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Abstract. The paper is concerned with H(Z) -eigenvalues of the solution of the Lyapunov ten-
sor equation. According to the Lyapunov algebraic theorem on tensors, bounds for H(Z) -
eigenvalues of the solution are given firstly, then based on the relationship between the Lya-
punov tensor equation and the continuous-time linear uncertain system, conditional inequalities
for the asymptotic stability of the system are shown by H(Z) -eigenvalues of the solution of the
Lyapunov tensor equation.

1. Introduction

In the paper, we consider the Lyapunov tensor equation

P ×1 A+P×2 A+ · · ·+P×2m A = −Q (1)

where both the matrix A ∈R
n×n and the 2mth-order tensor Q ∈ R

n×n×···×n are known,
the other 2mth-order tensor P ∈ R

n×n×···×n is unknown and the operator ×k (k =
1,2, . . . ,m) is the k -mode product [5]. Usually, equation (1) comes from finite differ-
ence or spectral method discretization of a linear partial differential equation in high
dimension, and estimates on the solution of the Lyapunov tensor equation can simplify
solving processes of these equations. Hence, similar to estimations on solutions of ma-
trix equations [3, 4, 7, 8], the paper discusses bounds for the solution of the Lyapunov
tensor equation firstly.

With the rapid development of tensors, the Lyapunov tensor equation has gradually
attracted attentions of scholars. In 2010, Li et al. [9] presented an algorithm for solv-
ing the third-order Lyapunov tensor equation when dealing with the three-dimensional
radiative transfer equation. In 2013, Wei et al. [14] considered the backward error and
disturbance bounds on the solution of the Lyapunov tensor equation. In 2016, Ali Beik
et al. [1] proposed a new tensor multiplication and solved the Lyapunov tensor equation
based on it by some known iterative methods. In 2019, Zheng et al. [10] discussed the
sensitivity of the solution of the Lyapunov tensor equation.

In particular, Zheng et al. [11] established the relationship between the Lyapunov
tensor equation and the linear system ẋ(t) = Ax(t) by the positive definite tensor [13],
and then showed the Lyapunov algebraic theorem on tensors as follows
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LEMMA 1. [11] Let A ∈ R
n×n be a matrix and Q ∈ R

n×n×···×n be a 2mth-order
positive definite tensor. Then A is stable if and only if the Lyapunov tensor equation

P ×1 A+P×2 A+ · · ·+P×2m A = −Q

has the unique solution P and P ∈ R
n×n×···×n is positive definite.

However, based on possible errors in the calculation process and uncertainties in
the real world, it is necessary to consider the asymptotic stability of the uncertain linear
system

ẋ(t) = (A+�A)x(t) (2)

where x(t) ∈ R
n is the system state vector, A ∈ R

n×n is known and �A ∈ R
n×n is

unknown. In 1994, Zelentsovsky [15] used the even-order homogeneous polynomial
Lyapunov function

V (x) =
n

∑
i1,i2,...,i2m=1

pi1i2···i2mxi1xi2 · · ·xi2m (3)

where x = (x1,x2, . . . ,xn) and coefficients pi1i2···i2m ∈ R , to obtain conditions for the
asymptotic stability of system (2), and then these results became the basis of following
numerous studies. Recently, according to the Lyapunov stability theorem and relevant
knowledge of tensors [6, 13], we rewrite V (x) and V̇ (x) as follows

V (x) = Px2m

V̇ (x) = (P ×1 (A+�A)T +P×2 (A+�A)T + · · ·+P×2m (A+�A)T)x2m

and find that basing on the Lyapunov tensor equation to consider the asymptotic stabil-
ity of system (2) can reduce the computation complexity compared with [15]. Hence,
the paper applies eigenvalues of the solution of the Lyapunov tensor equation to give
conditional inequalities for the asymptotic stability of system (2) secondly.

The outline of the paper is as follows. In Section 2, we introduce some preliminary
materials. In Section 3, we estimate the solution of the Lyapunov tensor equation and
give bounds for eigenvalues of the solution. In Section 4, we apply the eigenvalues of
the solution to show conditional inequalities for the asymptotic stability of system (2).

2. Preliminaries

In 2005, Qi [13] defined the eigenvalue of tensors and Lim [12] defined the eigen-
value and the singular value of tensors respectively. On this basis, the paper is con-
cerned with eigenvalues of the solution of the Lyapunov tensor equation (1).

DEFINITION 1. [13] Let A ∈ R
n×n×···×n be a 2m th-order symmetric tensor. If a

real number λ and a nonzero real vector x are solutions of the following homogeneous
equation:

A xm−1 = λx[m−1],

then called the solution x H-eigenvector and λ H-eigenvalue of A .
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DEFINITION 2. [13] Let A ∈ R
n×n×···×n be a 2m th-order symmetric tensor. If a

real number λ and a nonzero real vector x are solutions of the following homogeneous
equation: {

A xm−1 = λx

xTx = 1
,

then called the solution x Z-eigenvector and λ Z -eigenvalue of A .

DEFINITION 3. [2, 12] Let Q ∈ R
n1×n2×···×n2m and 1 < p1, . . . , p2m < ∞ , then

the l p1,...,p2m -singular value of Q is defined as the critical value of the function

f : (Rn1 \ {o})×·· ·× (Rn2m \ {o})→ R

given by

f (x1, . . . ,x2m) :=
|Q(x1, . . . ,x2m)|

‖x1‖p1 · · · · · ‖x2m‖p2m

3. Bounds for eigenvalues

Estimates on the solution of the Lyapunov tensor equation can simplify the solving
process of a linear partial differential equation in high dimension, so we discuss bounds
for eigenvalues of the solution of the Lyapunov tensor equation (1) in this section.

THEOREM 1. Let A ∈ R
n×n be a stable matrix and Q ∈ R

n×n×···×n be a 2mth-
order positive definite tensor. Then when λ H(Z)

max (I H(Z)×1 A+ · · ·+I H(Z)×2m A) < 0 ,
H(Z)-eigenvalues of the solution P of P ×1 A + P ×2 A + · · ·+ P ×2m A = −Q
satisfy

λ H(Z)
min (Q)

|λ H(Z)
min (I H(Z) ×1 A+ · · ·+I H(Z)×2m A)|

� λ H(Z)(P)

� λ H(Z)
max (Q)

|λ H(Z)
max (I H(Z)×1 A+ · · ·+I H(Z) ×2m A)|

where I H = I , I is a 2mth-order identity tensor, I Z = sym(Im
2 ) and

sym(Im
2 )i1,i2,...,i2m−1,i2m

=

{
1, i1 = i2, . . . , i2m−1 = i2m

0, others
.

Proof. (i) Choose a vector y ∈ R
n satisfying

Py2m−1 = λ H(P)y[2m−1]

then multiplying y2m on both sides of equation (1) yields

λ H(P)(I H ×1 A+I H ×2 A+ · · ·+I H ×2m A)y2m = −Qy2m
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for y[2m−1] = Iy2m−1 = I Hy2m−1 . Therefore, based on the positive definite tensor Q
and the stable matrix A ,

2mλ H
min(Q)

|λ H
min(I H ×1 A+ · · ·+I H ×2m A)|

� λ H(P) =
Qy2m

−(I H ×1 A+I H ×2 A+ · · ·+I H ×2m A)y2m

� 2mλ H
max(Q)

|λ H
max(I H ×1 A+ · · ·+I H ×2m A)|

valid when λ H
max(I H ×1 A+ · · ·+I H ×2m A) < 0.

(ii) Choose a vector y ∈ R
n satisfying{

Py2m−1 = λ Z(P)y

y2 = 1

then according to the property y = sym(Im
2 )y2m−1 = I Zy2m−1 ,

2mλ Z
min(Q)

|λ Z
min(I Z ×1 A+ · · ·+I Z ×2m A)|

� λ Z(P) =
Qy2m

−(I Z ×1 A+I Z ×2 A+ · · ·+I Z ×2m A)y2m

� 2mλ Z
max(Q)

|λ Z
max(I Z ×1 A+ · · ·+I Z ×2m A)|

valid when λ Z
max(I

Z ×1 A+ · · ·+I Z ×2m A) < 0. �
Particularly, based on Theorem 1, H(Z)-eigenvalues of the solution of equation (1)

with the symmetric coefficient matrix A possess better properties.

PROPOSITION 2. Let A∈R
n×n be a stable symmetric matrix and Q ∈R

n×n×···×n

be a 2mth-order positive definite tensor. Then when λ H(Z)
max (I H(Z)×1A+ · · ·+I H(Z)×2m

A) < 0 , the minimal and maximal H(Z)-eigenvalue of the solution P of

P ×1 A+P×2 A+ · · ·+P×2m A = −Q

satisfy

λ H(Z)
min (Q)

|λ H(Z)
min (I H(Z)×1 A+ · · ·+I H(Z)×2m A)|

� λ H(Z)
min (P) � λ H(Z)

max (Q)
2m|λmin(A)|

λ H(Z)
min (Q)

2m|λmax(A)| � λ H(Z)
max (P) � λ H(Z)

max (Q)

|λ H(Z)
max (I H(Z)×1 A+ · · ·+I H(Z)×2m A)|

where I H = I , I is a 2mth-order identity tensor and I Z = sym(Im
2 ) .



EIGENVALUES OF THE SOLUTION OF THE LYAPUNOV TENSOR EQUATION 653

Proof. Choose a vector y ∈ R
n satisfying Ay = λy , then multiplying y2m on both

sides of equation (1) yields
2mλPy2m = −Qy2m

(i) Considering ‖y‖2m implies

2m|λ |λ H
min(P) � 2m|λ |Py2m

‖y‖2m
2m

=
Qy2m

‖y‖2m
2m

� λ H
max(Q)

2m|λ |λ H
max(P) � 2m|λ |Py2m

‖y‖2m
2m

=
Qy2m

‖y‖2m
2m

� λ H
min(Q)

then

λ H
min(P) � λ H

max(Q)
2m|λmin|

with the choice of λ = λmin ,

λ H
max(P) � λ H

min(Q)
2m|λmax|

with the choice of λ = λmax . Therefore, based on Theorem 1,

λ H
min(Q)

|λ H
min(I

H ×1 A+ · · ·+I H ×2m A)| � λ H
min(P) � λ H

max(Q)
2m|λmin(A)|

λ H
min(Q)

2m|λmax(A)| � λ H
max(P) � λ H

max(Q)
|λ H

max(I H ×1 A+ · · ·+I H ×2m A)|
valid when

λ H
max(I

H ×1 A+ · · ·+I H ×2m A) < 0

(ii) Consider ‖y‖2 , then based on the choice of λ and Theorem 1,

λ Z
min(Q)

|λ Z
min(I

Z ×1 A+ · · ·+I Z ×2m A)| � λ Z
min(P) � λ Z

max(Q)
2m|λmin(A)|

λ Z
min(Q)

2m|λmax(A)| � λ Z
max(P) � λ Z

max(Q)
|λ Z

max(I Z ×1 A+ · · ·+I Z ×2m A)|
valid when

λ Z
max(I

Z ×1 A+ · · ·+I Z ×2m A) < 0. �

4. Conditional inequalities for the asymptotic stability

For system (2), choose the homogeneous polynomial function (3) as the Lyapunov
function, then according to the Lyapunov stability theorem, we try to use the Lyapunov
tensor equation to consider the asymptotic stability of system (2).
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THEOREM 3. Let A ∈ R
n×n be a stable matrix and Q ∈ R

n×n×···×n be a 2mth-
order positive definite tensor. If

‖�A‖2m <
λ H

min(Q)
2mσH

max(P)

then A+�A is stable, where P ∈ R
n×n×···×n is the solution of the Lyapunov tensor

equation
P ×1 AT +P ×2 AT + · · ·+P×2m AT = −Q (4)

Proof. Let A ∈ R
n×n be a stable matrix , then according to Lemma 1, there exist

positive definite tensors P and Q satisfying the Lyapunov tensor equation (4).
Consider system (2), we can choose the Lyapunov function

V (x) = Px2m

implying V (x) > 0 for ∀x ∈ R
n , then according to definitions in Section 2,

V̇ (x) = (P ×1�AT +P×2�AT + · · ·+P×2m�AT)x2m −2mQx2m

� (2m‖�AT‖2mσH
max(P)−λ H

min(Q))‖x‖2m
2m

for

(P ×1�AT +P×2�AT + · · ·+P×2m�AT)x2m

‖x‖2m
2m

�
(

sup
|P ×1�Ax×2 · · ·×2m x|

‖x‖2m−1
2m ‖�Ax‖2m

+ · · ·+ sup
|P ×1 x×2 · · ·×2m�Ax|

‖x‖2m−1
2m ‖�Ax‖2m

)
‖�Ax‖2m

‖x‖2m

� 2m‖�A‖2mσH
max(P)

and
Qx2m

‖x‖2m
2m

� infx∈Rn
|Qx2m|
‖x‖2m

2m

= λ H
min(Q)

Obviously, if

‖�A‖2m <
λ H

min(Q)
2mσH

max(P)

then V̇ (x) < 0 for ∀x ∈ R
n .

Therefore, according to the Lyapunov stability theory, system (2) is asymptotically
stable, i.e. A+�A is stable. �

Due to the uncertainty of the 2m th-order positive definite tensor Q in equation

(4), sometimes it is necessary to find a special Q making
λ H

min(Q)
2mσH

max(P) maximum.



EIGENVALUES OF THE SOLUTION OF THE LYAPUNOV TENSOR EQUATION 655

PROPOSITION 4. Let A ∈ R
n×n be a stable matrix and I ∈ R

n×n×···×n be a
2mth-order identity tensor. If

‖�A‖2m <
1

σH
max(P)

then A+�A is stable, where P ∈ R
n×n×···×n is the solution of equation

P ×1 AT +P×2 AT + · · ·+P ×2m AT = −2mI (5)

Proof. According I x2m

‖x‖2m
2m

= 1, the proof is obvious. �

LEMMA 2. [10] Let A∈R
n×n be a stable matrix and Q ∈R

n×n×···×n be a 2mth-
order positive definite tensor, then equation

P ×1 AT +P ×2 AT + · · ·+P×2m AT = −Q

has the unique solution

P =
∫ +∞

0
Q×1 eATt ×2 eATt ×·· ·×2m eATt dt

PROPOSITION 5. Let A ∈ R
n×n be a stable matrix, Q ∈ R

n×n×···×n be a 2mth-
order positive definite tensor and I ∈ R

n×n×···×n be a 2mth-order identity tensor.
Then

λ H
min(Q)

2mσH
max(P)

� 1

σH
max(P)

where P ∈ R
n×n×···×n is the solution of the Lyapunov tensor equation

P ×1 AT +P ×2 AT + · · ·+P×2m AT = −Q

P ∈ R
n×n×···×n is the solution of the Lyapunov tensor equation

P ×1 AT +P×2 AT + · · ·+P ×2m AT = −2mI

Proof. Consider the Lyapunov tensor equation (4)

P ×1 AT +P ×2 AT + · · ·+P×2m AT = −Q

and
P̂ ×1 AT +P̂ ×2 AT + · · ·+P̂×2m AT = −Q̂ (6)

i) Suppose Q̂ = ωQ(ω is a positive scalar) , the Lyapunov tensor equation (6) can be
changed into( 1

ω
P̂
)
×1 AT +

( 1
ω

P̂
)
×2 AT + · · ·+

( 1
ω

P̂
)
×2m AT = −Q̂

then according to Lemma 1 and definitions in Section 2,

λ H
min(Q̂)

2mσH
max(P̂)

=
λ H

min(ωQ)
2mσH

max(ωP)
=

λ H
min(Q)

2mσH
max(P)
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ii) Choose ω = 2m
λ H

min(Q)
, then λ H

min(Q̂) = 2m
λ H

min(Q)
· infx∈Rn

Qx2m

‖x‖2m
2m

= 2m .

If Q = 2mI , equation (4) is just equation (5), then according to Lemma 2,

P̂ −P =
∫ +∞

0
(Q̂−2mI )×1 eATt ×2 eATt ×·· ·×2m eATt dt

Obviously, P̂ −P is a positive definite tensor for

(Q̂−2mI )x2m

‖x‖2m
2m

� λ H
min(Q̂)−2m = 0

Therefore,

λ H
min(Q)

2mσH
max(P)

=
λ H

min(Q̂)
2mσH

max(P̂)
=

1

σH
max(P̂)

� 1

σH
max(P)

. �

Similar to H-eigenvalues and H-singular values, Z-eigenvalues and Z-singular
values of the solution of equation (4) can also be applied to discuss the asymptotic
stability of system (2).

THEOREM 6. Let A ∈ R
n×n be a stable matrix and Q ∈ R

n×n×···×n be a 2mth-
order positive definite tensor. If

‖�A‖2 <
λ Z

min(Q)
2mσZ

max(P)

then A+�A is stable, where P ∈ R
n×n×···×n is the solution of equation

P ×1 AT +P ×2 AT + · · ·+P×2m AT = −Q

PROPOSITION 7. Let A∈R
n×n be a stable matrix and I Z = sym(Im

2 ) be a 2mth-
order tensor. If

‖�A‖2 <
1

σZ
max(P)

then A+�A is stable, where P ∈ R
n×n×···×n is the solution of equation

P ×1 AT +P ×2 AT + · · ·+P ×2m AT = −2mI Z

PROPOSITION 8. Let A ∈ R
n×n be a stable matrix, Q ∈ R

n×n×···×n be a 2mth-
order positive definite tensor and I Z = sym(Im

2 ) be a 2mth-order tensor. Then

λ Z
min(Q)

2mσZ
max(P)

� 1

σZ
max(P)
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where P ∈ R
n×n×···×n is the solution of equation

P ×1 AT +P ×2 AT + · · ·+P×2m AT = −Q

P ∈ R
n×n×···×n is the solution of equation

P ×1 AT +P×2 AT + · · ·+P×2m AT = −2mI Z
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