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THRESHOLD DYNAMICS BEHAVIORS OF A STOCHASTIC SIRS

EPIDEMIC MODEL WITH A PARAMETER FUNCTIONAL VALUE
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(Communicated by N. Elezović)

Abstract. This article pays the main attention to the notions of a spreading threshold dynamical
model for a stochastic SIRS with environmental noise. A unique positive solution of the stochas-
tic model is proved to be existed in this article. Furthermore, by appropriate Lyapunov functions,
the ergodic stationary distribution is introduced. The conditions of extinction or permanence of
the SIRS epidemic model are also considered in this arcticle.

1. Introduction

For the reason that the health of human beings are threaten seriously by infectious
diseases, how to control of the infectious diseases is one of the most important research
topics in the study of the epidemic models in mathematical biology. The main diseases
can be modeled as SIR, SIRS, or SIS models [1–8]. Hethcode H.W. [8] considered the
deterministic SIRS epidemic model by the following system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dS(t) = (μ − μS(t)−βS(t)I(t)+ γR(t))dt,

dI(t) = (−(μ + λ )I(t)+ βS(t)I(t))dt,

dR(t) = (−(μ + γ)R(t)+ λ I(t))dt,

(1.1)

where S(t), I(t),R(t) stand for the population fractions of susceptible, the infective, and
the removed at time t , respectively. The positive constant μ stands for the death rates,
β stands for the infection coefficient, λ stands for the recovery rate, and γ stands for
the lost immunity rat. The author [8] showed that the system (1.1) has a unique globally
asymptotically stable disease-free equilibrium state.

Actually, in real life, the epidemic model has a lot of randomness, which is affected
by environmental noise [1, 4, 6, 10–23]. Compared to deterministic models, stochastic
models are closer to reality. Lahrouz A. et al. [4] gave the conditions of extinction
and persistence of stochastic SIRS epidemic model; Herwaarden et al. [6] put their
theory to the test that an endemic equilibrium can disappear by stochastic fluctuations.
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The stochastic SIRS epidemic model with a double epidemic asymmetry assumption is
studied by Chang et al. [17]. About the system (1.1), Tornatore et. al. [5] obtained the
stability of the disease-free equilibrium state E0 of the following improved stochastic
SIRS model:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dS(t) = (μ − μS(t)−βS(t)I(t)+ γR(t))dt−σS(t)I(t)dB(t),

dI(t) = (−(μ + λ )I(t)+ βS(t)I(t))dt + σS(t)I(t)dB(t),

dR(t) = (−(μ + γ)R(t)+ λ I(t))dt.

(1.2)

Meanwhile, A. Lahrouz etc. [4] considered when the system (1.2) is extinct and persist.
Motivated by the above facts, in this article, we consider the ergodic stationary

distribution of the stochastic SIRS epidemic system (1.2), influenced with dS(t), dI(t) ,
and dR(t) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dS(t) = (μ − μS(t)−βS(t)I(t)+ γR(t))dt+ σ1S(t)dB1(t),

dI(t) = (−(μ + λ )I(t)+ βS(t)I(t))dt + σ2I(t)dB2(t),

dR(t) = (−(μ + γ)R(t)+ λ I(t))dt + σ3R(t)dB3(t),

(1.3)

where Bi(t) stand for standard Brownian motions and Bi(0) = 0, σ2
i > 0 are the envi-

ronmental noise, i = 1,2,3.
We organize the present manuscript as follows. In the second section, we mainly

give some basic concepts and conclusions. In the third section, we gave the uniqueness
properties of the positive solution in the system (1.3). We demonstrate the extinction
and persistence of the system (1.3) in the fourth section. Meanwhile, the existence
and uniqueness properties of an ergodic stationary distribution of the system (1.3) are
obtained in the fifth section. The main theoretical results are illuminated by an example
and many kinds of numerical simulations in the sixth section. Finally, we give the
conclusion and the assumption that we can continue the research work in the future in
the last section.

2. Preliminaries

We define the general d -dimensional stochastic differential equation

dx(t) = f (x(t),t)dt +g(x(t),t)dB(t), for t � t0 (2.1)

with initial value x(t0) = x0 ∈ R
n , where B(t) is d -dimensional standard Brownian

motion. A differential operator L is defined in the system (2.1) as Mao [9]:

L =
∂
∂ t

+ Σ fi(x,t)
∂

∂xi
+

1
2

Σ[gT (x,t)g(x,t)]i j
∂ 2

∂xi∂x j
.

If L acts on a function V ∈C2,1(Rn×R+;R+) , then

LV (x, t) = Vt(x,t)+Vx(x,t)+
1
2

trac [gT (x,t)Vxx(x,t)g(x,t)],
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where Vt = ∂V
∂ t ,Vx = ( ∂V

∂x1
, · · · , ∂V

∂xd
) and Vxx = ( ∂ 2V

∂xi∂x j
)d×d .

Let x(t) be a homogeneous Markov process in R
d described as,

dV (x(t),t) = LV (x(t),t)dt +Vx(x(t),t)g(x(t),t)dB(t).

We can obtain the diffusion matrix as follows

A(x) = (ai j(x)), ai j =
k

∑
r=1

gi
r(x)g

j
r(x).

3. Existence and uniqueness of the global positive solution

The solution of the system (1.3) may explode for its not linear increase. We can
obtain the following conclusion,

THEOREM 1. (Main) For any initial value (S(0), I(0),R(0)) ∈ R
3
+ , there is a

unique positive solution (S(t), I(t),R(t)) ∈ R
3
+ of the system (1.3) on t � 0 , and the

solution will remain in R
3
+ with probability one.

Proof. There is a explosion time τ0 with the coefficients locally Lipschitz contin-
uous. Let n0 be an arbitrarily large positive number lying in [ 1

n0
,n0] , for any n � n0 ,

the stopping time is defined by

τn = inf{t ∈ [0,τ0) : min{S(t), I(t),R(t)} � 1
n or max{S(t), I(t),R(t)} � n}. (3.1)

Obviously, τn is increasing as n → ∞ . τ∞ = lim
n→∞

τn , τ∞ � τ0 a.s. if τ∞ = ∞ a.s. and

τ0 = ∞ . Here, we verify that τ∞ = ∞ a.s. for all (S(t), I(t),R(t)) ∈ R
3
+ a.s. t � 0. If

this assertion is false, there are two constants T � 0 and ε ∈ (0,1) , such that

P{τ∞ � T} � ε,

and there is an integer n1 � n0 such that

P{τn � T} � ε for all n � n1.

We define a fundamental C2 -function Ṽ : R
3
+ → R+ , which is

Ṽ = (S(t)−a−a ln S(t)
a )+ (I(t)−1− lnI(t))+ (R(t)−1− lnR(t)), (3.2)

where a is a positive constant, which will be determined in the following text. The
non-negativity of the function Ṽ (S(t), I(t),R(t)) can be seen from x−1− lnx � 0 for
any x > 0.

Applying Itô’s formula [9], we obtain

dṼ (S, I,R) = LṼdt + σ1a(S(t)−a)dB1(t)+ σ2(I(t)−1)dB2(t)+ σ3(R(t)−1)dB3(t),
(3.3)
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where

LṼ (S, I,R) = (1− a
S )dS+(1− 1

I )dI +(1− 1
R)dR+ 1

2(aσ2
1 + σ2

2 + σ2
3

= μ − μS−βSI+ γR− aμ
S + μa+aβ I− aγR

S

−(μ + λ )I + βSI +(μ + λ )−βS

−(μ + γ)R+ λ I+(μ + γ)− λ I
R + 1

2(aσ2
1 + σ2

2 + σ2
3 )

� 3μ +aμ + λ + γ +(aβ − μ)I + 1
2 (aσ2

1 + σ2
2 + σ2

3 ).

(3.4)

Choosing a = μ
β , such that aβ − μ = 0, then,

LṼ (S, I,R) � 3μ +
μ2

β
+ λ + γ +

1
2
((μ/β )σ2

1 + σ2
2 + σ2

3 ) := K, (3.5)

where K is a positive constant. The remainder of the proof is similar to Theorem 3.1 in
Mao. [21]. Hence, we omit it here. �

4. Extinction and persistence of the system (1.3)

Define a parameter constant value

R̂s
0 =

β μ

(μ + σ2
1 )(μ + λ + σ2

2
2 )

.

According to the results in [21], we can obtain the following lemma.

LEMMA 1. For any initial value, the solution of stochastic model satisfies

lim
t→∞

lnS(t)
t

� 0, lim
t→∞

ln I(t)
t

� 0, lim
t→∞

lnR(t)
t

� 0 a.s. (4.1)

lim
t→∞

S(t)+ I(t)+R(t)
t

= 0, a.s. (4.2)

Moreover, if μ >
σ2

1∨σ2
2∨σ2

3
2 , we obtain

lim
t→0

1
t

∫ t

0
S(m)dB1(m) = 0, lim

t→0

1
t

∫ t

0
I(m)dB2(m) = 0,

lim
t→0

1
t

∫ t

0
R(m)dB3(m) = 0 a.s. (4.3)

THEOREM 2. (Main) Let (S(t), I(t),R(t)) be the solution of the system (1.3) with
any initial value (S(0), I(0),R(0)) ∈ R

3
+ .
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(1) If R̂s
0 < 1 , then the solution (S(t), I(t),R(t)) of the system (1.3) satisfies

limsup
t→∞

ln I(t)
t

�
(

μ + λ +
σ2

2

2

)
(R̂s

0−1) < 0 a.s.

Namely, the disease will be eradicated in a long term.

(2) If R̂s
0 > 1 , then

lim
t→∞

1
t

∫ t

0
I(s)ds �

(μ + λ + σ2
2
2 )(R̂s

0 −1)
K2

> 0 a.s.,

where K2 = μβ 2

(μ+
σ2
1
2 )2

> 0 , which implies the disease will persist in a long term.

Proof. (1). Consider the following auxiliary logistic equation with random pertur-
bation

d lnI(t) =
(
−

(
μ + λ +

σ2
1

2

)
+ βS

)
dt + σ2dB2(t).

Integrating above formula from 0 to t on both sides, then

ln I(t)− lnI(0) =
∫ t

0

[
−

(
μ + λ +

σ2
1

2

)
+ βS(m)

]
dm+ σ2

∫ t

0
dB2(m).

According to the strong law of large numbers [18], we have

lim
t→0

1
t

∫ t

0
dB2(m) = 0 a.s.,

d(S(t)+ I(t)+R(t)) = [μ − μ(S(t)+ I(t)+R(t))]+ σ1S(t)dB1(t)
+σ2I(t)dB2(t)+ σ3R(t)dB3(t). (4.4)

On the other hand,

〈 f 〉 =
1
t

∫ t

0
f (m)dm,

using (1), we can obtain

S(t)−S(0)
t

+
I(t)− I(0)

t
+

R(t)−R(0)
t

= μ − μ(〈S〉+ 〈I〉+ 〈R〉)+
σ1

∫ t
0 S(m)dB1(m)

t

+
σ2

∫ t
0 I(m)dB2(m)

t
+

σ3
∫ t
0 R(m)dB3(m)

t
= μ − μ(〈S〉+ 〈I〉+ 〈R〉)
� μ − μ〈S〉.

(4.5)
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Hence, we have limt→∞〈S〉 � 1, limt→∞〈I〉 � 1, limt→∞〈R〉 � 1.
Together with the Equation (4.5), for σ1 is a very small positive number, we know

lim
t→∞

〈S〉 � μ

μ + σ2
1
2

. (4.6)

Taking the superior limit and using stochastic comparison theorem, combining Equa-
tions (1) and (4.6), we obtain

limsup
t→∞

ln I(t)
t = limsup

t→∞
1
t

∫ t
0 [−(μ + λ + σ2

1
2 )+ βS]dm

= −(μ + λ + σ2
1
2 )+ limsup

t→∞
1
t

∫ t
0 βSdm

� −(μ + λ + σ2
1
2 )+ β μ

μ+
σ2
1
2

= (μ + λ + σ2
1
2 )(R̂s

0 −1)

< 0 a.s.

(4.7)

Therefore, it indicates that
lim
t→∞

I(t) = 0 a.s.

Consequently, it means that the disease will be eradicated in a long time.
(2). Define a C2 -function V1 as

V1(S, I) = − ln I− c1 lnS.

Applying Itô’s formula [9], we obtain

LV1(S, I) = (μ + λ )−βS+ c1(− μ
S + μ + β I− γR)+ 1

2 (c1σ2
1 + σ2

2 )

� −βS− c1
μ
S + c1(μ + 1

2 σ2
1 )+ (μ + λ )+ σ2

2 + c1β I

� −2
√

c1β μ + c1(μ + 1
2 σ2

1 )+ (μ + λ )+ σ2
2 + c1β I.

(4.8)

Supposing f (c1) =−2
√

c1β μ +c1(μ + 1
2 σ2

1 ) and f ′(c1) = 0, choosing c1 = β μ

(μ+
σ2
1
2 )2

such that

−2
√

c1β μ + c1

(
μ +

1
2

σ2
1

)
= − β μ

μ + σ2
1
2

.

Then,

LV1(S, I) � − β μ

μ+
σ2
1
2

+(μ + λ )+ σ2
2 + c1β I

� −(μ + λ + σ2
2 )

(
β μ

(μ+ 1
2 σ2

1 )(μ+λ+σ2
2 )
−1

)
+K2I,

(4.9)

where R̂s
0 = β μ

(μ+ 1
2 σ2

1 )(μ+λ+σ2
2 )

.
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Let K2 = μβ 2

(μ+
σ2
1
2 )2

. Consequently,

dV1(S, I) = LV1dt−σ2dB2(t)− c1σ1dB1(t). (4.10)

Integrating both sides of Equation (4.10), we have

V1(S(t), I(t),R(t))−V1(S(0), I(0),R(0))
t

� −(μ + λ + σ2
2 )(R̂s

0−1)+K2
1
t

∫ t

0
I(m)dm

− 1
t

∫ t

0
σ2dB2(m)− c1

1
t

∫ t

0
σ1dB1(m).

(4.11)

By the strong law of large number for martingales again, we also have

lim
t→0

1
t

∫ t

0
dB2(m) = 0 a.s.

In view of Lemma 1, we obtain from (4.11)

1
K2

liminf
t→∞

1
t

∫ t

0
I(m)dm

� 1
K2

(μ + λ + σ2
2 )(R̂s

0−1)+ liminf
t→∞

V1(S(t), I(t),R(t))−V1(S(0), I(0),R(0))
t

� 1
K2

(μ + λ + σ2
2 )(R̂s

0−1)

> 0 a.s.

(4.12)

Therefore, it implies that the disease will persist when R̂s
0 > 1. �

5. Ergodic stationary distribution of the system (1.3)

LEMMA 2. [23] The Markov process X(t) has a unique ergodic stationary dis-
tribution μ(·) if there exists a bounded domain U ⊂ El with regular boundary Γ and

(A.1) there is a positive number M such that ∑l
i, j=1 ai j(x)ξiξ j � M|ξ |2, x∈U, ξ ∈ Rl.

(A.2) there exists a non-negative C2 function V such that LV is negative for any El\U .
Then

Px

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
El

f (x)μ(dx)
}

= 1,

for all x ∈ El , where f (·) is a function integrable with respect to the measure μ .

THEOREM 3. (Main) Assuming that R̂s
0 > 1 , for the initial values (S(0), I(0),R(0))

∈ R
3
+. A stationary distribution μ(·) of the system (1.3) and the ergodicity are held.



746 J. SUN AND M. GAO

Proof. Step 1: Verify that (A.1) holds. Apparently, the corresponding diffusion
matrix of the system (1.3) is given by

A =

⎛
⎝σ2

1 S2 0 0
0 σ2

2 I2 0
0 0 σ2

3 R2

⎞
⎠ .

Choosing M = min
(S,I,R)∈Dε

{σ2
1 S2,σ2

2 I2,σ2
3 R2} > 0, we obtain

3

∑
i, j=1

ai j(S, I,R)ξiξ j = σ2
1 S2ξ 2

1 + σ2
2 I2ξ 2

2 + σ2
3 R2ξ 2

3 � M | ξ |2,

for all (S, I,R) ∈ Dε ,ξ = (ξ1,ξ2,ξ3) ∈ R
3
+ , which implies condition (A.1) is satisfied.

Step 2: Now we will construct a C2 -function V : R
3
+ → R as follows,

V (S, I,R) = MV1− lnS− lnR+
1

θ +1
(S+R+ I)θ+1,

where θ ∈ (0,1) is a positive constant satisfying

ρ : μ − θ
2

(σ2
1 ∨σ2

2 ∨σ2
3 ) > 0.

There exists a positive constant M satisfying the following condition

f μ
1 −M(μ + λ + σ2

2 )(R̂s
0−1) � −2,

where f μ
i = sup(S,I,R)∈R

3
+
( fi). It is easy to check that

lim
k→∞,(S,I,R)∈R

3
+\Uk

V (S, I,R) = +∞,

where Uk = ( 1
k ,k)× ( 1

k ,k)× ( 1
k ,k) . Moreover, V (S, I,R) is a continuous function and

have a minimum point (S0, I0,R0) in the interior of R
3
+ . Then we define a nonnegative

C2 -function Vs : R
3
+ → R+ as follows,

Vs(S, I,R) = V (S, I,R)−V(S0, I0,R0).

Applying Itô’s formula to the function V (S, I,R) . Denote

V2 = − lnS(t), V3 = − lnR(t), V4 =
1

θ +1
(S+R+ I)θ+1.

We can act the differential operator L on the above functions, respectively

LV2 = μ − μ
S + β I− γR

S + 1
2 σ2

1

� μ − μ
S + β I + 1

2 σ2
1 ;

(5.1)
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LV3 = (μ + γ)− λ I
R

+
1
2

σ2
3 ; (5.2)

LV4 = (S+R+ I)θ μ [1− (S+R+ I)]+ θ
2 (S+R+ I)θ−1(σ2

1 S2 + σ2
2 I2 + σ2

3 R2)

� μ(S+R+ I)θ − μ(S+R+ I)θ+1+ θ
2 (σ2

1 ∨σ2
2 ∨σ2

3 )(S+R+ I)θ+1

= μ(S+R+ I)θ − [μ − θ
2 (σ2

1 ∨σ2
2 ∨σ2

3 )](S+R+ I)θ+1

� A− ρ
2 (S+ I +R)θ+1

� A− ρ
2 (Sθ+1 + Iθ+1 +Rθ+1),

(5.3)
where

A = μ(S+R+ I)θ − ρ
2

(S+R+ I)θ+1.

From the above analysis, we have

LVs(S(t), I(t),R(t)) � M[−(μ + λ + σ2
2 )(R̂s

0−1)+ c1β I]

+μ − μ
S + β I + 1

2σ2
1

+(μ + γ)− λ I
R + 1

2 σ2
3 +A− ρ

2 (Sθ+1 + Iθ+1 +Rθ+1).

(5.4)

Define

f1(S) = 3μ +
1
2

σ2
1 + γ +

1
2

σ2
3 +A− μ

S
− ρ

2
Sθ+1,

f2(I) = M[−(μ + λ + σ2
2 )(R̂s

0 −1)+ c1β I]+ β I− ρ
2

Iθ+1,

f3(R) = −λ I
R

− ρ
2

Rθ+1.

Then, a bounded closed set is defined as

Dε =
{

(S, I,R) ∈ R
3
+ : ε < S <

1
ε
,ε < I <

1
ε
,ε < R <

1
ε

}
,

where ε > 0 is a arbitrarily small number. For the set R
3
+ \Dε ,

D1 = {(S, I,R) ∈ R
3
+ : 0 < S < ε}; D2 =

{
(S, I,R) ∈ R

3
+ : S >

1
ε

}
;

D3 = {(S, I,R) ∈ R
3
+ : 0 < I < ε}; D4 =

{
(S, I,R) ∈ R

3
+ : I >

1
ε

}
;

D5 =
{
(S, I,R) ∈ R

3
+ : 0 < R < ε2, I > ε

}
; D6 =

{
(S, I,R) ∈ R

3
+ : R >

1
ε2

}
.

LV (S, I,R)�−1 on R
3
+\Dε is used to prove the result on the six domains, respectively.

Case 1. If (S, I,R) ∈ D1 or (S, I,R) ∈ D2 , one can see that

f1(S)+ f2(I)+ f3(R) � f (S)+ f μ
2 (I) →−∞;
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Case 2. If (S, I,R) ∈ D3 , then

f1(S)+ f2(I)+ f3(R) � f μ
1 + f2(I) → f μ

1 +M[−(μ + λ + σ2
2 )(R̂s

0 −1)] � −2;

Case 3. If (S, I,R) ∈ D4 , then

f1(S)+ f2(I)+ f3(R) � f μ
1 + f2(I) →−∞;

Case 4. If (S, I,R) ∈ D5 or (S, I,R) ∈ D6 , then

f1(S)+ f2(I)+ f3(R) � f μ
1 + f μ

2 + f3(R) →−∞;

Therefore, for all (S, I,R) ∈ R
3
+ \Dε , V (S, I,R) � −1, which indicates assumption

(A.2) holds. �

6. Concluding remarks and future directions

Given the suitable stochastic Lyapunov functions, we obtain the dynamics behav-
ior of a stochastic SIRS model. The local asymptotic stability of an ergodic stationary
distribution and the extinction or persistence of the system (1.3) are also obtained in
this paper.

In the further research, we want to consider the other case of μ <
σ2

1∨σ2
2∨σ2

3
2 . On

the other hand, in our following work, we will continue to put our main attention to
some more useful models, such as the impulsive perturbations on the system (1.3).
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