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Abstract. In this paper, we study the boundedness of the weighted Hardy-Littlewood average
Hϕ and its commutator Hb

ϕ on mixed central Morrey spaces. More precisely, we first obtain the
sufficient and necessary condition for the boundedness of Hϕ on the mixed central Morrey space
Ṁp

�q (Rn) , and also obtain the sharp constant simultaneously. Then we give a characterization
for the boundedness of the commutator formed by Hϕ and a central bounded mean oscillation
function b on Ṁp

�q (Rn) .

1. Introduction

Let ϕ : [0,1]→ [0,∞) be a measurable function, and f be a complex-valued mea-
surable function on Rn . The weighted Hardy-Littlewood average Hϕ f is defined by

Hϕ f (x) :=
∫ 1

0
f (xt)ϕ(t)dt. (1.1)

The operator Hϕ on Lp(Rn) was first studied by Carton-Lebrun and Fosset [2] un-
der certain conditions on ϕ , and then extended by Xiao [30], in which the sufficient
and necessary condition on ϕ was obtained to guarantee the boundedness of Hϕ on
Lebesgue spaces. Moreover, the sharp constant was also obtained in [30].

The weighted Hardy-Littlewood average Hϕ is of great importance since it con-
tains many classical average operators as special cases. For example, when n = 1 and
ϕ(x) = 1, x ∈ [0,1] , Hϕ is just the classical Hardy operator H f (x) = 1

x

∫ x
0 f (t)dt . In

addition, the operator Hϕ is closely related to the Riemann-Liouville fractional integral
operator, see [10] for more details.

As is well known, commutators are also important operators and play a key role
in harmonic analysis. Recall that for a locally integrable function b and an integral
operator T , the commutator formed by b and T is defined by [b,T ] = bT −Tb .

In 2009, Fu et al. [11] first studied the commutators of weighted Hardy-Littlewood
averages, and gave the sufficient and necessary conditions for the boundedness of Hb

ϕ
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on Lebesgue spaces. The mapping property of Hϕ and Hb
ϕ on Morrey spaces was also

considered in [13].
Nowadays, there are amounts of papers concerned with weighted Hardy-Little-

wood averages and their commutators. Among them, the boundedness for Hϕ and
Hb

ϕ on different function spaces is one of the most active research areas in the study
of weighted Hardy-Littlewood averages. For example, the boundedness of weighted
Hardy-Littlewood averages and their commutators were considered on Morrey type
spaces [8, 10], variable spaces [5, 8] and other non-standard function spaces [7, 26].
For more about weighted Hardy-Littlewood averages and their commutators, we refer
readers to [4, 6, 9, 14, 15, 16, 17, 20, 27, 29].

The classical Morrey spaces are natural generalizations of Lebesgue spaces, which
were introduced by Morrey [21] to study the regularity of elliptic partial differential
equations. Till now, Morrey spaces have become one of the most important function
spaces in the theory of function spaces, see the book [25] for a complete theory of Mor-
rey type spaces. In 2019, Nogayama [23] introduced a new Morrey type space, which
is called mixed Morrey spaces. Mixed Morrey spaces are mixtures of mixed Lebesgue
spaces [1] and classical Morrey spaces. Some important operators in harmonic analysis,
such as Hardy-Littlewood maximal operator, fractional integral operator and their com-
mutators, were proved to be bounded on mixed Morrey spaces [22, 23, 24]. A natural
question is whether weighted Hardy-Littlewood averages and their commutators per-
form well in mixed central Morrey spaces, the central version of mixed Morrey spaces.
In this paper, we will give an affirmative answer. More precisely, we will investigate
the boundedness of Hϕ and Hb

ϕ on mixed central Morrey spaces.
The organization of the remainder of this article is as follows. The definitions and

some preliminaries are presented in Sect. 2. The necessary and sufficient condition for
the boundedness of Hϕ on mixed central Morrey spaces will be given in Sect. 3. The
corresponding sharp constant is also obtained in Sect. 3. The necessary and sufficient
condition on ϕ is presented in Sect. 4 to guarantee the boundedness for the commutator
of Hϕ .

2. Definitions and preliminaries

Throughout the paper, we use the following notations.
For any r > 0 and x ∈ Rn , let Q(x,r) = {y : |yi − xi| < r

2 , i = 1, · · · ,n} be the
cube in Rn centered at x with side length r . Let Q = {Q(x,r) : x ∈ Rn,r > 0} be
the set of all such cubes. Let Lloc(Rn) denote the locally integrable functions. The
letter C represents all the complex numbers. We also use χE and |E| to denote the
characteristic function and the Lebesgue measure of a measurable set E , respectively.
Let M (Rn) denote the class of all Lebesgue measurable functions.

The letter �p denotes n -tuples of the numbers in [0,∞] , (n � 1), �p = (p1, · · · , pn) .
By the definition, the inequality, for example, 0 < �p < ∞ means 0 < pi < ∞ for all
i . For 1 � �p � ∞ , we denote �p′ = (p′1, · · · , p′n) , where p′i satisfies 1

pi
+ 1

p′i
= 1. By

A � B , we mean that A � CB for some constant C > 0, and A ∼ B means that A � B
and B � A .
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To get a better understanding on mixed Morrey spaces, we first recall definitions
of mixed norm spaces [1, 3], and classical Morrey spaces [21].

For �p = (p1, · · · , pn) ∈ (0,∞]n , the mixed Lebesgue norm ‖ ·‖�p or ‖ ·‖(p1,···,pn) is
defined by

‖ f‖�p = ‖ f‖(p1,···,pn) :=

⎛
⎜⎝∫

R
· · ·
(∫

R

(∫
R
| f (x1,x2, · · · ,xn)|p1dx1

) p2
p1

dx2

) p3
p2

· · ·dxn

⎞
⎟⎠

1
pn

,

where f : Rn → C is a measurable function. If p j = ∞ for some j = 1, · · · ,n , then
we have to make appropriate modifications. We define the mixed Lebesgue space
L�p(Rn) = L(p1,···,pn)(Rn) to be the set of all f ∈ M (Rn) with ‖ f‖�p < ∞ .

The classical Morrey space Mp
q (Rn) is the set of all measurable functions f for

which

‖ f‖Mp
q (Rn) := sup

{
|Q| 1

p− 1
q

(∫
Q
| f (x)|qdx

) 1
q

,Q ∈ Q

}

is finite.
If one replaces the Lq(Rn) norm by the mixed Lebesgue norm L�q(Rn) in the

definition of classical Morrey spaces, then we get the mixed Morrey spaces Mp
�q (Rn)

introduced by Nagayama et al. [22,23,24]. Now we give the definition of mixed Morrey
spaces.

For �q = (q1, · · · ,qn) ∈ (0,∞]n and p ∈ (0,∞] satisfying

n

∑
j=1

1
q j

� n
p
,

the mixed Morrey quasi-norm ‖ · ‖Mp
�q (Rn) is defined by

‖ f‖Mp
�q (Rn) := sup

{
|Q|

1
p− 1

n

(
∑n

i=1
1
q j

)
‖ f χQ‖�q,Q ∈ Q

}
,

and the mixed Morrey space Mp
�q (Rn) is the set of all f ∈M (Rn) for which ‖ f‖Mp

�q (Rn)

is finite.
In this paper, we mainly consider mixed central Morrey spaces, which are defined

as follows.

DEFINITION 2.1. For �q = (q1, · · · ,qn) ∈ (0,∞]n and p ∈ (0,∞] satisfies

n

∑
j=1

1
q j

� n
p
,

the mixed central Morrey quasi-norm ‖ · ‖Ṁp
�q (Rn) is defined by

‖ f‖Ṁp
�q (Rn) := sup

r>0
|Q(0,r)|

1
p− 1

n

(
∑n

j=1
1
q j

)
‖ f χQ(0,r)‖�q,
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and the mixed central Morrey space Ṁp
�q (Rn) is the set of all f ∈ M (Rn) for which

‖ f‖Ṁp
�q (Rn) is finite.

In the study of the commutator of Hϕ on mixed central Morrey spaces, the symbol
function b under consideration can be in a more general function space, rather than
BMO(Rn) or central BMO(Rn) . We first recall the definition of BMO(Rn) and central
BMO(Rn) .

A function f ∈ Lloc(Rn) belongs to the bounded mean oscillation space BMO(Rn)
if

‖ f‖BMO(Rn) := sup
Q∈Q

1
|Q|

∫
Q
| f (x)− fQ|dx < ∞. (2.2)

For 1 � q < ∞ , a function f ∈ Lq
loc(R

n) is said to belong to the central bounded
mean oscillation space ˙CMO

q(Rn) if

‖ f‖ ˙CMOq(Rn) := sup
r>0

(
1

|Q(0,r)|
∫

Q(0,r)
| f (x)− fQ(0,r)|qdx

) 1
q

< ∞. (2.3)

The John-Nirenberg ineuqalitiy for BMO(Rn) spaces yields that for any 1 < q <
∞ and f ∈ BMO(Rn) , the BMO(Rn) norm of f is equivalent to

‖ f‖BMOq(Rn) := sup
Q∈Q

(
1
|Q|

∫
Q
| f (x)− fQ|qdx

) 1
q

.

However, this is not the case for ˙CMO
q(Rn) , since the John-Nirenberg ineuqalitiy does

not hold for central bounded mean oscillation spaces. In fact, the inclusion ˙CMO
q2(Rn)

⊆ ˙CMO
q1(Rn) holds for all 1 � q1 < q2 < ∞ by Hölder’s inequality, and the inclusion

is strict [12].
Recall that for any �q = (q1, · · · ,qn) ∈ [1,∞)n , a new John-Nirenberg inequality for

BMO(Rn) [19] showed that the BMO norm of all f ∈ BMO(Rn) is also equivalent to

‖ f‖BMO�q(Rn) := sup
Q∈Q

‖( f − fQ)χQ‖�q

‖χQ‖�q
. (2.4)

This fact inspires us to study the central version of the above norm, which is exactly the

mixed central bounded mean oscillation space ˙CMO
�q(Rn) introduced in [28].

DEFINITION 2.2. Let �q = (q1, · · · ,qn)∈ [1,∞)n . Then the mixed central bounded

mean oscillation space ˙CMO
�q(Rn) is defined by

‖ f‖ ˙CMO�q(Rn)
:= sup

r>0

‖( f − fQ(0,r))χQ(0,r)‖�q

‖χQ(0,r)‖�q
< ∞. (2.5)

Similarly, we have ˙CMO
�q(Rn) ⊆ ˙CMO

�r(Rn) if 1 ��r < �q < ∞ , and the mixed

central bounded mean oscillation space ˙CMO
�q(Rn) is a Banach space in the sense that
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two functions differ by a constant are regarded as a function in this space. Obviously,

BMO(Rn)⊆ ˙CMO�q(Rn) for all �q = (q1, · · · ,qn)∈ (1,∞)n , and ˙CMOq(Rn) is a special

case of ˙CMO
�q(Rn) .

For more properties of ˙CMO
�q(Rn) , �q = (q1, . . . ,qn) ∈ (1,∞)n , the reader is re-

ferred to [28].

3. Sharp constant for Hϕ on Ṁp
�q (Rn)

This section is devoted to investigating the boundedness of weighted Hardy-Lit-
tlewood averages on mixed central Morrey spaces. Moreover, we will also show that
the obtained upper bound is optimal.

THEOREM 3.1. Let 0 < p < ∞ , 1 <�q< ∞ and ∑n
j=1

1
q j

� n
p . Then Hϕ is bounded

on Ṁp
�q (Rn) if and only if

Cp =
∫ 1

0
t−

n
p ϕ(t)dt < ∞. (3.6)

Moreover, ‖Hϕ‖Ṁp
�q (Rn)→Ṁp

�q (Rn) = Cp .

Proof. For any cube Q(0,r) , r > 0, by Minkowski’s inequality and the dilation
property of mixed Lebesgue spaces, we have

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
q j

)
‖Hϕ f χQ(0,r)‖�q

�
∫ 1

0
ϕ(t)|Q(0,r)|

1
p− 1

n

(
∑n

j=1
1
q j

)
‖ f (t·)χQ(0,r)(·)‖�qdt

�
∫ 1

0
t−

n
p ϕ(t)|Q(0,tr)|

1
p− 1

n

(
∑n

j=1
1
q j

)
‖ f χQ(0,tr)‖�qdt

� ‖ f‖Ṁp
�q (Rn)

∫ 1

0
t−

n
p ϕ(t)dt.

Taking the supremum over all such cubes Q(0,r) with r > 0, we obtain the estimate

‖Hϕ f‖Ṁp
�q (Rn) � Cp‖ f‖Ṁp

�q (Rn). (3.7)

Next we will prove the constant Cp is sharp.

When ∑n
j=1

1
q j

> n
p , we choose f0(x1, · · · ,xn) = ∏n

j=1 |x j|−
1
p j , in which 0 < q j <

p j and ∑n
j=1

1
p j

= n
p . Note that such f0 must exist since ∑n

j=1
1
q j

> n
p .

It is proved in [23] that f0 ∈Mp
�q (Rn)⊆ Ṁp

�q (Rn) . By a direct computation, it yields

Hϕ f0(x1, · · · ,xn) = Cp · f0(x1, · · · ,xn). (3.8)
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As a consequence,
‖Hϕ f0‖Ṁp

�q (Rn) = Cp‖ f0‖Ṁp
�q (Rn).

When ∑n
j=1

1
q j

= n
p , then Ṁp

�q (Rn) is just the mixed Lebesgue space L�q(Rn) .

In this case we take f1(x1, · · · ,xn) = ∏n
j=1 |x j|−

1
q j

−ε
χ{|x j |>1} , for some sufficiently

small ε > 0.

By a routine calculation, we get ‖ f1‖�q = ∏n
j=1 2

1
q j (qiε)

− 1
q j .

Inserting f1 into Hϕ f , we get

Hϕ f1(x1, · · · ,xn) =
n

∏
j=1

|x j|−
1
q j

−ε
∫ 1

maxn
i=1

{
1
|xi|
} t

−∑n
i=1

1
qi
−nεϕ(t)dt.

Therefore, for sufficiently small ε > 0, we have

‖Hϕ f1‖�q �
∫ 1

ε
t
−∑n

i=1
1
qi
−nεϕ(t)dt ·

∥∥∥∥∥
n

∏
j=1

|x j|−
1
q j

−ε
χ{|x j |> 1

ε }

∥∥∥∥∥
�q

= εnε
n

∏
j=1

2
1
q j (q jε)

− 1
q j

∫ 1

ε
t
−∑n

i=1
1
qi
−nεϕ(t)dt

= εnε‖ f1‖�q

∫ 1

ε
t−∑n

i=1
1
qi
−nεϕ(t)dt.

Letting ε → 0+ , and using the fact limε→0+ εε = 1, we obtain

‖Hb
ϕ‖L�q(Rn)→L�q(Rn) �

∫ 1

0
t
−∑n

i=1
1
qi ϕ(t)dt = Cp.

Combining the above two cases, we complete the proof. �
Since the classical central Morrey spaces are particular cases of mixed central

Morrey spaces, Theorem 3.1 extends the results in [10, 13] to mixed central Morrey
spaces.

4. Boundedness of Hb
ϕ from Ṁp

�k
(Rn) to Ṁp

�s (Rn)

Now we study the condition on ϕ such that Hb
ϕ is bounded from Ṁp

�k
(Rn) to

Ṁp
�s (Rn) . Our result can be read as follows.

THEOREM 4.1. Let 0 < p < ∞ , �s = (s1, · · · ,sn) ,�k = (k1, · · · ,kn) , �q = (q1, · · · ,qn)
satistify 1 <�s <�k < ∞ , 1 <�q < ∞ and 1

si
= 1

ki
+ 1

qi
, i = 1, · · · ,n. Assume further that

∑n
j=1

1
k j

> n
p and ϕ is a non-negative integrable function on [0,1] . Then Hb

ϕ is bounded

form Ṁp
�k

(Rn) to Ṁp
�s (Rn) for all b ∈ ˙CMO

�q(Rn) if and ony if

C∗
p =

∫ 1

0
t−

n
p ϕ(t) log

2
t
dt < ∞.
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Proof. We first prove the “if” part.
For any cube Q(0,r) , r > 0, one has

‖Hb
ϕ f‖Ṁp

�s (Rn)

= sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∥∥∥Hb
ϕ f · χQ(0,r)

∥∥∥
�s

� sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∥∥∥∥
∫ 1

0
(b(·)−bQ(0,r)) f (t·)ϕ(t)dt · χQ(0,r)(·)

∥∥∥∥
�s

+sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∥∥∥∥
∫ 1

0
(bQ(0,r) −bQ(0,tr)) f (t·)ϕ(t)dt · χQ(0,r)(·)

∥∥∥∥
�s

+sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∥∥∥∥
∫ 1

0
(bQ(0,tr) −b(t·)) f (t·)ϕ(t)dt · χQ(0,r)(·)

∥∥∥∥
�s

:= I + II + III.

For the first term I, by Hölder’s inequality on mixed Lebesgue spaces [1], we get

I = sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

)∥∥∥∥
∫ 1

0
(b(·)−bQ(0,r)) f (t·)ϕ(t)dt · χQ(0,r)(·)

∥∥∥∥
�s

= sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

)∥∥∥Hb
ϕ f (·)(b(·)−bQ(0,r))χQ(0,r)(·)

∥∥∥
�s

� sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

)∥∥∥Hb
ϕ f (·)χQ(0,r)(·)

∥∥∥
�k
·∥∥(b(·)−bQ(0,r))χQ(0,r)(·)

∥∥
�q

� sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
k j

) ∥∥∥Hb
ϕ f (·)χQ(0,r)(·)

∥∥∥
�k
|Q(0,r)|−

1
n

(
∑n

i=1
1
q j

)

·∥∥(b(·)−bQ(0,r))χQ(0,r)(·)
∥∥

�q

�
∫ 1

0
t−

n
p ϕ(t)dt‖b‖ ˙CMO�q(Rn)

‖ f‖Ṁp
�k

(Rn),

where in the last inequality, we have used Theorem 3.1.
For the last term III, by using Minkowski’s inequalitiy and Hölder’s inequality, we

obtain

III = sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∥∥∥∥
∫ 1

0
(bQ(0,tr) −b(t·)) f (t·)ϕ(t)dt · χQ(0,r)(·)

∥∥∥∥
�s

� sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∫ 1

0
ϕ(t)

∥∥(bQ(0,tr) −b(t·)) f (t·)χQ(0,r)(·)
∥∥
�s
dt

� sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∫ 1

0
ϕ(t)

∥∥ f (t·)χQ(0,r)(·)
∥∥
�k

·∥∥(bQ(0,tr) −b(t·))χQ(0,r)(·)
∥∥
�q
dt
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� sup
r>0

∫ 1

0
t−

n
p ϕ(t)|Q(0,tr)|

1
p− 1

n

(
∑n

i=1
1
s j

)∥∥ f (·)χQ(0,tr)(·)
∥∥
�k

·∥∥(bQ(0,tr) −b(·))χQ(0,tr)(·)
∥∥
�q
dt

�
∫ 1

0
t−

n
p ϕ(t)dt‖b‖ ˙CMO�q(Rn)

‖ f‖Ṁp
�k

(Rn).

For the term II, using Minkowski’s inequality and Hölder’s inequality again, one
has

II = sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∥∥∥∥
∫ 1

0
(bQ(0,r)−bQ(0,tr)) f (t·)ϕ(t)dt · χQ(0,r)(·)

∥∥∥∥
�s

� sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
s j

) ∫ 1

0
ϕ(t)

∣∣bQ(0,r)−bQ(0,tr)
∣∣‖ f (t·)χQ(0,r)(·)‖�sdt

� sup
r>0

|Q(0,r)|
1
p− 1

n

(
∑n

j=1
1
k j

) ∫ 1

0
ϕ(t)

∣∣bQ(0,r) −bQ(0,tr)
∣∣‖ f (t·)χQ(0,r)(·)‖�kdt

� ‖ f‖Ṁp
�k

(Rn)

∫ 1

0
t−

n
p ϕ(t)

∣∣bQ(0,r)−bQ(0,tr)
∣∣dt

For any 0 < t < 1, there exists some l ∈ N\{0} , such that 2−l < t � 2−l+1 . By
changing the variables, and using Hölder’s inequality, we get

II � ‖ f‖Ṁp
�k

(Rn)

∫ 1

0
t−

n
p ϕ(t)

(
l

∑
i=1

∣∣∣bQ(0,2−ir)−bQ(0,2−i+1r)

∣∣∣+ ∣∣∣bQ(0,2−l r)−bQ(0,tr)

∣∣∣
)

dt.

For any i ∈ N , from the definition of ˙CMO
�q(Rn) , we have∣∣∣bQ(0,2−ir) −bQ(0,2−i+1r)

∣∣∣
=

1
|Q(0,2−ir)|

∣∣∣∣
∫

Q(0,2−ir)
b(x)−bQ(0,2−i+1r)dx

∣∣∣∣
� 1

|Q(0,2−i+1r)|
∫

Q(0,2−i+1r)

∣∣∣b(x)−bQ(0,2−i+1r)

∣∣∣dx

� 1

|Q(0,2−i+1r)|
1
n ∑n

j=1
1
q j

∥∥∥(b(·)−bQ(0,2−i+1r)

)
χQ(0,2−i+1r)(·)

∥∥∥
�q

� ‖b‖ ˙CMO�q(Rn)
.

Therefore, we have

II � ‖b‖ ˙CMO�q(Rn)
‖ f‖Ṁp

�k
(Rn)

∞

∑
l=1

∫ 2−l+1

2−l
t−

n
p ϕ(t)× (l +1)dt

� ‖b‖ ˙CMO�q(Rn)
‖ f‖Ṁp

�k
(Rn)

∞

∑
l=1

∫ 2−l+1

2−l
t−

n
p ϕ(t)× (log2l +1)dt
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� ‖b‖ ˙CMO�q(Rn)
‖ f‖Ṁp

�k
(Rn)

∞

∑
l=1

∫ 2−l+1

2−l
t−

n
p ϕ(t)× (log

1
t

+1)dt

� ‖b‖ ˙CMO�q(Rn)
‖ f‖Ṁp

�k
(Rn)

∫ 1

0
t−

n
p ϕ(t)×

(
log

1
t

+1
)
dt

� ‖b‖ ˙CMO�q(Rn)
‖ f‖Ṁp

�k
(Rn)

∫ 1

0
t−

n
p ϕ(t)× log

2
t
dt.

Combining all the estimates of I, II, III, it yields

‖Hb
ϕ f‖Ṁp

�s (Rn) � C∗
p‖b‖ ˙CMO�q(Rn)

‖ f‖Ṁp
�k

(Rn)

Next we show the “only if” part.

We take f0(x1, · · · ,xn) = ∏n
j=1 |x j|−

1
p j , in which 0 < k j < p j and ∑n

j=1
1
p j

= n
p as

in Theorem 3.1. Note that f0 ∈ Ṁp
�k

(Rn) has been proved in the proof of Theorem 3.1.

By using the same method, it is not hard to verify that f0 ∈ Ṁp
�s (Rn) since 1 <�s <�k <

∞ . Take b0(x) = log |x| , x ∈ Rn . Obviously, b0 is in BMO(Rn) , see [18]. From (2.4)

and (2.5), we have b0 ∈ ˙CMO
�q(Rn) .

From a routine computation, there holds

Hb0
ϕ f0(x1, · · · ,xn) =

n

∏
j=1

|x j|−
1
p j

∫ 1

0
t−

n
p ϕ(t) log

1
t
dt

= f0(x1, · · · ,xn)
∫ 1

0
t−

n
p ϕ(t) log

1
t
dt.

Using the boundedness of Hb0
ϕ form Ṁp

�k
(Rn) to Ṁp

�s (Rn) , and the fact f0 ∈ Ṁp
�s (Rn) ,

we obtain ‖ f0‖Ṁp
�s (Rn)

‖ f0‖Ṁp
�k

(Rn)
×
∫ 1

0
t−

n
p ϕ(t) log

1
t
dt < ∞.

That is to say, ∫ 1

0
t−

n
p ϕ(t) log

1
t
dt < ∞. (4.9)

From (4.9), we can also get

∫ 1
2

0
t−

n
p ϕ(t)dt �

∫ 1
2

0
t−

n
p ϕ(t) log

1
t
dt < ∞. (4.10)

On the other hand, since ϕ is integrable on [ 1
2 ,1] and p > 0, we know that

∫ 1

1
2

t−
n
p ϕ(t)dt < ∞. (4.11)

In view of (4.10) and (4.11), we obtain∫ 1

0
t−

n
p ϕ(t)dt < ∞. (4.12)
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Combining (4.9) and (4.12),we get the desired result C∗
p < ∞ .

Therefore we complete the proof. �
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