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SOME CHARACTERIZATIONS OF h–CONVEX FUNCTIONS

XIN JIN, BEIBEI JIN, JIANMIAO RUAN ∗ AND XINSHENG MA

(Communicated by T. Burić)

Abstract. In this paper, we give some characterizations of h -convex functions, and some appli-
cations related to these functions are also obtained. According to these results, we can know
better the relation between convex functions and h -convex functions.

1. Introduction and main results

Let I and J be intervals in R , and (0,1) ⊆ J . In 2007, Varos̆anec [25] introduced
the concept of h -convexity, which has received extensive attentions in recent years, see
e.g. [2, 3, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27], etc.

DEFINITION 1.1. Let h : J → [0,∞) be a given function. We say that a nonneg-
ative function f : I → [0,∞) is h -convex or that f belongs to the class SX(h, I) , if for
any x,y ∈ I and α ∈ (0,1) ,

f (αx+(1−α)y) � h(α) f (x)+h(1−α) f (y). (1.1)

If inequality (1.1) is reversed, then f is said to be h -concave and denoted by f ∈
SV(h, I) .

This notion generalizes the known classes of the usual convex functions, s-convex
functions (in the second sense) [4], P-functions [19] and Godunova-Levin functions
[8, 10, 14, 15], which are obtained by taking in (1.1) h(α) = α , h(α) = αs(s ∈ (0,1)) ,
h(α) = 1 and and h(α) = 1/α (0 < α � 1) , respectively.

In 2015, Olbrýs [16] gave a characterization of h -convex functions under the con-
dition h(t)+ h(1− t) = 1, t ∈ [0,1] . In 2019, Delavar, Dragomir and de La Sen [5]
showed a characterization of h -convex functions via Hermite-Hadamard inequality,
Alomari [1] discussed the continuity of the functions and made geometric interpreta-
tion of them. This paper aims to give some other characterizations of them and provide
some basic applications. In order to describe the exact setting of our focus, we first
recall some notation.
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DEFINITION 1.2. Let h : J → R . If

h(x)h(y) � h(xy) (1.2)

for all x,y ∈ J , then h is said to be a supermultiplicative function. If inequality (1.2)
is reversed, then h is said to be a submultiplicative function. If equality holds in (1.2),
then h is said to be a multiplicative function.

DEFINITION 1.3. Let h : J → R. If for all x,y ∈ J,

h(x)+h(y) � h(x+ y), (1.3)

then h is said to be a superadditive function. If inequality (1.3) is reversed, we say that
h is a subadditive function. If equality (1.3) holds, we say that h is an additive function.

In the sequel, unless otherwise specified, we assume that the function h satisfies
h(x) > 0 (x �= 0) . Now we are in a position to state our results, which are motivated by
some classical properties of convex functions. Due to these conclusions, we can know
better the relation between convex functions and h -convex functions.

THEOREM 1.1. Let h : J → [0,∞) be a continuous, supermultiplicative and su-
peradditive function. If f : I → [0,∞) is a continuous function, then the following four
statements are equivalent :

(i) f is an h-convex function on I , i.e. f ∈ SX(h, I) ;
(ii) If for all x1,x2 ∈ I , we have

f

(
x1 + x2

2

)
� h

(
1
2

)
( f (x1)+ f (x2)) ; (1.4)

(iii) If for all xi ∈ I, i = 1,2, . . . ,n (n � 2) , we have

f

(
x1 + x2 + · · ·+ xn

n

)
� h

(
1
n

)
( f (x1)+ f (x2)+ · · ·+ f (xn)) ; (1.5)

(iv) If for all xi ∈ I and any qi > 0, i = 1,2, . . . ,n (n � 2) , satisfying
q1 +q2 + · · ·+qn = 1 , we have

f (q1x1 +q2x2 + · · ·+qnxn) � h(q1) f (x1)+h(q2) f (x2)+ · · ·+h(qn) f (xn) . (1.6)

REMARK. In fact, by the proof of theorem1.1 in Section 2, we can see that the
assertions (i) and (iv) are equivalent provided h is a supermultiplicative function (see
Theorem 19 in [25]), the assertions (iii) and (iv) are equivalent only if h satisfies the
property of superaddition, the continuity of functions h and f are only used in proving
the validity of (iv) from (iii) .

THEOREM 1.2. Let h : J → [0,∞) be a supermultiplicative and superadditive
function. Suppose that f ∈ SX(h, I) . Then for all x1,x2,x3 ∈ I with x1 < x2 < x3 and
x3− x1,x3− x2,x2 − x1 ∈ J , we have :
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(i)
f (x2)− f (x1)
h(x2− x1)

� f (x3)− f (x1)
h(x3− x1)

; (1.7)

(ii)
f (x3)− f (x1)
h(x3− x1)

� f (x3)− f (x2)
h(x3− x2)

; (1.8)

(iii)
f (x2)− f (x1)
h(x2− x1)

� f (x3)− f (x2)
h(x3− x2)

. (1.9)

As a consequence of Theorem 1.2, we have the following result.

COROLLARY 1.3. Let h and f be as in Theorem 1.2. Then

f (x2)− f (x1)
h(x2− x1)

� f (x3)− f (x1)
h(x3− x1)

� f (x3)− f (x2)
h(x3− x2)

holds for all x1,x2,x3 ∈ I with x1 < x2 < x3 and x3 − x1,x3 − x2,x2− x1 ∈ J .

THEOREM 1.4. Let h : J → [0,∞) be a submultiplicative and subadditive func-
tion. Suppose that f : I → R be a nonnegative function. If one of the inequalities (1.7),
(1.8) or (1.9) holds, then f ∈ SX(h, I) .

Combining Theorem 1.2 and Theorem 1.4, we conclude the following representa-
tion for h -convex functions.

THEOREM 1.5. Let h : J → [0,∞) be a multiplicative and additive function. Sup-
pose that f : I → R be a nonnegative function. Then f ∈ SX(h, I) if and only if one of
the inequalities (1.7), (1.8) or (1.9) holds,

The rest of this paper is organized as follows. In Section 2, we will prove the
above theorems. In section 3, we will provide some applications of h -convex functions
related continuity, differentiability, integrability and so on.

2. Proof of theorems

Proof of Theorem 1.1. In order to prove the theorem, we will take the following
strategy: (i) ⇔ (iv) , (ii) ⇔ (iii) and (iii) ⇔ (iv) . Since (iv) ⇒ (i) is clear and (i) ⇒
(iv) is a special case of Theorem 19 in [25], it remains to show that (ii) ⇔ (iii) and
(iii) ⇔ (iv) .

(ii)⇔(iii) : It is obvious that (iii) ⇒ (ii) . Now we will show that (ii) ⇒ (iii)
by taking two steps as follows: 1© Use the forward induction to establish the inequal-
ity (1.5) holds for a sub-sequence of the natural numbers n = 2k, k ∈ N . 2© Use the
backward induction to prove (1.5) holds for n = k if it is true for n = k+1.
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1© Step 1: If k = 1 i.e. n = 2, inequality (1.5) is derived directly by (1.4). Now
we prove (1.5) holds for k = 2 i.e. n = 4. Let x1,x2,x3,x4 ∈ I . It follows from (1.4)
that

f

(
x1 + x2 + x3 + x4

4

)
= f

(
x1+x2

2 + x3+x4
2

2

)

� h

(
1
2

)[
f

(
x1 + x2

2

)
+ f

(
x3 + x4

2

)]

� h2
(

1
2

)
[ f (x1)+ f (x2)+ f (x3)+ f (x4)]

� h

(
1
4

)
[ f (x1)+ f (x2)+ f (x3)+ f (x4)] ,

where the last inequality is obtained by the supermultiplicativity of h . This means that
(1.5) holds for n = 4. For any natural number k , we repeat similar process k times as
above and obtain that

f

(
x1 + x2 + · · ·+ x2k

2k

)
� hk

(
1
2

)
[ f (x1)+ f (x2)+ · · ·+ f (x2k)]

� h

(
1
2k

)
[ f (x1)+ f (x2)+ · · ·+ f (x2k)] ,

which implies that (1.5) holds for n = 2k, k ∈ N .

2© Step 2: Let A = x1+x2+···+xk
k . Then x1 + x2 + · · ·+ xk = kA and

A =
x1 + x2 + · · ·+ xk +A

k+1
.

If (1.5) holds for n = k+1, then

f (A) = f

(
x1 + x2 + · · ·+ xk +A

k+1

)

� h

(
1

k+1

)
[ f (x1)+ f (x2)+ · · ·+ f (xk)+ f (A)] ,

which tells us that[
1−h

(
1

k+1

)]
f (A) � h

(
1

k+1

)
[ f (x1)+ f (x2)+ · · ·+ f (xk)] .

Multiplying by h
( 1

k

)
on both sides of the proceeding inequality yields that[
h

(
1
k

)
−h

(
1
k

)
h

(
1

k+1

)]
f (A) (2.1)

� h

(
1
k

)
h

(
1

k+1

)
[ f (x1)+ f (x2)+ · · ·+ f (xk)] .
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Noting that h : J → [0,∞) is a supermultiplicative and superadditive function, we have

h

(
1

k2 + k

)
� h

(
1
k

)
h

(
1

k+1

)
,h

(
1
k

)
� h

(
1

k2 + k

)
+h

(
1

k+1

)
,

and

h

(
1
k

)
−h

(
1
k

)
h

(
1

k+1

)
� h

(
1

k2 + k

)
+h

(
1

k+1

)
−h

(
1
k

)
h

(
1

k+1

)

� h

(
1

k+1

)
� 0. (2.2)

Therefore, we infer from (2.1) and (2.2) that

f (A) � h

(
1
k

)
[ f (x1)+ f (x2)+ · · ·+ f (xk)] .

This means that (1.5) holds for n = k .
Thus we complete the proof of the assertion by step 1 and step 2.
(iii)⇔(iv) : Since (iv) ⇒ (iii) is easily obtained by taking qi = 1

n , i = 1,2, . . . ,n
in (1.6), it remains to verify that (iii) ⇒ (iv) .

1© Firstly, we consider the case of that all qi are rational numbers. Let qi = ai
m ,

where ai, i = 1,2, . . . ,n are positive integers and a1 +a2 + · · · +an = m . Then

f (q1x1 +q2x2 + · · · +qnxn) = f

⎛
⎜⎜⎝x1

m
+

x1

m
+ · · · + x1

m︸ ︷︷ ︸
a1

+ · · · + xn

m
+

xn

m
+ · · · + xn

m︸ ︷︷ ︸
an

⎞
⎟⎟⎠ .

It follows from (1.5) that

f (q1x1 +q2x2 + · · ·+qnxn)

� h

(
1
m

)
f (x1)+ · · ·+h

(
1
m

)
f (x1)︸ ︷︷ ︸

a1

+ · · ·+h

(
1
m

)
f (xn)+ · · ·+h

(
1
m

)
f (xn)︸ ︷︷ ︸

an

.

Since h possesses the property of superaddition, we obtain

f (q1x1 +q2x2 + · · ·+qnxn) � h
(a1

m

)
f (x1)+h

(a2

m

)
f (x2)+ · · ·+h

(an

m

)
f (xn)

= h(q1) f (x1)+h(q2) f (x2)+ · · ·+h(qn) f (xn) .

2© Secondly, we consider the case of that there exists some qi are irrational num-
bers. Without loss of generality, we assume that the first numbers qk (0 < k � n) are
irrational, then there are rational sequences

{
qi,l
}

such that

lim
l→∞

qi,l = qi (i = 1,2, . . . ,k, 0 < k � n). (2.3)
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According to the argument in 1©, we have

f
(
q1,lx1 +q2,lx2 + · · ·+qk,lxk +qk+1xk+1 + · · ·+qnxn

)
� h

(
q1,l
)

f (x1)+ · · ·+h
(
qk,l
)

f (xk)+h(qk+1) f (xk+1)+ · · ·+h
(
qn,l
)

f (xn) .

Letting l → ∞ , the continuity of the functions f and h tells us that

f (q1x1 +q2x2 + · · ·+qnxn) � h(q1) f (x1)+h(q2) f (x2)+ · · ·+h(qn) f (xn) ,

which finishes the proof of Theorem 1.1. �

Proof of Theorem 1.2. (i) Since x1, x2, x3 ∈ I and x1 < x2 < x3 , we have

x3 − x2

x3 − x1
,

x2 − x1

x3 − x1
∈ (0,1) ⊂ J

and
x3− x2

x3− x1
+

x2− x1

x3− x1
= 1. (2.4)

In view of the supermultiplicativity of h ,

h(x3− x2) � h

(
x3− x2

x3− x1

)
h(x3− x1) , (2.5)

h(x2− x1) � h

(
x2− x1

x3− x1

)
h(x3− x1) . (2.6)

Let α = x3−x2
x3−x1

. Then (2.4) implies that

x2 = αx1 +(1−α)x3.

It follows from (2.5), (2.6) and the definition of the h -convex function that

f (x2) � h

(
x3 − x2

x3 − x1

)
f (x1)+h

(
x2− x1

x3− x1

)
f (x3)

� h(x3 − x2)
h(x3 − x1)

f (x1)+
h(x2− x1)
h(x3− x1)

f (x3) ,

which yields that

f (x2)− f (x1)
h(x2− x1)

� 1
h(x3− x1)

(
h(x3− x2)−h(x3− x1)

h(x2− x1)
f (x1)+ f (x3)

)
. (2.7)

Recalling that h is a superadditive function, we have

h(x3− x1) � h(x3− x2)+h(x2 − x1) .

This means that
h(x3− x2)−h(x3− x1)

h(x2− x1)
� −1. (2.8)
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Since f � 0, (2.7) and (2.8) tell us that

f (x2)− f (x1)
h(x2− x1)

� f (x3)− f (x1)
h(x3− x1)

.

This completes the proof of (i).
The inequalities (1.8) and (1.9) can be obtained by a similar argument as above,

we leave the details to readers. �

Proof of Theorem 1.4. Without loss of generality, we will prove that f ∈ SX(h, I)
if inequality (1.7) holds. The proof of the other two is only notation difference and it
does not require new ideas.

If (1.7) holds, then for any x1,x2,x3 ∈ I, with x1 < x2 < x3 and x3 − x1 , x3 − x2 ,
x2− x1 ∈ J ,

f (x2)− f (x1)
h(x2− x1)

� f (x3)− f (x1)
h(x3− x1)

.

This implies that

f (x2) � h(x2− x1)
h(x3− x1)

f (x3)+
h(x3− x1)−h(x2− x1)

h(x3− x1)
f (x1) .

Since h possesses the property of subaddition, the proceeding inequality yields that

f (x2) � h(x2− x1)
h(x3− x1)

f (x3)+
h(x3− x2)
h(x3− x1)

f (x1). (2.9)

On the other hand, the submultiplicativity of h shows that

h(x3− x2) = h

[
x3− x2

x3− x1
(x3− x1)

]
� h

(
x3 − x2

x3 − x1

)
h(x3− x1),

i.e.
h(x3− x2)
h(x3− x1)

� h

(
x3− x2

x3− x1

)
. (2.10)

Similarly,
h(x2− x1)
h(x3− x1)

� h

(
x2− x1

x3− x1

)
. (2.11)

Combining (2.9), (2.10) and (2.11), we conclude that

f (x2) � h

(
x2− x1

x3− x1

)
f (x3)+h

(
x3− x2

x3− x1

)
f (x1). (2.12)

Let x,y ∈ I and α ∈ (0,1) . If x < y , we define x1,x2,x3 as following

x1 = x, x2 = αx+(1−α)y, x3 = y,

then x3−x2
x3−x1

= α and x2−x1
x3−x1

= 1−α . Therefore (2.12) gives that

f (αx+(1−αy)) � h(α) f (x)+h(1−α) f (y). (2.13)
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If y < x , we prove (2.13) in a similar way. If x = y , then from subadditivity and
submultiplicativity of function h we have

1 � h(1) = h(α +(1−α)) � h(α)+h(1−α),

which implies that

f (αx+(1−α)y) = f (x)(h(α)+h(1−α)) = h(α) f (x)+h(1−α) f (y),

i.e. (2.13) holds. Thus we finish the proof of Theorem 1.4. �

3. Some applications of h -convex functions

In this section, we will give some interesting properties for nonnegative h -convex
functions.

THEOREM 3.1. Let h : J → [0,∞) be a supermultiplicative and superadditive

function with limt→0+
h(t)
t = A > 0 . Suppose that f ∈ SX(h, I) . Then:

(i) For any interior point x0 in I , the one-sided derivatives f ′−(x0), f ′+(x0) exist
with f ′−(x0) � f ′+(x0) , and f ′−, f ′+ are both increasing on any open subinterval of I .

(ii) The functions f ′−, f ′+ are Riemann integrable on any open interval K ⊂ I .
Furthermore, for any a,b ∈ K , we have∫ b

a
f ′−(t)dt = f (b)− f (a) =

∫ b

a
f ′+(t)dt. (3.1)

Proof. (i) For any interior point x0 of I , there is an interval x0 ∈ (c,d)⊂ [c,d]⊂ I
satisfying 0 < d− c < 1. Define

F(t) =

⎧⎪⎪⎨
⎪⎪⎩

f (x0 + t)− f (x0)
h(t)

, 0 < t < d− x0,

f (x0)− f (x0 + t)
h(−t)

, c− x0 < t < 0.

Then we infer from Corollary 1.3 that the function F is increasing on the intervals
(c− x0,0)

⋃
(0,d− x0) ⊂ J . According to the definition of F and using Corollary 1.3

again, we can check that the set {F(t) : 0 < t < d − x0} has lower-bound and {F(t) :
c− x0 < t < 0} has upper-bound. Thus, the Monotone Convergence Criterion for Real
Numbers tells us that the one-sided limits limt→0+F(t) and limt→0−F(t) exist, and

lim
t→0+

F(t) = lim
t→0+

f (x0 + t)− f (x0)
h(t)

= f ′+ (x0) lim
t→0+

t
h(t)

=
f ′+ (x0)

A
, (3.2)

lim
t→0−

F(t) = lim
t→0−

f (x0)− f (x0 + t)
h(−t)

= f ′− (x0) lim
t→0−

−t
h(−t)

=
f ′− (x0)

A
. (3.3)

In view of the nonnegativity of h , we have A > 0. Thus, (3.2), (3.3) and Corollary 1.3
yield that

f ′− (x0) � f ′+ (x0) .
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By virtue of the above discussion and Corollary 1.3 again, it is not difficult to check
that f ′−, f ′+ are both increasing on any open interval of I .

(ii) It is clear that f ′−, f ′+ are Riemann integrable on K by the monotonicity
properties of the two functions. Now we pay more attention to proving (3.1) and just
consider the right-hand side equality, since the left-hand side is obtained by a similar
argument.

Suppose that a < b . Let {xi}n
i=0 be a partition of [a,b] , i.e. a = x0 < x1 < .. . <

xn = b . Then

f (b)− f (a) =
n

∑
i=1

[ f (xi)− f (xi−1)] .

It follows from Corollary 1.3 and (3.2) that

f (xi)− f (xi−1) � f ′+ (xi−1)
A

h(xi − xi−1) = f ′+ (xi−1)(xi − xi−1)
h(xi − xi−1)
(xi − xi−1)A

,

which means that

f (b)− f (a) �
n

∑
i=1

f ′+ (xi−1)(xi − xi−1)
h(xi− xi−1)
(xi − xi−1)A

. (3.4)

Similarly,

f (b)− f (a) �
n

∑
i=1

f ′+ (xi)(xi − xi−1)
h(xi − xi−1)
(xi − xi−1)A

. (3.5)

Denote δ = maxi=1,...,n {xi− xi−1} . Since f ′+ is integrable on K , letting δ → 0 and

noting that limt→0+
h(t)
t = A , (3.4) and (3.5) tell us that

∫ b

a
f ′+(t)dt � f (b)− f (a) �

∫ b

a
f ′+(t)dt,

that is ∫ b

a
f ′+(t)dt = f (b)− f (a).

Thus we finish the proof of Theorem 3.1. �

As a consequence of Theorem 3.1, we have the following results related the conti-
nuity and differentiability of h -convex functions.

THEOREM 3.2. Let h and f be as in Theorem 3.1. Then:
(i) f is continuous on any interior point in I .
(ii) f is differentiable almost everywhere on I .
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Proof. Since (i) is derived directly by Theorem 3.1 (i), it remains to show that
statement (ii) is valid. Without loss of generality, we may assume that I is an open
interval in R . Thus, in order to prove the theorem, it sufficient to prove that f is
differentiable almost everywhere on any closed interval [a,b] of I . Due to (3.1),

∫ b

a

[
f ′+(t)− f ′−(t)

]
dt = 0. (3.6)

On the other hand, it is well known that every Riemann integrable function is also
Lebesgue integrable on [a,b] , which means that f ′+ − f ′− is Lebesgue integrable on
[a,b] by Theorem 3.1 (ii). Recalling that f ′−(t) � f ′+(t),t ∈ [a,b] by Theorem 3.1 (i),
(3.6) and the above argument yield that

f ′+(t)− f ′−(t) = 0, a.e. t ∈ [a,b],

which implies that f is differentiable a.e. on [a,b] . Thus we finish the proof of Theo-
rem 3.2. �

THEOREM 3.3. Let h and f be as in Theorem 3.1. Then for any interior point x0

in I , there is a constant α � 0 satisfies

f (x) � −αh(x0− x)+ f (x0) , f or all x < x0, x ∈ I and x0− x ∈ J, (3.7)

f (x) � αh(x− x0)+ f (x0) , f or all x > x0, x ∈ I and x− x0 ∈ J. (3.8)

Proof. Let x0 be an interior point in I . For any x < x0, x ∈ I and x0 − x ∈ J , it
follows from (3.3) and Theorem 1.2 that

f (x0)− f (x)
h(x0− x)

� f ′− (x0)
A

. (3.9)

Thus for any positive constant α � f ′−(x0)
A , (3.9) shows that

f (x) � − f ′− (x0)
A

h(x0− x)+ f (x0) � −αh(x0− x)+ f (x0) . (3.10)

Similarly, we take α � f ′+(x0)
A , then for any x > x0, x ∈ I and x− x0 ∈ J , (3.2) and

Theorem 1.2 imply that

f (x) � f ′+ (x0)
A

h(x− x0)+ f (x0) � αh(x− x0)+ f (x0) . (3.11)

Noting that f ′− (x0) � f ′+ (x0) , we finish the proof of Theorem 3.3 by (3.10) and (3.11).
�

As a consequence of Theorem 1.5 and Theorem 3.3, we arrive at the following
equivalent characterization for h -convex functions.
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THEOREM 3.4. Let h : J → [0,∞) be a multiplicative and additive function with

limt→0+
h(t)
t = A > 0 . Suppose that f : I → R be a nonnegative function. Then f ∈

SX(h, I) if and only if for any interior point x0 in I , there is a constant α � 0 such that
inequalities (3.7) and (3.8) are both valid.

THEOREM 3.5. Let h : J → [0,∞) be bounded on (0,1) and f ∈ SX(h, I) . Then
f is bounded on any closed subinterval of I .

Proof. Let [a,b] ⊂ I be a closed subinterval of I and M = max{ f (a), f (b)} . By
the assumption of h , there exists a positive constant C satisfying 0 � h(x) � C, x ∈
(0,1) .

Firstly, we prove that f is upper-bounded on [a,b] . In fact, for any x ∈ (a,b)⊂ I ,
there is α ∈ (0,1) such that x = αa+(1−α)b . Therefore,

f (x) � h(α) f (a)+h(1−α) f (b) � 2CM,

which means that f is a upper-bounded function on [a,b] .
Next, we show that f is lower-bounded on [a,b] . For any x∈ (a,b) , there is some

tx ∈ (−(b−a)/2,(b−a)/2) such that

x =
a+b

2
+ tx.

According to the definition of h -convex functions, we have

f

(
a+b

2

)
= f

(
1
2

[(
a+b

2
+ tx

)
+
(

a+b
2

− tx

)])

� h

(
1
2

)
f

(
a+b

2
+ tx

)
+h

(
1
2

)
f

(
a+b

2
− tx

)
.

That is

f

(
a+b

2

)
� h

(
1
2

)
f (x)+h

(
1
2

)
f

(
a+b

2
− tx

)
,

which implies that

f (x) � max

{
0,

f
(

a+b
2

)−h
(

1
2

)
f
(

a+b
2 − tx

)
h
(

1
2

)
}

� max

{
0,

f
(

a+b
2

)−h
(

1
2

)
M

h
(

1
2

)
}

holds for all x ∈ (a,b) . Thus we finish the proof of Theorem 3.5. �

THEOREM 3.6. Let h : (0,1) → [0,∞) be a superadditive and continuous func-
tion. If f ∈ SX(h,(a,b)) is a bounded function on (a,b) , then the limits limx→b− f (x)
and limx→a+ f (x) exist.
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Proof. We only prove limx→b− f (x) exits, the existence of limx→a+ f (x) can be
obtained by a similar discussion. For any x ∈ (c,b) , we choose some fixed points
x0,x1 ∈ (d,b) with x0 < x1 < x , where c = max

{
a+b
2 ,b− 1

4

}
, d = max

{
a+b
2 ,b− 1

2

}
.

Obviously, 0 < b− c � b−d < 1. Corollary 1.3 means that the function

G(x) :=
f (x)− f (x0)
h(x− x0)

is increasing on (c,b) . Since f is a bounded function on (a,b) and h is a superadditive
function on [0,1] ,

G(x) � M− f (x0)
h(x1 − x0)

(3.12)

holds for x ∈ (c,b) , where M = max{ f (x) : x ∈ (a,b)} . Then (3.12) means that G
is a bounded function on the interval (c,b) . Therefore, the Monotone Convergence
Theorem implies that the one-sided limit limx→b− G(x) exists. By the definition of G
and the continuity of h ,

lim
x→b−

f (x) = lim
x→b−

[h(x− x0)G(x)+ f (x0)] = h(b− x0) lim
x→b−

G(x)+ f (x0) ,

which completes the proof of Theorem 3.6. �

THEOREM 3.7. Let h and f be as in Theorem 3.1. Suppose that g : K → I is a
Riemann integrable function, where K is an interval in R . Then for any [a,b] ⊂ K ,

f

(
1

b−a

∫ b

a
g(t)dt

)
� A

b−a

∫ b

a
f (g(t))dt.

Proof. Since I is an interval , by Theorem 3.2, we may assume that f is continu-
ous on I . Therefore, by the integrability of g and the continuity of f , the composition
of f (g(t)), t ∈ [a,b] is also integrable. Let ti = i(b−a)

n (i = 0,1, . . . ,n) be a partition of
[a,b] and denote gi = g(ti) . In view of Theorem 1.1,

f

(
1
n

n

∑
i=1

gi

)
� h

(
1
n

) n

∑
i=1

f (gi) = nh

(
1
n

)
1
n

n

∑
i=1

f (gi) .

Letting n → ∞ , the continuity of f and the integrability of f (g(·)) on [a,b] imply that

f

(
1

b−a

∫ b

a
g(t)dt

)
� A

b−a

∫ b

a
f (g(t))dt,

which completes the proof of Theorem 3.7. �

Thanks to the anonymous reviewer’s reminder, we know that Theorem 3.7 was
firstly established in [28] with slightly modified assumptions.

Acknowledgements. The authors would like to express their deep thanks to the
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