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Abstract. In this paper, we present singular value inequalities relevant to accretive-dissipative
normal compact operators. In particular, we showed that if X = A + iB and Y = C + iD are
accretive-dissipative normal compact operators, where A � C and B � D . Then

s j(X −Y ) �
√

2s j(X ⊕Y )

for j = 1,2, . . . Moreover, if

[
X Z
Z∗ Y

]
is accretive-dissipative normal compact operator. Then

√
2s j(Z) � s j(X ⊕Y )

for j = 1,2, . . . We showed that these inequalities are equivalent. Also, we provide several
singular value inequalities relevant to accretive- dissipative normal compact operators.

1. Introduction

Let B(H) denote the space of all bounded linear operators on a complex separable
Hilbert space H, and let K(H) denote the two-sided ideal of compact operators in
B(H). The operator A ∈ K(H) is called normal operator if A∗A = AA∗ . The absolute
value of A is the positive operator |A| , where |A| = (A∗A)1/2 . The singular values
of the compact operator A are the eigenvalues of the positive compact operator |A| ,
denoted by s1(A) � s2(A) � . . . and repeated according to multiplicity. Some basic
properties for singular values of compact operators are listed below:

(a)
s j(UAV ) = s j(A) = s j(A∗) = s j(|A|) = s j(|A∗|) (1)

for j = 1,2, . . . where U and V are unitary.

(b) s j(AA∗) = s j(A∗A) for j = 1,2, . . .
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(c)

s j

[
A 0
0 B

]
= s j

[
0 B
A 0

]
(2)

for j = 1,2, . . . , and they consist of those of A together with those of B , where[
A 0
0 B

]
is defined on H⊕H .

By applying Weyl’s monotonicity principle (see, e.g., [10, p.63] or [13, p.26]), if
A,B ∈ K(H) are positive and A � B , then

s j(A) � s j(B) (3)

for j = 1,2, . . . Moreover, for A,B ∈ K(H) ,

s j(A) � s j(B) if and only if s j(A⊕A) � s j(B⊕B) (4)

for j = 1,2, . . . Every T ∈ B(H) can be written uniquely as T = A+ iB , where A =
T+T∗

2 and B = T−T ∗
2i are the real and imaginary parts of T , respectively, and they are

self-adjoint operators. This is the cartesian decomposition of T . An operator T ∈B(H)
is called accretive-dissipative if in its cartesian decomposition, the operators A and B
are positive.

Bhatia and Kittaneh in [11] have been proven that if A,B ∈ K(H) , then

2s j(AB∗) � s j(A∗A+B∗B) (5)

for j = 1,2, . . . Zhan in [17] has been proven that if A,B ∈ K(H) are positive, then

s j(A−B) � s j(A⊕B) (6)

for j = 1,2, . . . Tao has been proven in [16] that if A,B,C ∈ K(H) such that

[
A B
B∗ C

]

� 0, then

2s j(B) � s j

[
A B
B∗ C

]
(7)

for j = 1,2, . . . Moreover, Bhatia and Kittaneh have been proven in [12] that if A,B ∈
K(H) such that A is self-adjoint, B � 0 and ±A � B , then

s j(A) � s j(B⊕B) (8)

for j = 1,2, . . .
Many authors have conducted many studies to find effective inequalities on the

subject of singular value inequalities, some of them succeed in that, Audeh and Kittaneh
pointed out in [9] an equivalent form of inequality (7), which asserts that if A,B,C ∈
K(H) , where A is self-adjoint, B � 0 and ±A � B , then

2s j(A) � s j((B+A)⊕ (B−A)) (9)
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f or j = 1,2, . . . It should be noted that inequalities in [6,10] are proven for matrices,
but we can ordinarily expand these inequalities to include all compact operators. While
inequalities (6), (7), (8), and (9) are well-known for positive operators, we give related
singular value inequalities for accretive-dissipative normal operators. For more general
and comprehensive results related to singular value inequalities, we refer to [1], [2], [3],
[4], [5], [6], [7], [8], [14] and [15] and the references therein.

2. Main results

To reach our findings, we need the following lemmas. The first lemma is a conse-
quence of the min-max principle (see, e.g., [10, p. 75], or [13, p. 27]).

LEMMA 1. Let A,B,X ∈ B(H) such that X is compact. Then

s j(AXB) � ‖A‖‖B‖s j(X) (10)

for j = 1,2, . . .

LEMMA 2. Let A,B ∈ K(H) and let X = A+ iB be accretive-dissipative normal
operator. Then

1√
2
s j(A+B) � s j(X) � s j(A+B) (11)

for j = 1,2, . . .

Proof. |A+B|2 � 2(|A|2 + |B|2). Hence

s j(A+B) = s j(|A+B|) �
√

2s j

(√
|A|2 + |B|2

)

(by inequalities (1) and (3)),

=
√

2s j(|X |) =
√

2s j(X) (since A, B � 0)

which proves the first inequality. Moreover, since X is normal, we have |X |=√
X∗X =√

A2 +B2 � |A|+ |B| . This implies that

s j(X) = s j(|X |) � s j(|A|+ |B|) = s j(A+B),
(by inequalities (1) and (3)),

which proves the second inequality. �
By making use of lemma 2 incites, we here by present the following result. Through-

out this paper, when will discuss accretive-dissipative normal operators X = A+ iB and
Y = C+ iD , we assume that C � A and D � B .

THEOREM 1. Let X ,Y ∈ K(H) be accretive-dissipative normal operators where
X = A+ iB and Y = C+ iD. Then

s j(Y −X) �
√

2s j(Y ⊕X) (12)

for j = 1,2, . . .
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Proof. Since X = A+ iB and Y = C+ iD are the cartesian decompositions of the
accretive-dissipative normal operators X and Y respectively , it follows that A,B,C and
D are positive operators. Now

s j(Y −X) = s j((C+ iD)− (A+ iB))
= s j((C−A)+ i(D−B))
� s j((C−A)+ (D−B)) (by inequality (11)

= s j((C+D)− (A+B))
� s j((C+D)⊕ (A+B)) (by inequality (6))

�
√

2s j((C+ iD)⊕ (A+ iB)) (by inequality (11)

=
√

2s j(Y ⊕X),

which is the conclusion of inequality (12). �

EXAMPLE 1. Let X =
[

1 0
0 2+ i

]
and Y =

[
2+2i 0

0 4+4i

]
be accretive-dissipative

normal operators. Then
s j(Y −X) =

√
13,

√
5,0,0

and √
2s j(Y ⊕X) = 8,4,

√
10,

√
2.

The following theorem is a generalization of inequality (12).

THEOREM 2. Let X ,Y ∈ K(H) be accretive-dissipative normal operators and let
A,B ∈ B(H) . Then

s j(A(Y −X)B) �
√

2‖A‖‖B‖s j(Y ⊕X) (13)

for j = 1,2, . . .

Proof.

s j(A(Y −X)B) � ‖A‖‖B‖s j(Y −X), (by inequality (10))

�
√

2‖A‖‖B‖s j(Y ⊕X), (by inequality (12)). �

By making use of Theorem 1, we here by present the following theorem.

THEOREM 3. Let X ,Y,Z ∈ K(H) such that

[
X Z
Z∗ Y

]
is accretive-dissipative nor-

mal block matix . Then √
2s j(Z) � s j

[
X Z
Z∗ Y

]
(14)

for j = 1,2, . . .
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Proof. Let A =
[

X Z
Z∗ Y

]
be accretive-dissipative normal block matix, note that[

X Z
Z∗ Y

]
is unitarily equivalent to

[
X −Z

−Z∗ Y

]
. To show this, note that

[
X −Z

−Z∗ Y

]
=

UAU∗, where U =
[

I 0
0 −I

]
. It follows that

[
X −Z

−Z∗ Y

]
is accretive-dissipative normal

block matix. Apply the result of Theorem 1, we have

s j

([
X Z
Z∗ Y

]
−

[
X −Z

−Z∗ Y

])
�
√

2s j

([
X Z
Z∗ Y

]
⊕

[
X −Z

−Z∗ Y

])
.

This implies that

2s j

([
0 Z
Z∗ 0

])
�
√

2s j

([
X Z
Z∗ Y

]
⊕

[
X −Z

−Z∗ Y

])
,

which is equivalent to saying that

√
2s j (Z⊕Z∗) � s j

([
X Z
Z∗ Y

]
⊕

[
X −Z

−Z∗ Y

])
, (by inequality (2)),

which implies that

√
2s j(Z) � s j

[
X Z
Z∗ Y

]
(by inequality (4)). �

The following theorem is a generalization of inequality (3).

THEOREM 4. Let X ,Y,Z ∈ K(H) such that

[
X Z
Z∗ Y

]
is accretive-dissipative nor-

mal block matix, A,B ∈ B(H). Then

√
2s j(AZB) � ‖A‖‖B‖s j

[
X Z
Z∗ Y

]
(15)

for j = 1,2, . . .

Proof.
√

2s j(AZB) �
√

2‖A‖‖B‖s j(Z) (by using inequality (10))

� ‖A‖‖B‖s j

[
X Z
Z∗ Y

]
(by inequality (14)),

which is precisely inequality (15). �
At this stage of our discussion, we provide the following singular value inequality

for accretive-dissipative normal operators.
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THEOREM 5. Let X ,Y ∈ K(H) where X = A+ iB and Y = C+ iD be accretive-
dissipative normal operators. Then

√
2s j(X) � s j((Y +X)⊕ (Y −X)) (16)

for j = 1,2, . . .

Proof.

s j

[
Y X
X Y

]
= s j

[
C+ iD A+ iB
A+ iB C+ iD

]

= s j

([
C A
A C

]
+ i

[
D B
B D

])

� s j

([
C A
A C

]
+

[
D B
B D

])
, (by inequality (11))

= s j

([
C+D A+B
A+B C+D

])
.

It follows that

2s j(X) = 2s j(A+ iB)
� 2s j(A+B), (by inequality (11))

� s j

([
C+D A+B
A+B C+D

])
, (by inequality (7))

= s j

([
C A
A C

]
+

[
D B
B D

])

�
√

2s j

([
C A
A C

]
+ i

[
D B
B D

])
, (by inequality (11))

=
√

2s j

([
C+ iD A+ iB
A+ iB C+ iD

])

=
√

2s j

([
Y X
X Y

])
.

for j = 1,2, . . . Our inequality has thus been substantiated. �

EXAMPLE 2. Let X =
[

2i 0
0 3+ i

]
and Y =

[
1+4i 0

0 4+3i

]
be accretive-dissipative

normal operators. Then √
2s j(X) = 2

√
5,2

√
2,0,0

and
s j((Y +X)⊕ (Y −X)) =

√
65,

√
37,

√
5,
√

5.

The following theorem is a generalization of inequality (16).
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THEOREM 6. Let X ,Y ∈ K(H) be accretive-dissipative normal operators and let
A,B ∈ B(H) . Then

√
2s j(AXB) � ‖A‖‖B‖s j((Y +X)⊕ (Y −X)) (17)

for j = 1,2, . . .

Proof.

√
2s j(AXB) �

√
2‖A‖‖B‖s j(X), (by using inequality (10))

� ‖A‖‖B‖s j((Y +X)⊕ (Y −X)), (by inequality (16)).

Inequality (17) has thus been substantiated. �

In the next theorem, we prove that inequalities (12), (14) and (16) are equivalent.

THEOREM 7. The following statements are equivalent.

(1) Let X ,Y ∈ K(H) be accretive-dissipative normal operators. Then

s j(Y −X) �
√

2s j(Y ⊕X)

for j = 1,2, . . .

(2) Let X ,Y,Z ∈ K(H) be such that

[
X Z
Z∗ Y

]
is accretive-dissipative normal block

matix. Then √
2s j(Z) � s j

[
X Z
Z∗ Y

]

for j = 1,2, . . .

(3) Let X ,Y ∈ K(H) be accretive-dissipative normal operators. Then

√
2s j(X) � s j((Y +X)⊕ (Y −X))

for j = 1,2, . . .

Proof. (1) → (2) This implication follows from the proof of Theorem 3.

(2) → (1) To prove inequality (12), let X and Y be accretive-dissipative nor-

mal operators, which implies that

[
X 0
0 Y

]
is also accretive-dissipative normal operator

matrix. Define D =
[

X+Y
2

X−Y
2

X−Y
2

X+Y
2

]
. Then D is unitarily equivalent to

[
X 0
0 Y

]
, note
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that

[
X 0
0 Y

]
=UDU∗, where U = 1√

2

[
I −I
−I I

]
. Now, applying inequality (14) to the

accretive-dissipative normal operator matrix D , we have

√
2s j

(
X −Y

2

)
� s j

([
X+Y

2
X−Y

2
X−Y

2
X+Y

2

])

= s j

([
X 0
0 Y

])

= s j(X ⊕Y ),

which is inequality (14). Thus inequalities (12) and (14) are equivalent.

(1) → (3) Let Y −X and Y + X substitute X and Y respectively in inequality
(12). Then inequality (16) is satisfied.

(3) → (1) Let Y −X and Y + X substitute X and Y respectively in inequality
(16). Then inequality (12) is satisfied. Thus inequalities (12) and (16) are equivalent.
Theorem 7 has thus been substantiated. �

THEOREM 8. Let X ,Y ∈ K(H) be accretive-dissipative normal operators, where
X = A+ iB and Y = C+ iD. Then

s j(X) �
√

2s j(Y ) (18)

for j = 1,2, . . .

Proof.

s j(X) = s j(A+ iB)
� s j(A+B), (by inequality (11))

� s j(C+D), (by inequality (3)

�
√

2s j(C+ iD) (by inequality (11)

=
√

2s j(Y ). �
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