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Abstract. In this paper, we introduce a family of blending type Bernstein operators Lα,s
n ( f ;x)

which depends on two parameters, α and s . We prove a Korovkin type approximation theorem
and obtain the rate of convergence of these operators. We also prove that these operators has
monotonicity and convexity preserving properties for each α and s . So far, Lotosky matrices
that generates blending type Bernstein operators were ignored. In this paper, we also introduce
Lototsky matrices that generates these new family of blending type Bernstein operators.

1. Introduction

The classical Bernstein operators

Bn( f ;x) =
n

∑
k=0

(
n
k

)
xk(1− x)n−k f

(
k
n

)
, (1)

where f (x) is a continuous function on [0,1] , is one of the most important positive lin-
ear operators and have been investigated by different researchers in different directions
(see [1, 3], [7, 10], [13], [14]). Moreover, a large number of generalizations of Bern-
stein polynomials and their properties are also considered by researchers. Very recently
in [17], Srivastava et.al. introduced Stancu-type Bernstein operators based on Bĕzier
bases and investigate their approximation properties.

It is well known that the Bernstein operators can be written in the form of

Bn( f ,x) =
n

∑
k=0

ank(x) f
( k

n

)
,

where ank(x) is the Lototsky matrix obtained from the following equation

n

∏
k=1

(yx+1− x) =
n

∑
k=0

ank(x)yk. (2)
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In other words ank(x) obtained from (2) is
(n
k

)
xk(1− x)n−k .

For the more general case, the Lototsky matrix ank(x) obtained from

n

∏
k=1

(yh(x)+1−h(x)) =
n

∑
k=0

ank(x)yk,

where 0 � h(x) � 1, is used to define the operator

Ln( f ,x) =
n

∑
k=0

ank(x) f
( k

n

)
,

which is called Lototsky-Bernstein operators. Obviously, Ln( f ,x) is an extension of
Bn( f ,x) .

Recently, for a fixed real number 0 � α � 1, the following blending type α -
Bernstein operators are introduced and studied by Chen et al. [10],

Bn,α( f ;x) =
n

∑
k=0

p(α)
n,k f

( k
n

)
(3)

where pα
1,0(x) = 1− x , pα

1,1(x) = x and,

p(α)
n,k (x) =

[(
n−2

k

)
(1−α)x+

(
n−2
k−2

)
(1−α)(1− x)

+
(

n
k

)
αx(1− x)

]
xk−1(1− x)n−k−1

for n � 2 and x ∈ [0,1] .
So far, a large number of papers concerning blending type Bernstein operators

are published. But in these papers researchers focus on only the operators and their
approximation properties, the Lototsky matrices that generates these operators, which
is another interesting problem, are not studied (for example [5], [7], [8], [9], [10], [12],
[13], [16]).

One of the motivations of the present paper was to cover this lack by introducing
Lototsky matrices that generates blending type Bernstein operators considered in [5],
[7], [8], [9], [10], [12], [13], [16] and we did this in the present paper. The product
given in (4) for s = 2 gives Lototsky matrices that generates blending type Bernstein
operators considered in these papers. It should be mentioned that, the product given in
(4)(for s = 2) which generates blending type Bernstein operators and product given in
(2) that generates Bernstein operators are surprisingly quite different from each other.

The second motivation of the present paper was to use the generalized Lototsky
matrices that can be obtained from product given in (4) to introduce more comprehen-
sive generalization of both blending type Bernstein operators and standard Bernstein
operators. This is also achieved (see operators Lα ,s

n ( f ;x)).
Finally, it should be mentioned that operators considered in some of previous pa-

pers does not preserves linear functions. For these papers, Ln(ei,x) = ei(x) , should be
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replace by Ln(ei,x) → ei(x) . The same thing can be seen in some of above papers for
bivariate case. Of course, conditions of Korovkin Theorem are still correct and same
results can be obtained, but in any case some proofs need some modifications accord-
ingly. To avoid this problem we define our operator peicewisely (see Lα ,s

n ( f ;x)).

2. Generalized Lototsky matrices and generalized blending
type Bernstein operators

Let 0 � α � 1 be any real number and s be a positive integer, then consider the
following generalization of (2) ,

∞

∑
k=0

aα ,s
nk (x)yk = (1−α)

[
ysx

n−s

∏
i=1

(yx+1− x) (4)

+(1− x)
n−s

∏
i=1

(yx+1− x)

]
+ α

n

∏
i=1

(yx+1− x),

where 0 � x � 1,
q

∏
i=1

b =

⎧⎨
⎩

bq, q � 1,
1, q = 0
0, otherwise.

and (
n
k

)
=

{
n!

k!(n−k)! , 0 � k � n,

0, otherwise.

It is obvious that for α = 1, (4) reduces to (2). Now we can define the following
α -Lototsky-Bernstein operators,

Lα ,s
n ( f ,x) =

n

∑
k=0

bα ,s
nk (x) f

( k
n

)
(5)

where

bα ,s
n,k (x) =

{(n
k

)
xk(1− x)n−k, if n < s,

aα ,s
n,k (x), if n � s.

Obviously, Lα ,s
n ( f ,x) is a positive linear operator and if s = 1, Lα ,1

n ( f ,x) , is the ordi-
nary Bernstein operators, therefore the operators Lα ,s

n ( f ,x) includes Bernstein opera-
tors as a special case. In the rest of the paper, to work with a non-trivial generalization
of the Bernstein operators, we shall focus on the case s � 2.

LEMMA 1. For any 0 � α � 1 and s � 2 ,

Lα ,s
n ( f ;x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bn( f ;x), n < s,

∑n
k=0

[
(1−α)

(n−s
k−s

)
xk−s+1(1− x)n−k +(1−α)

(n−s
k

)
xk(1− x)n−s−k+1

+α
(n
k

)
xk(1− x)n−k

]
f ( k

n ), n � s.
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Proof. The case n < s is obvious. Assume that n � s . From (4) we have,

∞

∑
k=0

aα ,s
nk (x)yk = (1−α)

[
ysx

n−s

∑
k=0

(
n− s

k

)
ykxk(1− x)n−s−k

+(1− x)
n−s

∑
k=0

(
n− s

k

)
ykxk(1− x)n−s−k

]
+ α

n

∑
k=0

(
n
k

)
ykxk(1− x)n−k

= (1−α)

[
n−s

∑
k=0

(
n− s

k

)
yk+sxk+1(1− x)n−s−k

+
n−s

∑
k=0

(
n− s

k

)
ykxk(1− x)n−s−k+1

]
+ α

n

∑
k=0

(
n
k

)
ykxk(1− x)n−k

= (1−α)

[
n

∑
k=s

(
n− s
k− s

)
ykxk−s+1(1− x)n−k

+
n

∑
k=0

(
n− s

k

)
ykxk(1− x)n−s−k+1

]
+ α

n

∑
k=0

(
n
k

)
ykxk(1− x)n−k

=
n

∑
k=0

[
(1−α)

(
n− s
k− s

)
xk−s+1(1− x)n−k

+(1−α)
(

n− s
k

)
xk(1− x)n−s−k+1 + α

(
n
k

)
xk(1− x)n−k

]
yk

which completes the proof. �

The following Lemma clarifies the relation between Lα ,s
n ( f ,x) and the blending

type Bernstein operators Bn,α( f ,x) given in (3).

LEMMA 2. For s = 2 , Lα ,2
n ( f ,x) = Bn,α( f ,x) .

Proof. It is easy to see that, for s = 2 we have,

bα ,2
nk (x) =

⎧⎨
⎩
(n
k

)
xk(1− x)n−k, n < 2,

p(α)
n,k (x), n � 2,

which completes the proof. �

COROLLARY 1. Since Lα ,2
n ( f ,x) = Bn,α( f ,x) , the positive linear operators

Lα ,s
n ( f ,x) defined here, includes Bn,α( f ,x) as a special case as well.

The following theorem gives an alternative representation of the operator Lα ,s
n ( f ;x) .
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THEOREM 1. For any 0 � α � 1 and s � 2 ,

Lα ,s
n ( f ;x)=

⎧⎪⎨
⎪⎩

Bn( f ;x), n < s,

(1−α)∑n−s+1
k=0

(n−s+1
k

)
xk(1− x)n−s−k+1hk + α ∑n

k=0

(n
k

)
xk(1− x)n−k fk,

n � s,

where

hk =
(

1− k
n− s+1

)
fk +

k
n− s+1

fk+s−1,

and fk = f ( k
n ).

Proof. Let 0 � α � 1 and let s � 2 be an arbitrary but fixed positive integer. By
the definition of bα ,s

nk (x) , Lα ,s
n ( f ;x) = Bn( f ,x) when n < s . Assume that n � s , then,

Lα ,s
n ( f ;x) =

n

∑
k=0

[
(1−α)

(
n− s
k− s

)
xk−s+1(1− x)n−k +(1−α)

(
n− s

k

)
xk(1− x)n−s−k+1

+α
(

n
k

)
xk(1− x)n−k

]
fk.

Say,

g1 =
n

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k+1 fk,

and

g2 =
n

∑
k=0

(
n− s
k− s

)
xk−s+1(1− x)n−k fk.

Then,

g1 =
n

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k+1 fk

=
n−s+1

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k+1 fk

and

g2 =
n

∑
k=0

(
n− s
k− s

)
xk−s+1(1− x)n−k fk

=
n

∑
k=s−1

(
n− s
k− s

)
xk−s+1(1− x)n−k fk

=
n−s+1

∑
k=0

(
n− s
k−1

)
xk(1− x)n−s−k+1 fk+s−1.
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Therefore,

g1 +g2 =
n−s+1

∑
k=0

[(
n− s

k

)
fk +

(
n− s
k−1

)
fk+s−1

]
xk(1− x)n−s−k+1. (6)

On the other hand, if we use the following equations(
n− s

k

)
=
(

n− s+1
k

)(
1− k

n− s+1

)

and (
n− s
k−1

)
=
(

n− s+1
k

)
k

n− s+1

in (6) we get,

g1 +g2 =
n−s+1

∑
k=0

(
n− s+1

k

)[(
1− k

n− s+1

)
fk +

k
n− s+1

fk+s−1

]
xk(1− x)n−s−k+1.

=
n−s+1

∑
k=0

(
n− s+1

k

)
hkx

k(1− x)n−s−k+1.

Thus for n � s ,

Lα ,s
n ( f ;x) =

n

∑
k=0

bα ,s
nk (x) fk

= (1−α)
n−s+1

∑
k=0

(
n− s+1

k

)
xk(1− x)n−s−k+1hk

+α
n

∑
k=0

(
n
k

)
xk(1− x)n−k fk. �

LEMMA 3. For any 0 � α � 1 and s, the operators Lα ,s
n ( f ;x) , preserves linear

polynomials, that is;
Lα ,s

n (1;x) = 1 and Lα ,s
n (t;x) = x.

Proof. For the case n < s , Lα ,s
n (1;x) = Bn(1;x) = 1 and Lα ,s

n (t;x) = Bn(t;x) = x .
So we only need to prove both equations for the case n � s . If f (x) = 1 then fk = hk =
1. Therefore,

Lα ,s
n (1;x) = (1−α)

n−s+1

∑
k=0

(
n− s+1

k

)
xk(1− x)n−s−k+1 + α

n

∑
k=0

(
n
k

)
xk(1− x)n−k.

= (1−α)Bn−s+1(1;x)+ αBn(1;x) = 1.

On the other hand it is easy to see that, if f (x) = x then,

hk =
k

n− s+1
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and

Lα ,s
n (t;x) = (1−α)

n−s+1

∑
k=0

(
n− s+1

k

)
xk(1− x)n−s−k+1 k

n− s+1

+α
n

∑
k=0

(
n
k

)
xk(1− x)n−k k

n

= (1−α)Bn−s+1(t;x)+ αBn(t;x) = x. �

3. Approximation properties of Lα ,s
n ( f ;x)

In this section, we shall study approximation properties of Lα ,s
n ( f ;x) .

THEOREM 2. For any 0 � α � 1 and n � s � 2 ,

Lα ,s
n ( f ;x) = (1−α)

n−s+1

∑
r=0

(
n− s+1

r

)(
�r f0 +

r
n− s+1

(�r−1 fs −�r−1 f1)
)

xr

+α
n

∑
r=0

(
n
r

)
xr�r f0. (7)

Proof. Recall that,

Lα ,s
n ( f ;x) = (1−α)

n−s+1

∑
k=0

(
n− s+1

k

)
xk(1− x)n−s−k+1hk + αBn( f ;x),

where 0 � α � 1 and n � s � 2.
Now let,

ϕ(x) =
n−s+1

∑
k=0

(
n− s+1

k

)
xk(1− x)n−s−k+1hk (8)

then using the equation,

(1− x)n−s−k+1 =
n−s−k+1

∑
j=0

(
n− s− k+1

j

)
(−1) jx j

in (8) we have,

ϕ(x) =
n−s+1

∑
k=0

hk

(
n− s+1

k

)
xk

n−s−k+1

∑
j=0

(
n− s− k+1

j

)
(−1) jx j

=
n−s+1

∑
k=0

n−s−k+1

∑
j=0

hk

(
n− s+1

k

)(
n− s− k+1

j

)
(−1) jxk+ j.

But, (
n− s+1

k

)(
n− s− k+1

j

)
=
(

r
k

)(
n− s+1

r

)
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where r = k+ j . Thus,

ϕ(x) =
n−s+1

∑
r=0

(
n− s+1

r

)
xr

r

∑
k=0

(
r
k

)
(−1)r−khk

=
n−s+1

∑
r=0

(
n− s+1

r

)
xr�rh0. (9)

On the other hand it is known that,

Bn( f ,x) =
n

∑
r=0

(
n
r

)
xr�r f0. (10)

Using (9) and (10) in the definition of Lα ,s
n ( f ;x) , we have,

Lα ,s
n ( f ;x) = (1−α)

n−s+1

∑
r=0

(
n− s+1

r

)
xr�rh0 + α

n

∑
r=0

(
n
r

)
xr�r f0.

Finally, by using mathematical induction and the Leibniz rule

�n(gi fi) =
n

∑
k=0

(
n
k

)
(�k fi)(�n−kgi+k)

for n = 1, we can prove that,

�rhi =
(

1− i
n− s+1

)
�r fi +

i
n− s+1

�r fi+s−1 +
r

n− s+1
(�r−1 fi+s−�r−1 fi+1)

which gives

�rh0 = �r f0 +
r

n− s+1
(�r−1 fs −�r−1 f1)

for i = 0. This completes the proof. �

Recall that, we have the following relation between derivatives and differences;

�k fi =
1
nk f (k)(ξi), for some ξi ∈

(
i
n
,
i+ k
n

)
.

If f (x) = xm then,
�k f0 = 0 for k > m

and

�m fi =
1
nm f (m)(ξi) =

m!
nm .

Moreover,
�k f1 = 0 for k > m.
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LEMMA 4. For any 0 � α � 1 and n � s � 2 ,

Lα ,s
n (t2;x) = x2 +

x(1− x)
[
n+(1−α)s(s−1)

]
n2 (11)

Lα ,s
n (t3;x) = x3 + x2(1− x)

[
3n−2

n2 +(1−α)
s(s−1)(3n−2s−2)

n3

]

+x(1− x)
[

1
n2 +(1−α)

s(s−1)(s+1)
n3

]
(12)

Lα ,s
n (t4;x) = x4 + x3(1− x)

[
6n2−11n+6

n3

+(1−α)
s(1− s)

[
3(s+1)(s+2)+2n(3n−4s−7)

]
n4

]

+x2(1− x)
[
7(n−1)

n3 +(1−α)
s(s−1)[(n− s)(4s+10)−7]

n4

]

+x(1− x2)
[

1
n3 +(1−α)

s(s−1)(s2 + s+1)
n4

]
. (13)

Proof. From equation (7) we have,

Lα ,s
n (t2;x) = (1−α)

[
(n− s+1)

(
� f0 +

1
n− s+1

( fs − f1)
)

x

+
(n− s+1)(n− s)

2

(
�2 f0 +

2
n− s+1

(� fs −� f1

)
x2
]

+α
[
n� f0x+

n(n−1)
2

�2 f0x
2
]

= (1−α)
[(

s2 − s+n
n2

)
x+ x2 +

(−s2 + s−n
n2

)
x2
]
+ α

[
x
n

+ x2− x2

n

]

= x2 +
x(1− x)

[
n+(1−α)s(s−1)

]
n2

which proves (11). Equations (12) and (13), can be proved in a parallel way. �

THEOREM 3. Let f (x) be any continuous function on the interval [0,1] . Then for
any positive integer s, and for any 0 � α � 1 , Lα ,s

n ( f ;x) converges uniformly to f (x)
on [0,1].

Proof. As a consequence of the Korovkin theorem [4, 15] it is enough to show
that, Lα ,s

n (ei;x) converges uniformly to ei(x) , where ei(x) = xi , i = 0,1,2. By Lemma
3, we have, Lα ,s

n (1;x) = 1 and Lα ,s
n (x;x) = x . On the other hand by Lemma 4 and the

definition of the operator Lα ,s
n ( f ;x) we have,

Lα ,s
n (t2;x) =

⎧⎨
⎩

x2 + x(1−x)
n , n < s,

x2 +
x(1−x)

[
n+(1−α)s(s−1)

]
n2 , n � s.
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Obviously, for both cases Lα ,s
n (t2;x) converges uniformly to f (x) = x2 , and this com-

pletes the proof. �

LEMMA 5. Let

Sm =
n

∑
k=0

(k−nx)maα ,s
n,k (x).

Then for n � s we have

S0(x) = 1

S1(x) = 0

S2(x) = x(1− x)
[
n+(1−α)s(s−1)

]
S3(x) = x(1− x)(1−2x)

[
n+(1−α)s(s−1)(s+1)

]
S4(x) = 3x2(1− x)2

[
n(n−2)+ (1−α)s(s−1)[2n− (s+1)(s+2)]

]

+x(1− x)
[
n+(1−α)s(s−1)(s2 + s+1)

]
.

Proof. It is obvious that S0(x) = 1 and S1(x) = 0.

S2(x) =
n

∑
k=0

(k−nx)2aα ,s
n,k (x)

=
n

∑
k=0

(k2 −2nkx+ x2)aα ,s
n,k (x)

= n2
n

∑
k=0

( k2

n2 −2x
k
n

+ x2
)
aα ,s

n,k (x)

= n2
n

∑
k=0

k2

n2 aα ,s
n,k (x)−2xn2

n

∑
k=0

k
n
aα ,s

n,k (x)+ x2n2
n

∑
k=0

aα ,s
n,k (x)

= n2x2 +
(
x(1− x)

[
n+(1−α)s(s−1)

])−2n2x2 +n2x2

= x(1− x)
[
n+(1−α)s(s−1)

]
.

Equations for S3(x) and S4(x) can be obtained in a parallel way. �

LEMMA 6. For any 0 � α � 1 , and positive integer s there exists a constant C
independent of n such that,

∑
| kn−x|�n−

1
8

bα ,s
n,k (x) � C

n
3
2

, (14)

for all x ∈ [0,1] .
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Proof. Given a positive integer s . For the case n < s , bα ,s
n,k (x) =

(n
k

)
xk(1− x)n−k

and (14) holds. Assume that n � s . Since S4(x) is a second order polynomial in n .
There exists a constant C such that S4(x) � Cn2 for all x ∈ [0,1] . On the other hand,

| kn − x| � n−
1
8 implies that (k−nx)4

n
7
2

� 1. Thus,

∑
| kn−x|�n−

1
8

aα ,s
n,k (x) � 1

n
7
2

n

∑
k=0

(k−nx)4aα ,s
n,k (x) � 1

n
7
2

S4(x) � 1

n
7
2

Cn2 � C

n
3
2

. �

Now we can prove the following Voronovskaja type theorem [18] for Lα ,s
n ( f ;x) .

THEOREM 4. Let f (x) be a bounded function on [0,1] , if f ′′(x) exists at a point
x ∈ [0,1] then

lim
n→∞

n
[
Lα ,s

n ( f ;x)− f (x)
]
=

1
2
x(1− x) f ′′(x) (15)

where 0 � α � 1 and s is a positive integer.

Proof. Given a positive integer s . If n < s , Lα ,s
n ( f ;x) = Bn( f ;x) and (15) holds.

Assume that n � s , by the Taylor’s formula we have

f (t) = f (x)+ (t− x) f ′(x)+
1
2
(t− x)2 f ′′(x)+ p(t)(t− x)2,

where limt→x p(t) = 0. Taking t = k
n where k � n gives,

f (
k
n
) = f (x)+

( k
n
− x
)

f ′(x)+
1
2

( k
n
− x
)2

f ′′(x)+ p
(k

n

)( k
n
− x
)2

. (16)

Equation (16) gives that,

n[Lα ,s
n ( f ;x)− f (x)] =

1
2n

S2(x) f ′′(x)+n
n

∑
k=0

p
( k

n

)( k
n
− x
)2

aα ,s
n,k (x)

= x(1− x)
[
1
2

+
(1−α)s(s−1)

2n

]
f ′′(x)+nPα ,s

n (x),

for any 0 � α � 1 and s , where

Pα ,s
n (x) =

n

∑
k=0

p
( k

n

)( k
n
− x
)2

aα ,s
n,k (x).

On the other hand,

|Pα ,s
n (x)| � ∑

| kn−x|<n−
1
8

∣∣∣p( k
n

)∣∣∣( k
n
− x
)2

aα ,s
n,k (x)+ ∑

| kn−x|�n−
1
8

∣∣∣p(k
n

)∣∣∣( k
n
− x
)2

aα ,s
n,k (x).
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Given ε > 0, we can find n , large enough such that | kn − x| < n−
1
8 implies p( k

n ) < ε .
Therefore,

|Pα ,s
n (x)| � ε

n2 S2(x)+K ∑
| kn−x|�n−

1
8

|aα ,s
n,k (x)|

� εx(1− x)
[

1
2n

+
(1−α)s(s−1)

2n2

]
+

KC

n
3
2

,

where K = sup0�t�1p(t)(t − x)2 . In other words,

n|Pα ,s
n (x)| � εx(1− x)

[
1
2

+
(1−α)s(s−1)

2n

]
+

KC

n
1
2

.

Since ε is arbitrary (15) follows. �
Recall that the modulus of continuity of a function f (x) which is defined on an

interval [a,b] is defined by,

ω( f ;δ ) = supa�x,y�b, |x−y|<δ
∣∣ f (x)− f (y)

∣∣
where δ > 0. It is also well-known that, ω(δ ) satisfies following properties.

(i) If 0 < δ � γ , then ω( f ;δ ) � ω( f ;γ) .
(ii) f (x) is uniformly continuous on [a,b] if and only if limδ→0 ω( f ;δ ) = 0.
(iii) If μ > 0, then ω( f ;μδ ) � (1+ μ)ω( f ;δ ) .

THEOREM 5. Let f be a bounded function on [0,1] and let 0 � α � 1 be any
real number than,

‖Lα ,s
n ( f ;x)− f (x)‖∞ � 3

2
ω
(

f ,

√
n+(1−α)s(s−1)

n

)
where ‖ · ‖∞ is the supremum norm and n � s.

Proof. For any α ∈ [0,1] , and n � s we have,

|Lα ,s
n ( f ;x)− f (x)|

=
∣∣∣ n

∑
k=0

aα ,s
nk f

( k
n

)
− f (x)

∣∣∣
�

n

∑
k=0

aα ,s
nk

∣∣∣ f( k
n

)
− f (x)

∣∣∣
�

n

∑
k=0

ω
(

f ;
∣∣∣x− k

n

∣∣∣)aα ,s
nk

�
n

∑
k=0

ω

(
f ;

√
n+(1−α)s(s−1)

n

∣∣∣x− k
n

∣∣∣ n√
n+(1−α)s(s−1)

)
aα ,s

nk
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�
n

∑
k=0

(
1+

n√
n+(1−α)s(s−1)

∣∣∣x− k
n

∣∣∣
)

×ω

(
f ;

√
n+(1−α)s(s−1)

n

)
aα ,s

nk

� ω

(
f ;

√
n+(1−α)s(s−1)

n

)

×
n

∑
k=0

(
1+

n√
n+(1−α)s(s−1)

∣∣∣x− k
n

∣∣∣
)

aα ,s
nk

� ω

(
f ;

√
n+(1−α)s(s−1)

n

)

×
(

1+
n√

n+(1−α)s(s−1)

n

∑
k=0

∣∣∣x− k
n

∣∣∣aα ,s
nk

)
. (17)

On the other hand as a consequence of Schwarz’s inequality we have,

n

∑
k=0

|x− k
n
|aα ,s

nk =
n

∑
k=0

∣∣∣x− k
n

∣∣∣√aα ,s
nk

√
aα ,s

nk

�
[

n

∑
k=0

(
x− k

n

)2
aα ,s

nk

] 1
2
[

n

∑
k=0

aα ,s
nk

] 1
2

�
[

n

∑
k=0

(
x− k

n

)2
aα ,s

nk

] 1
2

.

For s � 2 we get,

n

∑
k=0

(x− k
n
)2aα ,s

nk =
x(1− x)

(
n+(1−α)s(s−1)

n2

� n+(1−α)s(s−1)
4n2 .

Therefore,

|Lα ,s
n ( f ;x)− f (x)| � ω

(
f ;

√
n+(1−α)s(s−1)

n

)

×
(

1+
n√

n+(1−α)s(s−1)

√
n+(1−α)s(s−1)

2n

)

=
3
2

ω

(
f ,

√
n+(1−α)s(s−1)

n

)
. �
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4. Shape preserving properties of Lα ,s
n ( f ;x)

This section is devoted to the shape preserving properties of Lα ,s
n ( f ;x) . Particu-

larly, we shall prove that Lα ,s
n ( f ;x) preserves monotonicity and convexity properties.

THEOREM 6. Let f be a continuous function on the interval [0,1] . If f is mono-
tonically increasing (or monotonically decreasing) on [0,1] , then for any positive inte-
ger s, and for any 0 � α � 1 , Lα ,s

n f is also monotonically increasing (or monotonically
decreasing) on [0,1].

Proof. If s = 1 or n < s , Lα ,s
n ( f ;x) = Bn( f ,x) so it has monotonicity and convex-

ity properties. Now we can assume that n � s � 2. From Lemma 1,

Lα ,s
n ( f ;x) = (1−α)

n

∑
k=0

[(
n− s
k− s

)
xk−s+1(1− x)n−k

+
(

n− s
k

)
xk(1− x)n−s−k+1

]
fk + αBn( f ,x).

Say

T =
n

∑
k=0

[(
n− s
k− s

)
xk−s+1(1− x)n−k +

(
n− s

k

)
xk(1− x)n−s−k+1

]
fk

then,

T ′ =
n

∑
k=0

(
n− s
k− s

)
(k− s+1)xk−s(1− x)n−k fk

−
n

∑
k=0

(
n− s
k− s

)
(n− k)xk−s+1(1− x)n−k−1 fk

+
n

∑
k=0

(
n− s

k

)
kxk−1(1− x)n−s−k+1 fk

−
n

∑
k=0

(
n− s

k

)
(n− k− s+1)xk(1− x)n−s−k fk.

The first and third summations are zero for k = 0 and second and fourth summations
are zero for k = n . So if we modify the summations and then if we replace k by k+1
in first and third summations we get,

T ′ =
n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+2)xk−s+1(1− x)n−k−1 fk+1

−
n−1

∑
k=0

(
n− s
k− s

)
(n− k)xk−s+1(1− x)n−k−1 fk
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+
n−1

∑
k=0

(
n− s
k+1

)
(k+1)xk(1− x)n−s−k fk+1

−
n−1

∑
k=0

(
n− s

k

)
(n− k− s+1)xk(1− x)n−s−k fk. (18)

Using the equations

(
n− s
k− s

)
(n− k) =

(
n− s

k− s+1

)
(k− s+1)

and (
n− s
k+1

)
(k+1) =

(
n− s

k

)
(n− s− k)

in (18) we have,

T ′ =
n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+1)xk−s+1(1− x)n−k−1� fk

+
n−1

∑
k=0

(
n− s

k

)
(n− s− k)xk(1− x)n−s−k� fk

+
n−1

∑
k=0

(
n− s

k− s+1

)
xk−s+1(1− x)n−k−1 fk+1

−
n−1

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k fk.

Since
( n−s
k−s+1

)
= 0 when k < s−1 and

(n−s
k

)
= 0 when k > n− s , we get

T ′ =
n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+1)xk−s+1(1− x)n−k−1� fk

+
n−1

∑
k=0

(
n− s

k

)
(n− s− k)xk(1− x)n−s−k� fk

+
n−1

∑
k=s−1

(
n− s

k− s+1

)
xk−s+1(1− x)n−k−1 fk+1

−
n−s

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k fk.
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Replace k by k+ s−1 in the third summation we get,

T ′ =
n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+1)xk−s+1(1− x)n−k−1� fk

+
n−1

∑
k=0

(
n− s

k

)
(n− s− k)xk(1− x)n−s−k� fk

+
n−s

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k fk+s −

n−s

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k fk,

or

T ′ =
n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+1)xk−s+1(1− x)n−k−1� fk

+
n−1

∑
k=0

(
n− s

k

)
(n− s− k)xk(1− x)n−s−k� fk

+
n−s

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k( fk+s − fk). (19)

Therefore, using (19) and the fact that

B′
n( f ,x) =

n−1

∑
k=0

(
n
k

)
(n− k)xk(1− x)n−k−1� fk

we get,

(Lα ,s
n )′( f ;x) = (1−α)

[n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+1)xk−s+1(1− x)n−k−1� fk

+
n−1

∑
k=0

(
n− s

k

)
(n− s− k)xk(1− x)n−s−k� fk

+
n−s

∑
k=0

(
n− s

k

)
xk(1− x)n−s−k( fk+s − fk)

]

+α
n−1

∑
k=0

(
n
k

)
(n− k)xk(1− x)n−k−1� fk. (20)

Now, if f (x) is monotonically increasing then � fk � 0, fk+s− fk � 0 and (Lα ,s
n )′( f ;x)�

0, or if f (x) is monotonically decreasing then � fk � 0, fk+s− fk � 0 and (Lα ,s
n )′( f ;x)�

0. �

THEOREM 7. Let f (x) be a continuous function on the interval [0,1] . If f (x) is
convex on [0,1] , then for any positive integer s, and for any 0 � α � 1 , Lα ,s

n ( f ;x) is
also convex on [0,1].
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Proof. If s = 1 or n < s , Lα ,s
n ( f ;x) = Bn( f ,x) so it is convex. Now we can assume

that n � s � 2. The derivative of (18) gives that,

T ′′ =
n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+1)(k− s+2)xk−s(1− x)n−k−1 fk+1

−
n−1

∑
k=0

(
n− s

k− s+1

)
(k− s+2)(n− k−1)xk−s+1(1− x)n−k−2 fk+1

−
n−1

∑
k=0

(
n− s
k− s

)
(n− k)(k− s+1)xk−s(1− x)n−k−1 fk

+
n−1

∑
k=0

(
n− s
k− s

)
(n− k)(n− k−1)xk−s+1(1− x)n−k−2 fk

+
n−1

∑
k=0

(
n− s
k+1

)
k(k+1)xk−1(1− x)n−s−k fk+1

−
n−1

∑
k=0

(
n− s
k+1

)
(n− s− k)(k+1)xk(1− x)n−s−k−1 fk+1

−
n−1

∑
k=0

(
n− s

k

)
(n− s− k+1)kxk−1(1− x)n−s−k fk

+
n−1

∑
k=0

(
n− s

k

)
(n− s− k+1)(n− s− k)xk(1− x)n−s−k−1 fk.

First, third, fifth and seventh summations are zero for k = 0 and other summations are
zero for k = n− 1. Modify end-points of each summation accordingly and replace k
by k+1 in first, third, fifth and seventh summations we have,

T ′′ =
n−2

∑
k=0

(
n− s

k− s+2

)
(k− s+2)(k− s+3)xk−s+1(1− x)n−k−2 fk+2

−2
n−2

∑
k=0

(
n− s

k− s+1

)
(k− s+2)(n− k−1)xk−s+1(1− x)n−k−2 fk+1

+
n−2

∑
k=0

(
n− s
k− s

)
(n− k)(n− k−1)xk−s+1(1− x)n−k−2 fk

+
n−2

∑
k=0

(
n− s
k+2

)
(k+1)(k+2)xk(1− x)n−s−k−1 fk+2

−2
n−2

∑
k=0

(
n− s
k+1

)
(n− s− k)(k+1)xk(1− x)n−s−k−1 fk+1

+
n−2

∑
k=0

(
n− s

k

)
(n− s− k+1)(n− s− k)xk(1− x)n−s−k−1 fk. (21)
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Using following equations

(
n− s

k− s+2

)
(k− s+2) =

(
n− s

k− s+1

)
(n− k−1),

(
n− s
k− s

)
(n− k) =

(
n− s

k− s+1

)
(k− s+1),

(
n− s
k+2

)
(k+2) =

(
n− s
k+1

)
(n− s− k−1),

and (
n− s

k

)
(n− s− k) =

(
n− s
k+1

)
(k+1)

in (21) we get,

T ′′ =
n−2

∑
k=0

(
n− s

k− s+1

)
(n− k−1)(k− s+3)xk−s+1(1− x)n−k−2 fk+2

−2
n−2

∑
k=0

(
n− s

k− s+1

)
(k− s+2)(n− k−1)xk−s+1(1− x)n−k−2 fk+1

+
n−2

∑
k=0

(
n− s

k− s+1

)
(n− k−1)(k− s+1)xk−s+1(1− x)n−k−2 fk

+
n−2

∑
k=0

(
n− s
k+1

)
(k+1)(n− s− k−1)xk(1− x)n−s−k−1 fk+2

−2
n−2

∑
k=0

(
n− s
k+1

)
(n− s− k)(k+1)xk(1− x)n−s−k−1 fk+1

+
n−2

∑
k=0

(
n− s
k+1

)
(k+1)(n− s− k+1)xk(1− x)n−s−k−1 fk

T ′′ =
n−2

∑
k=0

(
n− s

k− s+1

)
(n− k−1)(k− s+1)xk−s+1(1− x)n−k−2 �2 fk

+
n−2

∑
k=0

(
n− s

k− s+1

)
(n− k−1)xk−s+1(1− x)n−k−2(2 fk+2−2 fk+1)

+
n−2

∑
k=0

(
n− s
k+1

)
(k+1)(n− s− k−1)xk(1− x)n−s−k−1 �2 fk

+
n−2

∑
k=0

(
n− s
k+1

)
(k+1)xk(1− x)n−s−k−1(−2 fk+1 +2 fk).
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The first two summations are zero for k < s− 1 and last two summations are zero for
k > n− s−1, so we have

T ′′ =
n−2

∑
k=s−1

(
n− s

k− s+1

)
(n− k−1)(k− s+1)xk−s+1(1− x)n−k−2 �2 fk

+
n−2

∑
k=s−1

(
n− s

k− s+1

)
(n− k−1)xk−s+1(1− x)n−k−2(2 fk+2 −2 fk+1)

+
n−s−1

∑
k=0

(
n− s
k+1

)
(k+1)(n− s− k−1)xk(1− x)n−s−k−1 �2 fk

+
n−s−1

∑
k=0

(
n− s
k+1

)
(k+1)xk(1− x)n−s−k−1(−2 fk+1 +2 fk). (22)

T ′′ =
n−s−1

∑
k=0

(
n− s

k

)
k(n− k− s)xk(1− x)n−k−s−1 �2 fk+s−1

+
n−s−1

∑
k=0

(
n− s
k+1

)
(k+1)(n− s− k−1)xk(1− x)n−s−k−1 �2 fk

+2
n−s−1

∑
k=0

(
n− s

k

)
(n− k− s)xk(1− x)n−k−s−1

×( fk+s+1 − fk+s− fk+1 + fk). (23)

By using mathematical induction one can prove that

fk+s+1− fk+s − fk+1 + fk =
s−1

∑
m=0

�2 fk+m. (24)

Therefore, using (24) in (23) we get,

T ′′ =
n−s−1

∑
k=0

(
n− s

k

)
(n− k− s)xk(1− x)n−k−s−1(k) �2 fk+s−1

+
n−s−1

∑
k=0

(
n− s
k+1

)
(k+1)xk(1− x)n−s−k−1(n− s− k−1)�2 fk

+2
n−s−1

∑
k=0

(
n− s

k

)
(n− k− s)xk(1− x)n−k−s−1

s−1

∑
m=0

�2 fk+m.

If f is convex then
�2 fk � 0,

which means T ′′ � 0 and B′′
n( f ;x) � 0 or equivalently,

(Lα ,s
n )′′( f ;x) = (1−α)T ′′ + αB′′

n( f ;x) � 0,

which completes the proof. �
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5. Concluding remarks

In this paper, we introduced the generalized blending type Bernstein operators Lα ,s
n

which depends on two parameters α and s . So far, many research papers are published
concerning blending type Bernstein operators but the Lototsky matrices that generates
these blending type Bernstein operators were not investigated. In this paper, we also
introduced the Lototsky matrix that generates our blending type Bernstein operators. It
should be noted that Lototsky matrix that generates α -Bernstein operators (3) can be
obtained from (4) for s = 2.

The generalized blending type Bernstein operators has the following properties:

(i) For α = 1 or s = 1, Lα ,s
n ( f ;x) reduces to Bernstein operators.

(ii) For s = 2, Lα ,s
n ( f ;x) reduces to α -Bernstein operators (3) given by Chen et al.

[10].

(iii) For any 0 � α � 1 and positive integer s , Lα ,s
n ( f ;x) reproduce the linear func-

tions.

(iv) If f (x) is a continuous function on [0,1] , then for any real number α ∈ [0,1] and
for any s , Lα ,s

n ( f ;x) converges uniformly to f (x) .

(v) For any 0 � α � 1 and positive integer s , Lα ,s
n ( f ;x) has monotonicity and convex-

ity properties.

(vi) The Lototsky matrices, introduced in (4), generates Lα ,s
n ( f ;x) . The particular case

of these Lototsky matrices for s = 2 generates α -Bernstein operators given by
Chen et al. [10] .

(vii) An upper bound for the approximation error of these operators are obtained in
terms of modulus of continuity.

(viii) In Figure 1, the approximation of Lα ,s
n ( f ;x) to f , for f (x) = x(x−1)(2x−1) is

shown for α = 0.5, s = 5 and n = 25,50,200.

Figure 1: Approximation of Lα ,s
n ( f ;x) to f (x) = x(x− 1)(2x− 1) for s = 5 , α = 0.5 and

n = 25,50,200
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(ix) Figure 2, shows the approximation of Lα ,s
n ( f ;x) to f , for f (x) = x(x−1)(2x−1)

for fixed n and α . It can be seen that smaller s values gives better approximation
to f .

Figure 2: Approximation of Lα ,s
n ( f ;x) to f (x) = x(x− 1)(2x− 1) for n = 25 , α = 2/3 and

s = 2,5,10,19

(x) Figure 3, shows the approximation of Lα ,s
n ( f ;x) to f , for f (x) = x(x−1)(2x−1)

for fixed n and s . It can be seen that large values of α gives better approximation
to f .

Figure 3: Approximation of Lα ,s
n ( f ;x) to f (x) = x(x−1)(2x−1) for s = 9 , n = 25 and α =

0.1,0.3,0.5,0.7
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