs+48ssinh(3s)cosh(2s)coshs

−96scosh(3s)sinh(2s)coshs+24ssinh(3s)sinh(2s)sinhs.

If we prove h(s) > 0 for s > 0, then H ′
8/15 (2s) > 0.

This implies H8/15 (t) < limt→0 H8/15 (t) = 0 for t > 0. By the monotonicity of
q �→Uq (t) it follows that

[
sinh(3t/2)

3t/2

]4/3

<
sinh t

t
U8/15 (t) � sinht

t
Uq (t)
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for t > 0 and q � 8/15.
Using “product into sum” formulas for the hyperbolic functions and expanding in

power series give

h(s) = 2cosh(7s)−6ssinh(6s)+2cosh(6s)+3ssinh(5s)− 1
2

cosh(5s)

−18ssinh(4s)+2cosh(4s)+30ssinh(2s)−2cosh(2s)

−3
2

coshs−57ssinhs−2

= 2
∞

∑
n=0

72n

(2n)!
s2n−6

∞

∑
n=1

(2n)62n−1

(2n)!
s2n +2

∞

∑
n=0

62n

(2n)!
s2n +3

∞

∑
n=1

(2n)52n−1

(2n)!
s2n

−1
2

∞

∑
n=0

52n

(2n)!
s2n −18

∞

∑
n=1

(2n)42n−1

(2n)!
s2n +2

∞

∑
n=0

42n

(2n)!
s2n +30

∞

∑
n=1

(2n)22n−1

(2n)!
s2n

−2
∞

∑
n=0

22n

(2n)!
s2n − 3

2

∞

∑
n=0

1
(2n)!

s2n−57
∞

∑
n=1

2n
(2n)!

s2n−2

=
∞

∑
n=1

dn

(2n)!
s2n,

where

dn = 2×72n−2(n−1)62n +
(

6n− 5
2

)
52n−1− (9n−2)42n

+(15n−1)22n+1− 3
2

(76n+1).

An easy verification yields dn = 0 for n = 1,2,3 and d4 = 933120 > 0. To show
dn > 0 for n � 5, it suffices to show that, for n � 5,

d′
n = 2×72n−2(n−1)62n > 0,

d′′
n =

(
6n− 5

2

)
52n−1− (9n−2)42n > 0,

d′′′
n = (15n−1)22n+1− 3

2
(76n+1) > 0.

It is easy to check that d′
n satisfies

d′
n+1−49d′

n = 2(13n−49)62n > 0,

which together with d′
5 = 81221090 > 0 yields d′

n > 0 for n � 5. Similarly, d′′
n satis-

fies
d′′

n+1

9n+7
−16

d′′
n

9n−2
=

3
10

324n2 +117n+70
81n2 +45n−14

52n > 0,

which together with d′′
5 = 17244339/2 > 0 yields d′′

n > 0 for n � 5. Finally, d′′′
n

satisfies
d′′′

n+1−d′′′
n = (90n+114)22n−114 > 0,
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which together with d′′′
5 = 301961/2> 0 yields d′′′

n > 0 for n � 5. This proves h(s) >
0 for s > 0, and this proof is done. �

REMARK 4.4. By Lemma 4.3 and the monotonicity of q �→Uq (t) , we immedi-
ately get [

sinh(3t/2)
3t/2

]2/3

<

√
sinh t

t
U8/15 (t) <

√
sinh t

t
U2/π (t) < I0 (t)

for t > 0. Equivalently, the inequalities

L3/2 (a,b) <
√

L(a,b)U8/15 (a,b) <
√

L(a,b)U2/π (a,b) < TQ(a,b)

hold, which indicate that lower bound
√

LU2/π for TQ in (1.22) is superior to L3/2 .

REMARK 4.5. From Remarks 4.2 and 4.4 we find that
√

LU2/π for TQ is the
sharpest among exsisting lower mean bounds.

4.2. Comparing with the upper bound given in (1.16)

REMARK 4.6. We have

TQ(a,b) <
√

L(a,b)U11/15 (a,b) <
3
4
L(a,b)+

1
4
A(a,b) .

It suffices to show the inequality

D(t) =
sinh t

t
U11/15 (t)−

(
3
4

sinh t
t

+
1
4

cosh t

)2

< 0

for t > 0. Expanding it in power series gives

−(480t2
)
D(t) = 15t2 cosh2t +135cosh2t +90t sinh2t

−352t2 cosh t +128t2 cosh
t
2
−241t2−135

= 15
∞

∑
n=1

22n−2

(2n−2)!
t2n +135

∞

∑
n=1

22n

(2n)!
t2n +90

∞

∑
n=1

22n−1

(2n−1)!
t2nt

−352
∞

∑
n=1

1
(2n−2)!

t2n +128
∞

∑
n=1

(1/2)2n−2

(2n−2)!
t2n−241t2

:=
∞

∑
n=2

δn

(2n−2)!
t2n,

where

δn = 15
2n2 +11n+18

2n(2n−1)
22n−1−352+

128
22n−2 .

It is not difficult to check that δn > 0 for n � 2, then D(t) < 0 for t > 0.
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4.3. Comparing with the upper bounds in (1.17)

Before comparing the double inequality (1.24) with (1.17), we first give the fol-
lowing lemma.

LEMMA 4.7. Let p > 0 and Up (t) be defined by (1.26). (i) If p � 38/45 , then
the double inequality

2
pe

Up (t) < exp
( t

tanht
−1
)

< Up (t) (4.33)

holds for t > 0 . (ii) If 0 < p � 2/3 , then the double inequality (4.33) is reversed. (iii)
If 2/3 < p < 38/45 , then the inequality

min

{
2
pe

,1

}
Up (t) < exp

( t
tanht

−1
)

holds for t > 0 . In particular, if 0 < p � 2/e, then the inequality

Up (t) < exp
( t

tanh t
−1
)

(4.34)

holds for t > 0 .

Proof. Let

Gp (t) =
t

tanht
−1− ln

[
pcosht−4

(
p− 2

3

)
cosh

t
2

+3p− 5
3

]
.

Differentiation yields

G′
p (2s) = 2

g2 (s)− p×g1 (s)
[3pcosh(2s)−4(3p−2)coshs+9p−5]sinh2 (2s)

, (4.35)

where

g1 (s) = 6sinh(4s)coshs−6sinh2 (2s)sinhs− 9
2

sinh(4s)

−3sinh(2s)+6scosh(2s)−24scoshs+18s,

g2 (s) = 4sinh(4s)coshs−4sinh2 (2s)sinhs− 5
2

sinh(4s)−16scoshs+10s.

Using “product into sum” formulas for hyperbolic functions and expanding in power
series give

g1 (s) =
3
2

sinh(5s)− 9
2

sinh(4s)+
9
2

sinh(3s)

+6scosh(2s)−3sinh(2s)+3sinhs−24scoshs+18s
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=
3
2

∞

∑
n=0

52n+1

(2n+1)!
s2n+1− 9

2

∞

∑
n=0

42n+1

(2n+1)!
s2n+1 +

9
2

∞

∑
n=0

32n+1

(2n+1)!
s2n+1

+6
∞

∑
n=0

(2n+1)22n

(2n+1)!
s2n+1−3

∞

∑
n=0

22n+1

(2n+1)!
s2n+1 +3

∞

∑
n=0

1
(2n+1)!

s2n+1

−24
∞

∑
n=0

(2n+1)
(2n+1)!

s2n+1 +18s

=
∞

∑
n=1

ans
2n+1,

where

an =
3
2

52n+1−3×42n+1 +32n+2 +n×22n+3−2(16n+7)
(2n+1)!

;

g2 (s) = sinh(5s)− 5
2

sinh(4s)+3sinh(3s)+2sinhs−16scoshs+10s

=
∞

∑
n=0

52n+1

(2n+1)!
s2n+1− 5

2

∞

∑
n=0

42n+1

(2n+1)!
s2n+1 +3

∞

∑
n=0

32n+1

(2n+1)!
s2n+1

+2
∞

∑
n=0

1
(2n+1)!

s2n+1−16
∞

∑
n=0

(2n+1)
(2n+1)!

s2n+1 +10s

:=
∞

∑
n=1

bns
2n+1,

where

bn =
52n+1− (5/2)×42n+1 +32n+2−2(16n+7)

(2n+1)!
.

We now prove the ratio g2 (s)/g1 (s) is decreasing from (0,∞) onto (2/3,38/45). To
this end, we note first that a1 = b1 = 0 and an,bn > 0 for n � 2. Second, if we prove
the sequence {bn/an}n�2 is decreasing, then so is g2 (s)/g1 (s) on (0,∞) by Lemma
2.1. A direct computation yields

cn : =
3

22n+1 anan+1

(
bn

an
− bn+1

an+1

)
= 9×102n+1−21×62n+1−8(21n−4)×52n+1 +20(3n−1)×42n+2

−8(5n−4)×32n+2 +(240n+89)22n+2−16
(
48n2 +69n+28

)
and c2 = 192000 > 0. To show cn > 0 for n � 2, it suffices to show that, for n � 3,

c′n = 9×102n+1−21×62n+1−8(21n−4)×52n+1 > 0,

c′′n = 20(3n−1)×42n+2−8(5n−4)×32n+2 > 0,

c′′′n = (240n+89)22n+2−16
(
48n2 +69n+28

)
> 0.

It is easy to check that c′n satifies

c′n+1−100c′n = 224×62n+2+24(21n−11)×52n+3 > 0,
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which in combination with c′3 = 47246344 > 0 yields c′n > 0 for n � 3. The fact that
c′′n > 0 for n � 3 is evident. For c′′′n , we have

c′′′n+1− c′′′n = (2880n+4908)×22n− (1536n+1872)> 0,

which together with c′′′3 = 196432 > 0 gives c′′′n > 0 for n � 3. It is readily verified
that

lim
s→0

g2 (s)
g1 (s)

=
b2

a2
=

38
45

and lim
s→∞

g2 (s)
g1 (s)

= lim
n→∞

bn

an
=

2
3
,

where the second limit holds due to Lemma 2.4.
Now, let us return to (4.35). We have

sgn
[
G′

p (2s)
]
= sgn

[
g2 (s)
g1 (s)

− p

]
.

Due to the monotoncity of the ratio g2 (s)/g1 (s) , it is deduced that Gp is decreasing
(or increasing) on (0,∞) if and only if

p � sup
s>0

{
g2 (s)
g1 (s)

}
=

38
45

or p � inf
s>0

{
g2 (s)
g1 (s)

}
=

2
3
.

While 2/3 < p < 38/45, there is a t0 > 0 such that Gp is increasing on (0,t0) and
decreasing on (t0,∞) . Consequently, the following inequalities

ln
2
pe

= lim
t→∞

Gp (t) < Gp (t) < lim
t→0

Gp (t) = 0 if p � 38
45

,

0 = lim
t→0

Gp (t) < Gp (t) < lim
t→∞

Gp (t) = ln
2
pe

if 0 � p � 2
3
,

and

min

{
ln

2
pe

,0

}
< Gp (t) � Gp (t0) if

2
3

< p <
38
45

hold for t > 0, which prove the desired inequalities. The proof is completed. �

REMARK 4.8. The inequalities (1.27) for p = 11/15 and (4.34) for p = 2/e , as
well as the monotonicity of q �→Uq (t) with 11/15 < 2/e lead to

I0 (t) <

√
sinh t

t
U11/15 (t) <

√
sinht

t
U2/e (t) <

√
sinh t

t
exp
( t

tanht
−1
)

for t > 0, or equivalently, the inequalities

TQ(a,b) <
√

L(a,b)U11/15 (a,b) <
√

L(a,b)U2/e (a,b) <
√

L(a,b)I (a,b)

hold. This shows that our upper bound
√

LU11/15 for the Toader-Qi mean TQ is better

than
√

LI .



MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND 625

4.4. Comparing with the bounds given in (1.20)

REMARK 4.9. Our new upper bound
√

LU11/15 for TQ is not comparable with
than

√
LA2/3 . Let

Jp (t) =
3
2

lncosh

(
2t
3

)
− lnUp (t) .

We easily get

lim
t→0

J11/15 (t)
t4

=
13

12960
> 0,

lim
t→∞

J11/15 (t) = −3
2

ln2− ln
11
30

< 0.

These show that there are t1,t2 > 0 such that J11/15 (t)> 0 for t ∈ (0,t1) and J11/15 (t)<

0 for t ∈ (t2,∞) . Therefore,
√

LU11/15 is not comparable with than
√

LA2/3 .

5. Conclusions

In this paper, we obtained the best constants p and q such that the double inequal-
ity (1.28) holds for t > 0, or equivalently, (1.22) holds for a,b > 0 with a �= b . Via
comparisons, we found that the chain of inequalities

max

{[
sinh(3t/2)

3t/2

]2/3

,

√
sinht

t

(
2
π

cosht +1− 2
π

)}

<

√
sinh t

t
U2/π (t) < I0 (t) < min

{√
sinh t

t
U11/15 (t),

√
sinht

t
cosh3/2 2t

3

}

< min

{
3
4

sinht
t

+
1
4

cosh t,

√
sinht

t
exp
( t

tanh t
−1
)}

hold for t > 0. Or equivalently, the inequalities for means

max

{
L3/2,

√
L

(
2
π

A+
(

1− 2
π

)
G

)}
<
√

LU2/π < TQ

< min
{√

LU11/15,
√

LA2/3
}

< min

{
3
4
L+

1
4
A,
√

LI

} (5.36)

hold for a,b > 0 with a �= b . It thus can be seen that our new bounds for TQ(a,b) and
I0 (t) are better than those known ones. Moreover, taking into account (1.21) and (5.36)
we can derive a more refine chain of inequalities for means:

L < AGM < L3/4A1/3 < L3/2 <
√

LU2/π < TQ < min
{√

LU11/15,
√

LA3/2

}
< min

{
3
4
L+

1
4
A,
√

LI

}
<

L+ I
2

<
A+G

2
< T1/3 < I3/4,
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where the inequality
3
4
L+

1
4
A <

L+ I
2

holds due to (1.5).
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