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VECTORIAL AND METRICAL RELATIONS IN TETRAHEDRON

MINCULETE NICUŞOR ∗ AND PIŞCORAN LAURIAN-IOAN

(Communicated by M. Krnić)

Abstract. The scope of this paper is twofold. On the one hand we will study some new vector
relations in triangle and tetrahedron and on the other hand we will proof this relations not just
for vector case but also in some special coordinates, more precisely in Wachpress’s coordinates.
The investigated results from this paper are done in order to find some new metric relations in
triangle and tetrahedron.

1. Introduction

Let ABC be a triangle. We will start our research from the vectorial relation:

−→
AD =

1
1+ k

(−→
AB+ k

−→
AC
)

,

where D ∈ (BC) and k = BD
DC .

In addition, if Q ∈ (AD , then k = σ [ABQ]
σ [ACQ] , where we will demote by σ [XYZ] the

area of a given triangle XYZ . In [9], we can found the following vector relation:

σ [BNC]
−→
NA+ σ [ANC]

−→
NB+ σ [ANB]

−→
NC =

−→
0 , (1)

where N lies in the interior of the triangle ABC .
Another scope of this paper will be to prove in a tetrahedron a similar relation

with the above relation, which will allowed us to extend certain vector relations from
the triangle to tetrahedron. We will investigate some of the obtained results for vector
case, in Wachpress coordinates which we will see that represent an useful tool in our
research. The main goal of the paper is to provide some new interesting metric relations
in triangle and tetrahedron using the scalar product of two vectors but also like we
present above some recent tools developed in the frame coordinates geometry theory.

Finally, we extend the inequality Ionescu-Weitzenböck from triangle to tetrahe-
dron and we find some inequalities for tetrahedron using the Crelle triangle.
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2. Vector relations in a triangle

PROPOSITION 1. If M is a point in the plane of the triangle ABC and N is a
point inside the triangle ABC, then the following relation holds:

σ [BNC]
−→
MA+ σ [ANC]

−→
MB+ σ [ANB]

−→
MC = σ [ABC]

−−→
MN. (2)

Proof. Using the following vectorial relations:
−→
MA +

−→
AN =

−−→
MN ;

−→
MB +

−→
BN =−−→

MN ;
−→
MC +

−→
CN =

−−→
MN and multiplying these relations with σ [BNC] ; σ [ANC] and

respectively with σ [ANB] and summing up the obtained relations, one obtains:

σ [BNC]
−→
MA+ σ [ANC]

−→
MB+ σ [ANB]

−→
MC+ σ [BNC]

−→
AN + σ [ANC]

−→
BN + σ [ANB]

−→
CN

= σ [ABC]
−−→
MN.

In conclusion, using (1), we get the desired result. �

REMARK 1. a) If O(0,0) represents the origin of the cartesian system of coordi-
nates xOy , then (2) , becomes:

σ [BNC]−→rA + σ [ANC]−→rB + σ [ANB]−→rC = σ [ABC]−→rN ,

which means that, for −→rA = xA�i+yA�j ;
−→rB = xB�i+yB�j ;

−→rC = xC�i+yC�j , −→rN = xN�i+yN�j ;
we get the cartesian coordinates of the point N :

xN =
σ [BNC]xA + σ [ANC]xB + σ [ANB]xC

σ [ABC]
,

yN =
σ [BNC]yA + σ [ANC]yB + σ [ANB]yC

σ [ABC]
;

b) If zA , zB and respectively zC are the affixes of the points A,B and respectively
C , then the affixe of the point N , is:

zN =
σ [BNC] zA + σ [ANC] zB + σ [ANB]zC

σ [ABC]
,

c) The absolute barycentric coordinates of the point N , are:(
σ [NBC]
σ [ABC]

,
σ [NCA]
σ [ABC]

,
σ [NAB]
σ [ABC]

)
;

d) If N ∈ (BC) , then the following equality holds: σ [NAC]
−→
NB+σ [NAB]

−→
NC =

−→
0

and if the point M lie inside the plane of the triangle ABC , then we can deduce the
following relation: σ [NAC]

−→
MB+ σ [NAB]

−→
MC = σ [ABC]

−−→
MN .



VECTORIAL AND METRICAL RELATIONS IN TETRAHEDRON 689

PROPOSITION 2. If N ∈ Int�BAC−{IntΔABC∪ (BC)} , then, we have:

−σ [NBC]
−→
NA+ σ [NCA]

−→
NB+ σ [NAB]

−→
NC =

−→
0 , (3)

and
−σ [NBC]

−→
MA+ σ [NCA]

−→
MB+ σ [NAB]

−→
MC = σ [ABC]

−−→
MN, (4)

Proof. Let N ∈ Int�BAC−{IntΔABC∪ (BC)} , (see Figure 1). If {N′} = BC∩
AN , then the following equality holds: BN′

N′C = σ [NAB]
σ [NAC] , which means that:

−−→
AN′ =

σ [NAC]
−→
AB+ σ [NAB]

−→
AC

σ [NAB]+ σ [NAC]
. (5)

But, AN′
AN = σ [ABC]

σ [NAB]+σ [NAC] . So:

−−→
AN′ =

σ [ABC]
σ [NAB]+ σ [NAC]

−→
AN. (6)

From (5) and (6), we obtain:

σ [ABC]
−→
AN = σ [NAC]

(−→
NB−−→

NA
)

+ σ [NAB]
(−→
NC−−→

NA
)

,

which means that:

−→
0 = (σ [ABC]−σ [NAC]−σ [NAB])

−→
NA+ σ [NAC]

−→
NB+ σ [NAB]

−→
NC.

So, −→
0 = −σ [NBC]

−→
NA+ σ [NAC]

−→
NB+ σ [NAB]

−→
NC.

Figure 1.

Using (3) and also the fact that
−→
MA =

−−→
MN +

−→
NA ;

−→
MB =

−−→
MN +

−→
NB ;

−→
MC =

−−→
MN +−→

NC , we get the relation (4). �
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REMARK 2. a) If N ≡ Ia , where Ia represents the center of the ex-inscribed circle
of the triangle ABC which correspond to the side BC of the triangle, then one obtains:

−σ [IaBC]
−→
MA+ σ [IaCA]

−→
MB+ σ [IaAB]

−→
MC = σ [ABC]

−−→
MIa

which means:

−a
−→
MA+b

−→
MB+ c

−→
MC = (−a+b+ c)

−−→
MIa. (7)

In a similar way, we can deduce the vectorial relations corresponding to the points Ib
and respectivelly Ic , so we get:

a
−→
MA+b

−→
MB+ c

−→
MC = (−a+b+ c)

−−→
MIa +(a−b+ c)

−−→
MIb+(a+b− c)

−−→
MIc

= (a+b+ c)
−→
MI, (8)

where I represents the center of the inscribed circle in the triangle ABC .

3. Vectorial relations in tetrahedron

In the following lines, we will continue to expand the previous vectorial relations
obtined in a triangle, in a similar way, but this time for a tetrahedron.

LEMMA 1. Let ABCD be a tetrahedron and N a point inside the triangle BCD.
Then, the following relation, holds:

−→
AN =

1
σ [BCD]

(
σ [NCD]

−→
AB+ σ [NBD]

−→
AC+ σ [NBC]

−→
AD
)

. (9)

Proof. Let BN∩CD = {M} , (see Figure 2).

Figure 2.
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We observe that CM
MD = σ [NBC]

σ [NBD] , which means that
−→
AM = σ [NBD]

−→
AC+σ [NBC]

−→
AD

σ [NBD]+σ [NBC] . But,
NM
BM = σ [NCD]

σ [BCD] , which means that: NM
NB = σ [NCD]

σ [NBC]+σ [NBD] = k , so:

−→
AN =

1
k+1

(−→
AM + k

−→
AB
)

=
1

σ [BCD]

(
σ [NCD]

−→
AB+ σ [NBD]

−→
AC+ σ [NBC]

−→
AD
)

.

This conclude the proof of the lemma. �

REMARK 3. Let hA be the distance from point A to the plane (BCD) . Multiply-
ing in (9), hA , one obtains:

−→
AN =

1
V [ABCD]

(
V [NACD]

−→
AB+V [NABD]

−→
AC+V [NABC]

−→
AD
)

, (10)

where V [ABCD] is the volume of the tetrahedron ABCD .

THEOREM 1. If P is an interior point of a tetrahedron ABCD, then the following
relation, holds:

V [PBCD]
−→
PA+V [PACD]

−→
PB+V [PABD]

−→
PC+V [PABC]

−→
PD =

−→
0 (11)

Proof. Let AP∩ (BCD) = {N} (see Figure 3).

Figure 3.

We have the following equality:

PN
AN

=
V [PBCD]
V [ABCD]

,

which implies
PA
AN

=
V [PABC]+V [PACD]+V [PABD]

V [ABCD]
,
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and this means that:

−→
AP =

V [PABC]+V [PACD]+V [PABD]
V [ABCD]

−→
AN. (12)

Using the above relation (10), one obtains:

V [ABCD]
−→
AN = V [NACD]

(−→
AP+

−→
PB
)

+V [NABD]
(−→
AP+

−→
PC
)

+V [NABC]
(−→
AP+

−→
PD
)

,

which is equivalent with:

V [ABCD]
−→
AN = V [ABCD]

−→
AP+V [NACD]

−→
PB+V [NABD]

−→
PC+V [NABC]

−→
PD,

In conclusion,

V [ABCD]
−→
PN = V [NACD]

−→
PB+V [NABD]

−→
PC+V [NABC]

−→
PD.

Using (10), we get:

V [PBCD]
−→
PN = V [NPCD]

−→
PB+V [NPBD]

−→
PC+V [NPBC]

−→
PD.

If we make the difference between the above two relations, one obtains:

(V [ABCD]−V [PBCD])
−→
PN = (V [NACD]−V [NPCD])

−→
PB+(V [NABD]−V [NPBD])

−→
PC

+(V [NABC]−V [NPBC])
−→
PD,

which means that:

(V [PABC]+V [PACD]+V [PABD])
−→
PN

= (V [PACD])
−→
PB+(V [PABD])

−→
PC+(V [PABC])

−→
PD.

But, we have
PN
PA

=
V [PBCD]

V [PABC]+V [PACD]+V [PABD]
,

so,
(V [PABC]+V [PACD]+V [PABD])

−→
PN = (V [PBCD])

−→
AP.

which completes the proof of our theorem. �

THEOREM 2. If P is an interior point of a tetrahedron ABCD, and M is an arbi-
trary point in space, then the following relation holds:

V [PBCD]
−→
MA+V [PACD]

−→
MB+V [PABD]

−→
MC+V [PABC]

−−→
MD = V [ABCD]

−→
MP. (13)
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Proof. Using (11), we get:

V [PBCD] (
−→
PM +

−→
MA) + V [PACD](

−→
PM +

−→
MB)+V [PABD](

−→
PM +

−→
MC)

+ V [PABC](
−→
PM +

−−→
MD) =

−→
0

which concludes the proof of the theorem. �

REMARK 4. If O(0,0,0) is the origin of the cartesian system Oxyz , then (13) be-
comes: V [PBCD]−→rA +V [PACD]−→rB +V [PABD]−→rC +V [PABC]−→rD =V [ABCD]−→rP , which

means that, for −→rA =
−→
OA = xA

−→
i + yA

−→
j + zA

−→
k ,

−→
OB = xB

−→
i + yB

−→
j + zB

−→
k ,

−→
OC =

xC
−→
i + yC

−→
j + zC

−→
k and respectively

−→
OD = xD

−→
i + yD

−→
j + zD

−→
k , we obtain the carte-

sian coordinates of the point P and these coordinates are the following ones:

xP =
V [PBCD]xA +V [PACD]xB +V [PABD]xC +V [PABC]xD

V [ABCD]
;

yP =
V [PBCD]yA +V [PACD]yB +V [PABD]yC +V [PABC]yD

V [ABCD]
;

zP =
V [PBCD]zA +V [PACD]zB +V [PABD]zC +V [PABC]zD

V [ABCD]
.

Next, we will use the following notations: V [PBCD] = VA ; V [PACD] = VB ;
V [PABD] = VC , V [PABC] = VD and respectively, V [ABCD] = V .

THEOREM 3. If P is an interior point of a tetrahedron ABCD, and M is an arbi-
trary point in space, then the following relation holds:

V
(
VA ·MA2 +VB ·MB2 +VC ·MC2 +VD ·MD2)

− (VAVBAB2 +VAVCAC2 +VAVDAD2 +VBVCBC2 +VBVDBD2 +VCVDCD2)

=V 2MP2. (14)

Proof. Using (13) and the scalar product of two vectors, one obtains:

V 2 ·MP2 = V 2
AMA2 +V 2

BMB2 +V 2
CMC2 +V 2

DMD2 +2VAVB
−→
MA

−→
MB+2VAVC

−→
MA

−→
MC

+2VAVD
−→
MA

−−→
MD+2VBVC

−→
MB

−→
MC+2VBVD

−→
MB

−−→
MD+2VCVD

−→
MC

−−→
MD.

But, replacing in the above relations 2
−→
MA

−→
MB = MA2 +MB2−AB2 , etc., we obtain the

relation:

V 2 ·MP2 = V
(
VAMA2 +VBMB2 +VCMC2 +VDMD2)

−(VAVBAB2 +VAVCAC2 +VAVDAD2 +VBVCBC2 +VBVDBD2 +VCVDCD2)
In conclusion, the theorem is proved. �
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4. Proofs in Wachpress’s coordinates

In the following lines using the Wachpress’s coordinates, we will give a proof
to some of the previous results. First of all let us recall some aspects regarding the
Wachpress’s coordinates in respect with triangle areas as are presented in the paper [8].
In that paper, Meyer et all., found an easy way to introduce the Wachpress’s coordinates
using the triangle areas:

Ai = Ai(x) = A(x,vi,vi+1); Ci = A(vi−1,vi,vi+1), (15)

as follows:

φi(x) =
wi(x)

∑n
j=1 wj(x)

where:

wi(x) =
Ci

Ai−1(x)Ai(x)
.

The above introduced coordinates by Meyer et all. are barycentric because it can be
proved easily the following equality:

n

∑
i=1

wi(x)(vi − x) = 0.

Also it can be observed that any points x ∈ P , can be expressed in barycentric coordi-
nates as follows:

x =
Ai

Ci
vi−1 +

Ci −Ai−1−Ai

Ci
vi +

Ai−1

Ci
vi+1,

Figure 4.

As we know from Proposition 2.1, we proved there the following equality:

σ [BNC]
−→
MA+ σ [ANC]

−→
MB+ σ [ANB]

−→
MC = σ [ABC]

−−→
MN.
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In the following lines we will prove the same proposition but this time in Wachpress’s
coordinates: We have there 3 vertices A,B,C and also two points M and N . We will
associate to this points some notations for compatibility in Wachpress’s coordinates,
as follows: A → v0 ; B → v1 , C → v2 , N → x , M → y . The area of the triangle
ABC , acording to the Wachpress’s coordinates defined above, will be denoted by C1 =
σ [ABC] = A(v0,v1,v2) . Also, the other triangle areas will be: A1 = σ [ANB] ; A2 =
σ [BNC] ; A3 = σ [ANC] . All these notations can be seen in the following figure:

Figure 5.

Using the anticlockwise rule, with the above notations, in Wachpress’s coordi-
nates, we have:

C1y = (A1 +A2 +A3)y

and respectively:
C1x = A2v0 +A3v1 +A1v2

Subtracting the above 2 equalities, one obtains:

C1(y− x) = A1(y− v2)+A2(y− v0)+A3(y− v1)

and this implies:

A2(y− v0)+A3(y− v1)+A1(y− v2) = C1(y− x)

Finally, let us observe that the above relation is just in fact equivalent with (2):

σ [BNC]
−→
MA+ σ [ANC]

−→
MB+ σ [ANB]

−→
MC = σ [ABC]

−−→
MN.

So, the Proposition 2.1 have been proved using the Wachpress’s coordinates. In an anal-
ogous way we can now give a proof to the Proposition 2.2 but this time for Wachpress’s
coordinates. In the statement of Proposition 2.2, we can remark that the point N is out-
side the triangle ABC , so the direct counterclockwise orientation will be changed. We
will need first to construct the symmetric of the point N which we will denote by N”,
in respect with the edge BC . The triangle BN”C is directly orientated but the triangle
BNC is not directly orientated because the point N lies outside the triangle ABC . The
situation is presented in the following figure:
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Figure 6.

In analogous way as for Proposition 2.1, we have:

C1y = (A3 +A2−A1)y

and respectively:
C1x = A2v0 +A3v1 +A1v2

Substracting the above two equalities, one obtains:

A2(y− v0)+A3(y− v1)−A1(y+ v2) = C1(y− x)

and this conclude the proof of Propisition 2 in Wachpress’s coordinates because this
equality is equivalent with (4) :

−σ [BNC]
−→
MA+ σ [ANC]

−→
MB+ σ [ANB]

−→
MC = σ [ABC]

−−→
MN.

REMARK 5. In the following lines we will use Wachpress’s coordinate in the three
dimensional case, following the works of Wachpress [13] and respectivelly Warren [14].

So, first let us recall some results from the above mentioned works [13], [14]. In
this respect, let us consider a simple polyhedron P ⊂ R

3 with F faces and V vertices.
For any face f ∈ F of the polyhedron, let n f ∈ R

3 denote its unit outward normal and
with h f is denoted the perpendicular distance from x to f . This distance can be written
as Floater remarked in [3]:

h f (x) = (v− x)n f ,

for any vertex v ∈ V from the face f . Also we will follow close the approach of the
paper [3]. There are considered for each vertex v∈V , the three faces f1, f2, f3 incident
with the vertex v . For x ∈ P , let

wv(x) =
det
(
n f1 ,n f2 ,n f3

)
h f1(x)h f2(x)h f3(x)

.
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Here, the faces f1, f2, f3 are oriented such that the determinant in the numerator is
positive. Also from paper [3], we know that for the polyhedron P ∈ R

3 , there exist its
dual P̃x =

{
y ∈ R

3|y(z− x) � 1,z ∈ P
}

, which contains the origin y = 0 and its vertices
are the endpoints of the vectors: p f (x) = n f

h f (x)
, f ∈ F . Here the faces f1, f2, . . . , fk

are incident with the vertex v for some k � 3. Also from paper [3], we know that
the volumes of the tetrahedrons associated with a polyhedron P , can be computed as
follows:

wi(x) = det
(
p fi(x), p fi+1(x), p fk (x)

)
.

In this respect, the volume of the polyhedron will be: Vol(QV ) = wv(x) = ∑k−2
i=1 wi,v(x) .

Now, we will use all this results regarding the Wachpress’s coordinates in the three
dimensional case and we will proof in the following lines the equality (11), but this
time using this type of coordinates.

First of all, let us denote the vertices A,B,C,D in Wachpress’s coordinates with
v0,v1,v2,v3 . The faces of the tetrahedron from (11), will be denoted in Wachpress’s
coordinates by [PBC] → f1 , [PCD] → f2 , [PBD] → f3 , [PAB] → f4 , [PAD] → f5 ,
[PAC]→ f6 .

Figure 7.

Next, we will express the volumes of the tetrahedrons from (11), as follows:

V [PBCD] =
det(n f1 ,n f2 ,n f3)

h f1(x)h f2(x)h f3(x)

and
−→
PA → v0− y .

V [PACD] =
det(n f2 ,n f5 ,n f6)

h f2(x)h f5(x)h f6(x)

and
−→
PB → v1− y .

V [PABD] =
det(n f3 ,n f4 ,n f5)

h f3(x)h f4(x)h f5(x)
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and
−→
PC → v2 − y

V [PABC] =
det(n f1 ,n f4 ,n f6)

h f1(x)h f4(x)h f6(x)

and
−→
PD → v3− y . Next, we will take into account that h f (x) is the distance from x to

the face f ∈ F , which is given by:

h f (x) = (v− x)n f .

Using the orthogonality of the vectors in the following equality, (after we bring to the
same denominator the terms of the equality),

det(n f1 ,n f2 ,n f3)
h f1(x)h f2(x)h f3(x)

(v0− y)+
det(n f2 ,n f5 ,n f6)

h f2(x)h f5(x)h f6(x)
(v1− y)

+
det(n f3 ,n f4 ,n f5)

h f3(x)h f4(x)h f5(x)
(v2− y)+

det(n f1 ,n f4 ,n f6)
h f1(x)h f4(x)h f6(x)

(v3 − y) = 0,

we get the proof of (11), but this time using the Wachpress’s coordinates in three di-
mensional case.

5. Some vectorial and metrical relations in tetrahedron

Let ABCD be a tetrahedron with the volume V and the surface area S . Let a =
BC,b =CA,c = AB,a′ = AD,b′ = BD,c′ =CD be the edge lengths of the thetrahedron
ABCD . Let us make the following notations: σ [BCD] = SA , σ [ACD] = SB , σ [ABD] =
SC , σ [ABC] = SD , R is the radius of the circumscribed sphere and r represents the
radius of the inscribed sphere. It is easy to see that S = SA +SB +SC +SD is the surface
area.

EXAMPLE 1. If P ≡ G , which is the centroid of the tetrahedron ABCD , then
VA = VB = VC = VD = 1

4V and the following relations holds:

−→
GA+

−→
GB+

−→
GC+

−→
GD =

−→
0 , (16)

−→
MA+

−→
MB+

−→
MC+

−−→
MD = 4

−−→
MG, (17)

MA2 +MB2 +MC2 +MD2 = 4MG2 +
1
4

(
AB2 +AC2 +AD2 +BC2 +BD2 +CD2) .

(18)
If, in equality (18), we choose M ≡ O , which is the center of the circumscribed sphere
over the tetrahedron ABCD , then, we have the relation:

OG2 = R2− 1
16

(
AB2 +AC2 +AD2 +BC2 +BD2 +CD2)

= R2− 1
16

(
a2 +b2 + c2 +a′2 +b′2 + c′2

)
. (19)
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EXAMPLE 2. Let P ≡ I , the center of the inscribed sphere in the tetrahedron
ABCD . Then, we have the following relations:

VA =
1
3
SAr; VB =

1
3
SBr; VC =

1
3
SCr; VD =

1
3
SDr;

V =
1
3

(SA +SB +SC +SD) r =
1
3
Sr.

The following equalities holds:

SA ·−→IA+SB ·−→IB+SC ·−→IC+SD ·−→ID =
−→
0 , (20)

SA ·−→MA+SB ·−→MB+SC ·−→MC+SD ·−−→MD = (SA +SB +SC +SD)
−→
MI = S ·−→MI. (21)

If we replace in (14), then we obtain:

SAMA2 +SBMB2 +SCMC2 +SDMD2

= S ·MI2+
1
S

(
SASBAB2 +SASCAC2 +SASDAD2 +SBSCBC2 +SBSDBD2 +SCSDCD2) .

(22)
If in (22), we choose M ≡O , the center of the circumscribed sphere over the tetrahedron
ABCD , then the following relation holds:

OI2 = R2− SASBAB2 +SASCAC2 +SASDAD2 +SBSCBC2 +SBSDBD2 +SCSDCD2

S2 .

(23)
Next, let us recall some results from [10]. We will consider the tetrahedron [ABCD]

and the circumscribed sphere for this tetrahedron with radius R and center O , will be
denoted by S(O,R) . The inscribed sphere in this tetrahedron will be denoted by S(I,r) .
The half-lines (AI,(BI,(CI,(DI have intersections with the sphere S(O,R) in the points
A′,B′,C′,D′. We know that the following equalities holds:

IA · IA′ = IB · IB′ = IC · IC′ = ID · ID′ = R2 −OI2.

Using the inversion of pole I and power OI2 −R2 , the plane (ABC) is transformed in
the sphere S(O1,R1)−{I} , which represent the sphere circumscribed to the tetrahedron
[IA′B′C′] . Let E be the projection of the point I to the plane (ABC) and with E ′ will
be denote the diametral opposite point to E , with respect to the sphere S(O1,R1) . From
IE · IE ′ = R2−OI2 , it follows:

2rR1 = R2−OI2 (24)

Using this result, established in [10], we are ready to give now the following theorem:

THEOREM 4. In any tetrahedron [ABCD] , with the above notations, the following
equality holds:

SASBAB2 +SASCAC2 +SASDAD2 +SBSCBC2 +SBSDBD2 +SCSDCD2 = 2rR1S
2. (25)

Proof. The proof can be obtained directly using (23). �
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6. Some inequalities in tetrahedron

If N ≡ K , the Lemoine point of the triangle ABC and using relation (2), then we
have:

a2−→MA+b2−→MB+ c2−→MC = (a2 +b2 + c2)
−−→
MK,

where M represent a point in the plane of the triangle ABC .
Using the scalar product, we deduce the following relation:

a2MA2 +b2MB2 + c2MC2 = (a2 +b2 + c2)MK2 +
3a2b2c2

a2 +b2 + c2 . (26)

If M ≡ O , the center of the circumscribed circle of the triangle ABC , then

R2(a2 +b2 + c2) = ((a2 +b2 + c2))OK2 +
3a2b2c2

a2 +b2 + c2 ,

which means that

R2− 48Δ2R2

(a2 +b2 + c2)2 = OK2,

where Δ is the area of the triangle ABC , which is equivalent with

OK2 =
R2

(a2 +b2 + c2)2

(
(a2 +b2 + c2)2 −48Δ2) . (27)

But, OK2 � 0, so we deduce:

(a2 +b2 + c2)2 � 48Δ2,

which means that:
a2 +b2 + c2 � 4

√
3Δ.

This inequality represents the Ionescu-Weitzenböck inequality (I-W). A refinement of
the inequality (I-W) is the Finsler-Hadwiger inequality (F-H), given by:

a2 +b2 + c2 � Q(a,b,c)+4
√

3Δ,

where Q(a,b,c) = (a− b)2 +(b− c)2 +(c− a)2. In [4], Kouba presented several re-
finements of the Finsler-Hadwiger inequality. Andrica and Marinescu in [1] obtained
refinements to some famous geometric inequalities in a triangle by constructing inter-
polating sequences. In [6] the inequality (F-H) is used to prove some algebraic inequal-
ities.

We want to give a similar inequality for the tetrahedron.
Let a = BC , b = CA , c = AB , a′ = AD , b′ = BD , c′ = CD be the edge lengths

of the tetrahedron ABCD with the volume V and the surface area S . Let us make the
following notations: R is the radius of the circumscribed sphere and r represents the
radius of the inscribed sphere.
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THEOREM 5. In any tetrahedron ABCD, the following inequality holds:

a2 +b2 + c2 +a′2 +b′2 + c′2 � 12
3
√

9V 2 +
1
3
Q(a,b,c,a′,b′,c′)

+
3
4 ∑(m2

A −h2
A), (28)

where mA is the median from A, hA represent the length of the altitude from A and

Q(a,b,c,a′,b′,c′) = (a−b)2 +(a− c)2 +(b− c)2 +(a−b′)2 +(a− c′)2

+(b−a′)2 +(b− c′)2 +(c−a′)2 +(c−b′)2

+(a′ −b′)2 +(b′ − c′)2 +(c′ −a′)2.

Proof. Let GA be the centroid of the triangle BCD (see fig. 8)

Figure 8.

Because BGA
GAM = 2, then we have

−−→
AGA = 1

3

(−→
AB+2

−→
AM
)

, which implies the equal-

ity

9AG2
A = AB2 +4AM2 +4

−→
AB ·−→AM = AB2 +4AM2 +2

(
AB2 +AM2−BM2) .

But, using the median theorem, we proved the following:

9AG2
A = 3AB2 +6

2(AC2 +AD2)−CD2

4
− 2(BC2 +BD2)−CD2

2
= 3

(
AB2 +AC2 +AD2)− (BC2 +BD2 +CD2) ,

so we can deduce:

m2
A = AG2

A =
1
9

[
3(a′2 +b2 + c2)− (a2 +b′2 + c′2)

]
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Starting with the first term of the inequality from the above statement, we have:

a2 +b2 + c2 +a′2 +b′2 + c′2

=
1
3

[
3(a′2 +b2 + c2)− (a2 +b′2 + c′2)

]
+

a2 +b′2 + c′2

3
+a2 +b′2 + c′2

= 3m2
A +

4
3
(a2 +b′2 + c′2)

�
(F−H) 3m2

A +
16

√
3

3
SA +

4
3
{(a−b′)2 +(b′ − c′)2 +(c′ −a)2}

= 3h2
A +

16
√

3
3

SA +
4
3
{(a−b′)2 +(b′ − c′)2 +(c′ −a)2}+3(m2

A−h2
A),

where SA is the area of the triangle BCD .
Using the inequality between the geometric mean and the arithmetic mean, we

have:

3h2
A +

16
√

3
3

SA = 3h2
A +

8
√

3
3

SA +
8
√

3
3

SA � 3 3

√√√√3h2
A

(
8
√

3
3

)2

S2
A

= 12
3
√

(hASA)2 = 12
3
√

9V 2.

Therefore, we have

a2 +b2 + c2 +a′2 +b′2 + c′2 � 12
3
√

9V 2 +
4
3
{(a−b′)2 +(b′ − c′)2 +(c′ −a)2} (29)

+3(m2
A−h2

A). (29)

We apply the same method for faces (ABC) , (ACD) , (ABD) and by adding the four
inequalities similar to inequality (29), we obtain the inequality from the statement. �

REMARK 6. 1) Because ∑(m2
A −h2

A) � 0, we found the inequality given by Chen
and Ma (see [17]):

a2 +b2 + c2 +a′2 +b′2 + c′2 � 12
3
√

9V 2 +
1
3
Q(a,b,c,a′,b′,c′), (30)

which is an inequality of Finsler-Hadwiger type for tetrahedron. This proved the in-
equality of Ionescu-Weitzenböck type for tetrahedron:

a2 +b2 + c2 +a′2 +b′2 + c′2 � 12
3
√

9V 2. (31)

2) If the tetrahedron ABCD is orthocentric (a tetrahedron where all three pairs of
opposite edges are perpendicular), then we have:

a2 +a′2 = b2 +b′2 = c2 + c′2,

so, the above inequality becomes:

a2 +a′2 � 4
3
√

9V 2.
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3) From equality (19), we deduce the inequlity:

R2 � 1
16

(
a2 +b2 + c2 +a′2 +b′2 + c′2

)
(32)

Combining inequalities (31) and (32), we obtain:

R2 � 3
4

3
√

9V 2,

which is equivalent to

R � 1
2

3
√

9
√

3V . (33)

Let S be the surface area of the tetrahedron. If we apply the Ionescu-Weitzenböck
(I-W) inequality for each face of the tetrahedron, we deduce the inequality:

a2 +b2 + c2 +a′2 +b′2 + c′2 � 2
√

3S. (34)

which, using the inequality (29) prove the following inequality:

R2 �
√

3
8

S.

Equality holds if the tetrahedron is regular. Using Grace-Danielsson’s inequality [12]

OI2 +4r2 � (R− r)2

and inequality also inequality (19), we can deduce now the following inequality:

SASBAB2 +SASCAC2 +SASDAD2 +SBSCBC2 +SBSDBD2 +SCSDCD2 � r(2R+3r)S2.
(35)

Next, we will present some new results starting from the very well known inequal-
ity (F-H).

THEOREM 6. In any triangle ABC, with usual notations, the following inequality
holds:

a3 +b3 + c3

s
+6Rr � Q(a,b,c)+4

√
3Δ. (36)

Proof. Starting with the Finsler-Hadwiger inequality:

a2 +b2 + c2 � Q(a,b,c)+4
√

3Δ.

Multiplying with a+b+ c= 2s , the both terms of inequality, one obtains succesivelly:

a3 +b3 + c3 +a2(b+ c)+b2(a+ c)+ c2(a+b) � (Q(a,b,c)+4
√

3Δ)2s.

Now, using the Schur inequality, we have

2
(
a3 +b3 + c3)+3abc � a3 +b3 + c3 +a2(b+ c)+b2(a+ c)+ c2(a+b)
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and replacing in the above inequality, we get:

2
(
a3 +b3 + c3)+3abc � (Q(a,b,c)+4

√
3Δ)2s

and from this, we get the conclusion of the theorem. �
In [11], we found the following equality:

a2 +b2 + c2 = Q(a,b,c)+4Δ∑tan
A
2

. (37)

But, by calculation we have

tan
A
2

+ tan
B
2

+ tan
C
2

=
4R+ r

s
,

where in the triangle ABC , we have a,b,c the side lengths, s the semiperimeter, R the
circumradius, r the inradius. Therefore, we deduce the equality

a2 +b2 + c2 = Q(a,b,c)+4Δ
4R+ r

s
,

which is equivalent to

a2 +b2 + c2−Q(a,b,c)
4Δ

=
4R+ r

s
. (38)

We remark that the Finsler-Hadwiger inequality is equivalent to the geometric inequal-
ity

4R+ r � s
√

3. (39)

Using the Garfunkel-Bankhoff inequality (see [16]),

∑ tan2 A
2

� 2−8∏sin
A
2

,

we have (
∑ tan

A
2

)2

= 2+∑tan2 A
2

� 4−8∏sin
A
2

.

But, it is known that ∏sin A
2 = r

4R . Consequently, we deduce the following inequality:

∑ tan
A
2

�
√

4− 2r
R

,

and using relation (37), we obtain

a2 +b2 + c2−Q(a,b,c)
4Δ

�
√

4− 2r
R

, (40)

which is an inequality given by Kouba in [4]. This inequality proved an inequality of
Lupu and Pohoaţă [5]:

a2 +b2 + c2−Q(a,b,c)
4Δ

�
√

3+
4(R−2r)
4R+ r

, (41)
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because 4− 2r
R � 3+ 4(R−2r)

4R+r .
In [2], Crelle gave the following Theorem: let V and R be the volume and the

circumradius of a tetrehedron ABCD respectively. Then the quantities aa′ , bb′ , cc′
are side-lengths of a triangle whose area Δ′ is given by the formula Δ′ = 6RV . This
triangle is called Crelle triangle associated to the tetrahedron ABCD . In the Crelle
triangle, if we have s′ the semiperimeter, R′ the circumradius and r′ the inradius, then
we obtain s′ = 1

2 (aa′ + bb′ + cc′) , R′ = aa′bb′cc′
24RV and r′ = 12RV

aa′+bb′+cc′ . Consequently,
inequality (39) becomes:

abca′b′c′(aa′ +bb′+ cc′)+288R2V 2 � 12
√

3RV(aa′ +bb′+ cc′)2. (41)

If we apply inequality (36) in the Crelle triangle, the we obtain the following inequality:

2
(
(aa′)3 +(bb′)3 +(cc′)3)+3abca′b′c′ � 24

√
3RV(aa′ +bb′+ cc′). (42)

From inequality (40), we deduce

(aa′)2 +(bb′)2 +(cc′)2 −Q(aa′,bb′,cc′)
48RV

�
√

4− (24RV)2

abca′b′c′(aa′ +bb′+ cc′)
. (43)

If we apply in the Crelle triangle a series of inequalities that are true in a triangle, then
we obtain a series of inequalities valid in a tetrahedron.

7. Conclusion

In this paper we have investigated some new metric relations in triangle and tetra-
hedron using two different approach. On the one hand the classical vector theory proofs
and on the other hand we have proved the same results using the Wachpress’s coordi-
nates. The results obtained in this paper, reflect that even we used two different ap-
proaches we can get the validity of the theorems presented in this paper. In the last
section of the paper we present also some interesting results regarding some applica-
tions in inequalities theory for tetrahedron using the previous results obtained in the
paper.
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706 M. NICUŞOR AND P. LAURIAN-IOAN
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