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LIMITING BEHAVIORS OF LINEAR PROCESSES WITH RANDOM

COEFFICIENTS BASED ON m–ANA RANDOM VARIABLES

RUI WANG AND AITING SHEN ∗

(Communicated by Z. S. Szewczak)

Abstract. In this paper, the complete convergence and complete moment convergence of lin-
ear processes with random coefficients based on m -ANA random variables are investigated.
The results improve and generalise some former results in the literature. As corollaries, the
Marcinkiewicz-Zygmund type and the Kolmogorov type strong law of large numbers are also
established for linear processes of m -ANA random variables with random coefficients.

1. Introduction

Suppose that {εn,n ∈ Z} is a sequence of identically distributed random variables
and {an,n ∈ Z} is a sequence of absolutely summable real numbers. A linear process
(or moving average process of infinite order) is defined as

Yt =
∞

∑
j=−∞

a jεt− j.

Linear process is one of the most essential topics in various applications such as elec-
tronic, financial mathematics and time series. Under the assumption that {εn,n ∈ Z} is
a sequence of independent and identically distributed random variables, many limiting
results have been established for the linear process {Yt ,t � 1} . For example, Ibragi-
mov (1962) established the central limit theorem, Burton and Dehling (1990) obtained
the results on large deviation principle, Li et al. (1992) obtained the complete conver-
gence, and so on. It is obvious that even if {εn,n∈Z} is an independent and identically
distributed sequence, the linear process {Yt ,t � 1} is still dependent, which is usually
called weakly dependent. Under different dependence assumptions on {εn,n ∈ Z} ,
Zhang (1996) obtained the complete convergence result based on ϕ -mixing random
variables; Baek et al. (2003) as well as Liang et al. (2003) obtained the complete
convergence results when the linear process consists of negatively associated random
variables; Budsaba et al. (2007a, 2007b) investigated the complete convergence and
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strong law of large numbers based on a sequence of ρ− mixing random variables;
Chen et al. (2007) improved the result of complete convergence in Baek et al. (2003);
Chen et al. (2009) obtained the complete convergence for linear processes based on
ϕ -mixing random variables, and so on.

The concept of complete convergence was introduced by Hsu and Robbins (1947)
as follows: a sequence of random variables {Xn,n � 1} is said to converge completely
to a constant C (write Xn →C completely) if

∞

∑
n=1

P(|Xn−C|> ε) < ∞

for all ε > 0. Thanks to the Borel-Cantelli lemma, this implies that Xn → C almost
surely (a.s.). The converse is true if the {Xn,n � 1} are independent.

The concept of complete moment convergence was first appeared in Chow (1988)
as follows. Let {Xn,n � 1} be a sequence of random variables and an > 0, bn > 0,
q > 0. If for any ε > 0,

∞

∑
n=1

anE{b−1
n |Xn|− ε}q

+ < ∞,

then {Xn,n � 1} is said to exhibit complete moment convergence. It is well known
that the complete moment convergence is stronger than complete convergence. For
the linear processes, there are also some results investigating the complete moment
convergence, such as Kim and Ko (2008), Ko et al. (2008), Zhou (2010), and so on.

Recently, there are many scholars paying attention to the study of the properties
of linear processes with random coefficients. For example, Kulik (2006) obtained the
limit theorem for moving averages with random coefficients and heavy tailed noise;
Saavedra et al. (2008) established the estimation of population spectrum for linear pro-
cesses with random coefficients; Hosseini and Nezakati (2019) established the com-
plete moment convergence for extended negatively dependent linear processes with
random coefficients; Hosseini and Nezakati (2020) obtained the convergence rate of
the Marcinkiewicz-Zygmund strong law of large numbers for extended negatively de-
pendent linear processes with random coefficients; Lu and Wang (2022) extended the
result of Hosseini and Nezakati (2019) to widely orthant dependent settings.

Now let us recall the concept of linear process with random coefficients as follows.

DEFINITION 1.1. Let {εn,n ∈ Z} and {An,n ∈ Z} be two sequences of random
variables and

Xt =
∞

∑
j=−∞

Ajεt− j,

then {Xt , t � 1} is a linear process with random coefficients.
This paper aims to study the limit properties of linear processes with random co-

efficients based on m-asymptotically negatively associated random variables. Now let
us recall some concepts of dependent random variables as follows.
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DEFINITION 1.2. A finite family of random variables X1, · · · ,Xn is said to be
negatively associated (NA) if for every pair of disjoint subsets A and B of {1,2, · · ·,n}
and any real coordinatewise nondecreasing functions f1 on R

A and f2 on R
B ,

Cov( f1(Xi, i ∈ A), f2(Xj, j ∈ B)) � 0,

whenever the covariance above exists. An infinite family of random variables is NA if
every finite subfamily is NA.

Joag-Dev and Proschan (1983) proposed the above concept of NA random vari-
ables and pointed out that a number of well known multivariate distributions all possess
the NA property.

DEFINITION 1.3. A sequence {Xn,n � 1} of random variables is called ρ∗ -
mixing if

ρ∗(n) = sup{ρ(S,T);S,T ⊂ N,dist(S,T ) � n}→ 0

as n → ∞ , where

ρ(S,T ) = sup

{
|Cov(X ,Y )|√
Var(X)Var(Y )

: X ∈ L2(σ(Xi, i ∈ S)),Y ∈ L2(σ(Xj, j ∈ T ))

}
.

The concept of ρ∗ -mixing random variables was introduced by Bradley (1992).
Some examples therein show that moving average processes, Markov chains with reg-
ular conditions, and so on are all ρ∗ -mixing.

Zhang and Wang (1999) introduced the following concept of asymptotic nega-
tively associated (ANA) or ρ− -mixing random variables, which includes NA random
variables and ρ∗ -mixing random variables as special cases.

DEFINITION 1.4. A sequence {Xn,n � 1} of random variables is called ANA if

ρ−(n) = sup{ρ−(S,T ) : S,T ⊂ N,dist(S,T ) � n}→ 0

as n → ∞ , where

ρ−(S,T ) = 0∨
{

Cov( f1(Xi, i ∈ S), f2(Xj, j ∈ T ))√
Var( f1(Xi, i ∈ S))Var( f2(Xj, j ∈ T ))

: f1, f2 ∈ C

}

and C is the set of nondecreasing functions.
Wu et al. (2021) extended the concept of ANA random variables to m-ANA ran-

dom variables, which is presented as follows.

DEFINITION 1.5. Let m � 1 be a fixed integer. A sequence {Xn,n � 1} of ran-
dom variables is said to be m-asymptotic negatively associated (m-ANA) if for any
n � 2, and any i1, i2, · · · , in such that |ik − i j| � m for all 1 � k �= j � n , we have that
Xi1 ,Xi2 , · · · ,Xin are ANA.

Wu et al. (2021) stated that m-ANA degenerates to ANA if m = 1. In conclusion,
the concept of m-ANA random variables is very general and maybe much more rea-
sonable in realistic applications. Hence, the study of the limiting behavior of m-ANA
random variables is of great interest. This paper will be concerned with this topic.
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In this study, we mainly investigate the complete convergence and complete mo-
ment convergence of linear processes with random coefficients based on m-ANA ran-
dom variables. The results improve and generalise some former results in the literature.
As corollaries, the Marcinkiewicz-Zygmund type and the Kolmogorov type strong law
of large numbers are also established for linear processes of m-ANA random variables
with random coefficients.

The paper is organized as follows: main results of the paper are presented in Sec-
tion 2, including the complete convergence, complete moment convergence, Marcin-
kiewicz-Zygmund type and the Kolmogorov type strong law of large numbers. Some
basic properties and important lemmas are provided in Section 3. In Section 4, we give
the proofs of the main results.

Throughout the paper, let C be a positive constant not depending on n , which may
be different in various places. Let a+ = max{a,0} and Z = {· · · ,−2,−1,0,1,2, · · ·} .
Denote logx = lnmax(x,e) .

2. Main results

Now we give our main results as follows.

THEOREM 2.1. Suppose r � 1 , 1 � p < 2 , rp �= 1 , and Xt = ∑∞
j=−∞ Ajεt− j is

a linear process with random coefficients, where {εn,n ∈ Z} is a sequence of zero
mean m-ANA random variables stochastically dominated by a random variable ε with
E|ε|rp < ∞ , and {An,n∈Z} is a sequence of random variables independent of {εn,n∈
Z} with

E

(
∞

∑
j=−∞

|Aj|
)q

< ∞ (2.1)

for some q > max{rp,2p(r−1)/(2− p)} . Then for any ε > 0 ,

∞

∑
n=1

nr−2P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> εn1/p

)
< ∞. (2.2)

REMARK 2.1. Chen et al. (2008) obtained the corresponding result for linear pro-
cess with summable non-random coefficients based on NA random variables. Noting
that if {εn,n∈ Z} is NA and Aj = a j for each j ∈ Z , then (2.1) holds trivially and thus
Theorem 2.1 reduces to the result of Chen et al. (2008). Hence, Theorem 2.1 improves
and extends the corresponding result of Chen et al. (2008) from linear process with
non-randomcoefficients based on NA random variables to random coefficients based on
m-ANA random variables. Hosseini and Nezakati (2020) also established the complete
convergence for linear process with random coefficients based on extended negatively
dependent random variables. However, the conditions r > 1, 1 � p < 2, 1 < rp < 2
are required, which result in that the conclusion n−1/p ∑n

t=1 Xt → 0 completely could
not be obtained. Hence, Theorem 2.1 also improves and extends the corresponding one
of Hosseini and Nezakati (2020).
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By Theorem 2.1, we can obtain the following Marcinkiewicz-Zygmund type strong
law of large numbers for linear processes of m-ANA random variables with random co-
efficients.

COROLLARY 2.1. Suppose 1 < p < 2 and Xt = ∑∞
j=−∞ Ajεt− j is a linear process

with random coefficients, where {εn,n ∈ Z} is a sequence of zero mean m-ANA ran-
dom variables stochastically dominated by a random variable ε with E|ε|p < ∞ , and
{An,n ∈ Z} is a sequence of random variables independent of {εn,n ∈ Z} such that
(2.1) holds for some q > p. Then

n−1/p
n

∑
t=1

Xt → 0 a.s.

For the meaningful case r = p = 1, we also obtain the following result.

THEOREM 2.2. Let Xt = ∑∞
j=−∞ Ajεt− j be a linear process with random coeffi-

cients, where {εn,n∈Z} is a sequence of zero mean m-ANA random variables stochas-
tically dominated by a random variable ε with E|ε| log(1+ |ε|) < ∞ , and {An,n ∈ Z}
is a sequence of random variables independent of {εn,n ∈ Z} such that (2.1) holds for
some q > 1 . Then for any ε > 0 ,

∞

∑
n=1

n−1P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> εn

)
< ∞. (2.3)

REMARK 2.2. Chen et al. (2009) investigated the case r = p = 1 for linear pro-
cess with non-random coefficients satisfying ∑∞

j=−∞ |a j|ϑ < ∞ for some 0 < ϑ < 1
based on ϕ -mixing random variables. However, our conditions are different when
dealing with the case of random coefficients. In specific, in Theorem 2.2, the moment
condition E|ε| log(1 + |ε|) < ∞ is a little stronger but condition (2.1) is weaker than
that in Chen et al. (2009).

By Theorem 2.2, we can obtain the following Kolmogorov type strong law of large
numbers for linear processes of m-ANA random variables with random coefficients.

COROLLARY 2.2. Under the conditions of Theorem 2.2, we have

n−1
k

∑
t=1

Xt → 0 a.s.

The following result considers the complete moment convergence for linear pro-
cesses of m-ANA random variables with random coefficients.

THEOREM 2.3. Suppose θ � 1 , r � 1 , 1 � p < 2 , and Xt = ∑∞
j=−∞ Ajεt− j is

a linear process with random coefficients, where {εn,n ∈ Z} is a sequence of zero
mean m-ANA random variables stochastically dominated by a random variable ε , and
{An,n ∈ Z} is a sequence of random variables independent of {εn,n ∈ Z} such that
(2.1) holds for some q > max{rp,2p(r−1)/(2− p),θ} . If⎧⎪⎨

⎪⎩
E|ε|rp < ∞, for θ < rp,

E|ε|rp log(1+ |ε|) < ∞, for θ = rp,

E|ε|θ < ∞, for θ > rp,

(2.4)
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then for any ε > 0 ,

∞

∑
n=1

nr−2−θ/pE

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣− εn1/p

)θ

+

< ∞. (2.5)

REMARK 2.3. Let {εn,n ∈ Z} be NA and {An,n ∈ Z} be non-random, Theo-
rem 2.3 degenerates to the corresponding result of Chen et al. (2008). However, the
method used here is quite different from that of Chen et al. (2008). Hosseini and Neza-
kati (2019) and Lu and Wang (2020) obtained the complete moment convergence un-
der extended negatively dependent and widely orthant dependent settings, respectively.
However, only θ = 1 were considered in their results.

REMARK 2.4. At the end of this section, we will show that (2.5) implies (2.2) and
(2.3). To be specific, if rp > 1, for any θ < rp , E|ε|rp < ∞ implies from the Markov’s
inequality that

∞

∑
n=1

nr−2P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> εn1/p

)

=
∞

∑
n=1

nr−2P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣− εn1/p/2 > εn1/p/2

)

=
∞

∑
n=1

nr−2P

((
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣− εn1/p/2

)
+

> εn1/p/2

)

� C
∞

∑
n=1

nr−2−θ/pE

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣− εn1/p

)θ

+

< ∞,

which verifies (2.2). If r = p = 1, then taking θ = 1, (2.3) follows from (2.5) and by
similar argument as above under the moment condition E|ε| log(1+ |ε|) < ∞ .

3. Preliminary lemmas

In this section, we will provide some important lemmas, which are important to
prove the main results of the paper. The following two lemmas can be seen in Wu et al.
(2021).

LEMMA 3.1. Increasing functions defined on disjoint subsets of an m-ANA se-
quence {Xn,n � 1} with mixing coefficients ρ−(s) are also m-ANA with mixing coef-
ficients not greater than ρ−(s) .

The following lemma is about the Rosenthal-typemaximum inequality and Marcin-
kiewicz-Zygmund type maximum inequality for m-ANA random variables.
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LEMMA 3.2. Suppose that {Xn,n � 1} is a sequence of m-ANA random variables
with EXn = 0 , E|Xn|p < ∞ for some p > 1 . Then there exists a positive constant C
depending only on m, p, and ρ−(·) such that for all n � 1 ,

E

(
max

1� j�n

∣∣∣∣∣
j

∑
i=1

Xi

∣∣∣∣∣
)p

� C
n

∑
i=1

E|Xi|p, for 1 < p < 2 (3.1)

and

E

(
max

1� j�n

∣∣∣∣∣
j

∑
i=1

Xi

∣∣∣∣∣
)p

� C

⎧⎨
⎩

n

∑
i=1

E|Xi|p +

(
n

∑
i=1

EX2
i

)p/2
⎫⎬
⎭ , for p � 2. (3.2)

By Lemma 3.2, we can obtain the following inequalities, which are essential in
proving the main results.

LEMMA 3.3. Let p � 1 , and {εn,n ∈ Z} be a sequence of m-ANA random vari-
ables with zero mean and E|εn|p < ∞ for each n. If {An,n ∈ Z} is a sequence of
random variables independent of {εn,n ∈ Z} with E(∑∞

j=−∞ |Aj|)p < ∞ , then

E max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A jεi

∣∣∣∣∣
p

� C sup
j∈Z

n− j

∑
i=1− j

E|εi|p, if 1 � p < 2 (3.3)

and

E max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A jεi

∣∣∣∣∣
p

� C sup
j∈Z

⎧⎨
⎩

n− j

∑
i=1− j

E|εi|p +

(
n− j

∑
i=1− j

Eε2
i

)p/2
⎫⎬
⎭ , if p � 2. (3.4)

Proof. We only give the proof of (3.4) since (3.3) is analogous. It follows from
the Hölder’s inequality and (3.2) that

E max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A jεi

∣∣∣∣∣
p

= E max
1�k�n

∣∣∣∣∣
∞

∑
j=−∞

Aj

k− j

∑
i=1− j

εi

∣∣∣∣∣
p

� E

(
∞

∑
j=−∞

|Aj| max
1�k�n

∣∣∣∣∣
k− j

∑
i=1− j

εi

∣∣∣∣∣
)p

= E

(
∞

∑
j=−∞

|Aj|1−1/p · |Aj|1/p max
1�k�n

∣∣∣∣∣
k− j

∑
i=1− j

εi

∣∣∣∣∣
)p

� E

⎡
⎣( ∞

∑
j=−∞

|Aj|
)1−1/p( ∞

∑
j=−∞

|Aj| max
1�k�n

∣∣∣∣∣
k− j

∑
i=1− j

εi

∣∣∣∣∣
p)1/p

⎤
⎦

p

=
∞

∑
s=1

E

⎡
⎣( ∞

∑
j=−∞

|Aj|
)p−1( ∞

∑
j=−∞

|Aj| max
1�k�n

∣∣∣∣∣
k− j

∑
i=1− j

εi

∣∣∣∣∣
p)

I

(
s−1 �

∞

∑
j=−∞

|Aj| < s

)⎤⎦
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�
∞

∑
s=1

∞

∑
j=−∞

sp−1E|Aj|I
(

s−1 �
∞

∑
j=−∞

|Aj| < s

)
E max

1�k�n

∣∣∣∣∣
k− j

∑
i=1− j

εi

∣∣∣∣∣
p

�
∞

∑
s=1

∞

∑
j=−∞

sp−1E|Aj|I
(

s−1 �
∞

∑
j=−∞

|Aj| < s

)⎧⎨
⎩

n− j

∑
i=1− j

E|εi|p +

(
n− j

∑
i=1− j

Eε2
i

)p/2
⎫⎬
⎭

� C sup
j∈Z

⎧⎨
⎩

n− j

∑
i=1− j

E|εi|p +

(
n− j

∑
i=1− j

Eε2
i

)p/2
⎫⎬
⎭

×
[
1+2p−1

∞

∑
s=2

E

(
∞

∑
j=−∞

|Aj|
)p

I

(
s−1 �

∞

∑
j=−∞

|Aj| < s

)]

� C sup
j∈Z

⎧⎨
⎩

n− j

∑
i=1− j

E|εi|p +

(
n− j

∑
i=1− j

Eε2
i

)p/2
⎫⎬
⎭ .

This completes the proof of the lemma. �

The next lemma provides the basic properties of stochastic domination. The first
inequality can be found in Adler and Rosalsky (1987) while the second one is due to
Adler et al. (1989).

LEMMA 3.4. Let {εn,n � 1} be a sequence of random variables stochastically
dominated by a random variable ε , that is, supn�1 P(|εn| > t) � CP(|ε| > t) for all
t � 0 . Then, for all n � 1 , a > 0 and b > 0 , the following inequalities hold:

E|εn|aI(|εn| � b) � C{E|ε|aI(|ε| � b)+baP(|ε| > b)},

E|εn|aI(|εn| > b) � CE|ε|aI(|ε| > b).

The last one is a general moment inequality, which was obtained by Wu et al.
(2017).

LEMMA 3.5. Let {Yn,n � 1} and {Zn,n � 1} be two sequences of random vari-
ables. Then for any q > r > 0 , ε > 0 , and a > 0 , the following inequality holds:

E

(
max

1�k�n

∣∣∣∣∣
k

∑
i=1

(Yi +Zi)

∣∣∣∣∣− εa

)r

+

� Cr

(
ε−q +

r
q− r

)
ar−qE

(
max

1�k�n

∣∣∣∣∣
k

∑
i=1

Yi

∣∣∣∣∣
q)

+CrE

(
max

1�k�n

∣∣∣∣∣
k

∑
i=1

Zi

∣∣∣∣∣
r)

,

where Cr = 1 if 0 < r � 1 or Cr = 2r−1 if r > 1 .
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4. Proofs of the main results

Proof of Theorem 2.1. Since Eεi = 0, we can decompose εi for all i ∈ Z and for
each n � 1 by

εi = εni(1)−Eεni(1)+ εni(2)−Eεni(2),

where

εni(1) = εiI(|εi| � n1/p)+n1/pI(εi > n1/p)−n1/pI(εi < −n1/p),

εni(2) = εi − εni(1) = (εi −n1/p)I(εi > n1/p)+ (εi +n1/p)I(εi < −n1/p).

By Lemma 3.1, {εni(1)−Eεni(1), i ∈ Z} and {εni(2)−Eεni(2), i ∈ Z} are both m-
ANA random variables with mean zero. Further, it is easy to see that

|εni(1)| = |εi|I(|εi| � n1/p)+n1/pI(|εi| > n1/p), (4.1)

and

|εni(2)| = (|εi|−n1/p)I(|εi| > n1/p). (4.2)

Therefore, for each 1 � k � n , n � 1, we have

k

∑
t=1

Xt =
k

∑
t=1

∞

∑
j=−∞

Ajεt− j =
∞

∑
i=−∞

k−i

∑
j=1−i

A jεi =
2

∑
l=1

∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(l)−Eεni(l)).

Hence,

∞

∑
n=1

nr−2P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> εn1/p

)

�
∞

∑
n=1

nr−2P

(
max

1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(1)−Eεni(1))

∣∣∣∣∣> εn1/p/2

)

+
∞

∑
n=1

nr−2P

(
max

1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(2)−Eεni(2))

∣∣∣∣∣> εn1/p/2

)

=: I1 + I2.

Firstly, we will prove I1 < ∞ . By (2.1) and Jensen’s inequality, we have E
(
∑∞

j=−∞ |Aj|
)s

< ∞ for any 0 < s < q . Thus, if rp < 2, we may also assume that rp < q � 2 without
losing generality. With respect to the Markov’s inequality, (3.3), Lemma 3.4 and (4.1),
we have that if rp < 2,

I1 � C
∞

∑
n=1

nr−2−q/pE max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(1)−Eεni(1))

∣∣∣∣∣
q

� C
∞

∑
n=1

nr−2−q/p sup
j∈Z

n− j

∑
i=1− j

E|εni(1)|q

� C
∞

∑
n=1

nr−2−q/p sup
j∈Z

n− j

∑
i=1− j

{
E|εi|qI(|εi| � n1/p)+nq/pP(|εi| > n1/p)

}
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� C
∞

∑
n=1

nr−1−q/p
{

E|ε|qI(|ε| � n1/p)+nq/pP(|ε| > n1/p)
}

= C
∞

∑
n=1

nr−1−q/p
n

∑
j=1

E|ε|qI( j−1 < |ε|p � j)+C
∞

∑
n=1

nr−1P(|ε| > n1/p)

� C
∞

∑
j=1

jr−q/pE|ε|qI( j−1 < |ε|p � j)+CE|ε|rp

� CE|ε|rp < ∞;

and if rp � 2, we have by the Markov’s inequality, (3.4), (4.1), Lemma 3.4, q > 2p(r−
1)/(2− p) and similar argument as the case rp < 2 that

I1 � C
∞

∑
n=1

nr−2−q/p sup
j∈Z

⎧⎨
⎩

n− j

∑
i=1− j

E|εni(1)|q +

(
n− j

∑
i=1− j

E|εni(1)|2
)q/2

⎫⎬
⎭

� CE|ε|rp +C
∞

∑
n=1

nr−2−q/p sup
j∈Z

{
n− j

∑
i=1− j

[
Eε2

i I(|εi| � n1/p)+n2/pP(|εi| > n1/p)
]}q/2

� C
∞

∑
n=1

nr−2−q/p+q/2
{

Eε2I(|ε| � n1/p)+n2/pP(|ε| > n1/p)
}q/2

� C
∞

∑
n=1

nr−2−q/p+q/2(Eε2)q/2 < ∞.

Now we prove I2 < ∞ . Using the Markov’s inequality, (3.3), Lemma 3.4 and (4.2), and
noting that E

(
∑∞

j=−∞ |Aj|
)

< ∞ , we obtain

I2 � C
∞

∑
n=1

nr−2−1/pE max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(2)−Eεni(2))

∣∣∣∣∣
� C

∞

∑
n=1

nr−2−1/p sup
j∈Z

n− j

∑
i=1− j

E|εni(2)|

� C
∞

∑
n=1

nr−1−1/pE|ε|I(|ε| > n1/p)

= C
∞

∑
n=1

nr−1−1/p
∞

∑
j=n

E|ε|I( j < |ε|p � j +1)

= C
∞

∑
j=1

E|ε|I( j < |ε|p � j +1)
j

∑
n=1

nr−1−1/p

� C
∞

∑
j=1

jr−1/pE|ε|I( j < |ε|p � j +1)

� CE|ε|rp < ∞.

This completes the proof of the theorem. �
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Proof of Corollary 2.1. Let r = 1 in Theorem 2.1. It follows from (2.2) that

∞ >
∞

∑
n=1

n−1P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> εn1/p

)

=
∞

∑
s=0

∑
2s�n<2s+1

n−1P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> εn1/p

)

� 1
2

∞

∑
s=0

P

(
max

1�k�2s

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> ε(2s+1)1/p

)
,

which together with the Borel-Cantelli lemma implies that as s → ∞ ,

1

(2s+1)1/p
max

1�k�2s

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣→ 0 a.s.

On the other hand, for any fixed n , there always exists a nonegative integer s such that
2s � n < 2s+1 . Hence, it follows that as n → ∞ ,

n−1/p

∣∣∣∣∣
n

∑
t=1

Xt

∣∣∣∣∣� 1

(2s)1/p
max

1�k�2s+1

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣→ 0 a.s.

This completes the proof. �

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1. Denote for all
i ∈ Z and for each n � 1 that

εni(3) = εiI(|εi| � n)+nI(εi > n)−nI(εi < −n),
εni(4) = εi − εni(3) = (εi −n)I(εi > n)+ (εi +n)I(εi < −n).

By Lemma 3.1 again, {εni(3)−Eεni(3), i ∈ Z} and {εni(4)−Eεni(4), i ∈ Z} are also
m-ANA random variables with mean zero. Hence, we can obtain that

∞

∑
n=1

n−1P

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣> εn

)

�
∞

∑
n=1

n−1P

(
max

1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(3)−Eεni(3))

∣∣∣∣∣> εn/2

)

+
∞

∑
n=1

n−1P

(
max

1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(4)−Eεni(4))

∣∣∣∣∣> εn/2

)

=: I3 + I4.
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We may also assume without loss of generality that 1 < q � 2. Using the Markov’s
inequality, (3.3), and Lemma 3.4, we have that

I3 � C
∞

∑
n=1

n−1−qE max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(3)−Eεni(3))

∣∣∣∣∣
q

� C
∞

∑
n=1

n−1−q sup
j∈Z

n− j

∑
i=1− j

E|εni(3)|q

� C
∞

∑
n=1

n−1−q sup
j∈Z

n− j

∑
i=1− j

{E|εi|qI(|εi| � n)+nqP(|εi| > n)}

� C
∞

∑
n=1

n−q {E|ε|qI(|ε| � n)+nqP(|ε| > n)}

= C
∞

∑
n=1

n−q
n

∑
j=1

E|ε|qI( j−1 < |ε| � j)+C
∞

∑
n=1

P(|ε| > n)

� C
∞

∑
j=1

j1−qE|ε|qI( j−1 < |ε| � j)+CE|ε|

� CE|ε| < ∞.

Now we prove I4 < ∞ . By the Markov’s inequality, (3.3), and Lemma 3.4, we obtain

I4 � C
∞

∑
n=1

n−2E max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(4)−Eεni(4))

∣∣∣∣∣
� C

∞

∑
n=1

n−2 sup
j∈Z

n− j

∑
i=1− j

E|εni(4)|

� C
∞

∑
n=1

n−1E|ε|I(|ε| > n)

= C
∞

∑
n=1

n−1
∞

∑
j=n

E|ε|I( j < |ε| � j +1)

= C
∞

∑
j=1

E|ε|I( j < |ε| � j +1)
j

∑
n=1

n−1

� C
∞

∑
j=1

log jE|ε|I( j < |ε|p � j +1)

� CE|ε| log(1+ |ε|) < ∞.

This completes the proof of the theorem. �

Proof of Corollary 2.2. Taking p = 1 in the proof of Corollary 2.1, we can finish
the proof of Corollary 2.2 immediately. �
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Proof of Theorem 2.3. We use the same notations as those in the proof of Theorem
2.1. It follows from Lemma 3.5 that

∞

∑
n=1

nr−2−θ/pE

(
max

1�k�n

∣∣∣∣∣
k

∑
t=1

Xt

∣∣∣∣∣− εn1/p

)θ

+

� C
∞

∑
n=1

nr−2−q/pE max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(1)−Eεni(1))

∣∣∣∣∣
q

+C
∞

∑
n=1

nr−2−θ/pE max
1�k�n

∣∣∣∣∣
∞

∑
i=−∞

k−i

∑
j=1−i

A j(εni(2)−Eεni(2))

∣∣∣∣∣
θ

=: I5 + I6.

Similar to the proof of I1 < ∞ in Theorem 2.1, we obtain I5 < ∞ , where the two cases
rp < 2 and rp � 2 should be replaced by max{rp,θ} < 2 and max{rp,θ} � 2, re-
spectively. The proof of I6 < ∞ is conducted under the following two cases.

Case 1. θ � 2. We have by (3.3), (4.2), Lemma 3.4 and (2.4) that

I6 � C
∞

∑
n=1

nr−2−θ/p sup
j∈Z

n− j

∑
i=1− j

E|εni(2)|θ

� C
∞

∑
n=1

nr−1−θ/pE|ε|θ I(|ε| > n1/p)

= C
∞

∑
j=1

E|ε|θ I( j < |ε|p � j +1)
j

∑
n=1

nr−1−θ/p

�

⎧⎪⎨
⎪⎩

C∑∞
j=1 jr−θ/pE|ε|θ I( j < |ε|p � j +1), for θ < rp,

C∑∞
j=1 log jE|ε|θ I( j < |ε|p � j +1), for θ = rp,

C∑∞
j=1 E|ε|θ I( j < |ε|p � j +1), for θ > rp

�

⎧⎪⎨
⎪⎩

E|ε|rp < ∞, for θ < rp,

E|ε|rp log(1+ |ε|) < ∞, for θ = rp,

E|ε|θ < ∞, for θ > rp
< ∞.

Case 2. θ > 2. We have by (3.4), (4.2) and Lemma 3.4 that

I6 � C
∞

∑
n=1

nr−2−θ/p sup
j∈Z

⎧⎨
⎩

n− j

∑
i=1− j

E|εni(2)|θ +

(
n− j

∑
i=1− j

E|εni(2)|2
)θ/2

⎫⎬
⎭

� C
∞

∑
n=1

nr−1−θ/pE|ε|θ I(|ε| > n1/p)+C
∞

∑
n=1

nr−2−θ/p
[
nEε2I(|ε| > n1/p)

]θ/2

=: I′6 + I′′6 .
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Similar to the argument of Case 1, we obtain I′6 < ∞ . So in order to complete the proof,
it is enough to show I′′6 < ∞ . Actually, if θ > rp , we have

r−2+ θ/2−θ 2/2p = r−2+ θ (1−θ/p)/2< r−2+(1−θ/p)< −1,

and thus

I′′6 � C
∞

∑
n=1

nr−2−θ/p
[
n1+(2−θ)/pE|ε|θ I(|ε| > n1/p)

]θ/2
� C

∞

∑
n=1

nr−2+θ/2−θ2/2p < ∞;

and if θ � rp (under this case, it always holds r > 1), we also have

I′′6 � C
∞

∑
n=1

nr−2−θ/p
[
n1+(2−rp)/pE|ε|rpI(|ε| > n1/p)

]θ/2

� C
∞

∑
n=1

n−1−(r−1)(θ/2−1) < ∞.

Hence, the proof is completed. �
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