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CONSTRUCTION OF THE KANTOROVICH VARIANT OF THE

BERNSTEIN–CHLODOVSKY OPERATORS BASED ON PARAMETER α

BO-YONG LIAN AND QING-BO CAI ∗

(Communicated by M. Krnić)

Abstract. In this article, a new family of kantorovich variant of Chlodovsky operators is intro-
duced. The authors establish some approximation theorems, such as a direct approximation by
means of the Ditzian-Totik modulus of smoothness, a global approximation theorem in terms
of second order modulus of continuity and so on. Furthermore, a voronovskaja type asymptotic
estimate formula is presented. Finally, the rate of convergence for some absolutely continuous
functions having a derivative equivalent to a bounded variation function is obtained.

1. Introduction

For 0 � α � 1 and x ∈ [0,1] , Chen et al. [1] introduced a new family of general-
ized Bernstein operators as follows:

Tn,α( f ,x) =
n

∑
k=0

f
( k

n

)
p(α)

n,k (x), (1)

where

p(α)
1,0 (x) = 1− x,

p(α)
1,1 (x) = x,

p(α)
n,k (x) =

[
(n−2

k )(1−α)x+(n−2
k−2)(1−α)(1− x)+ (nk)αx(1− x)

]
xk−1(1− x)n−k−1

for n � 2 and (n
k) = 0 (k > n) . When α = 1, the operators Tn,α reduces to the classical

Bernstein operators.
In [1], the authors studied many approximaiton properties of Tn,α such as uniform

convergence, rate of convergence in terms of modulus of continuity, voronovskaja-type
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asymptotic formula, and shape preserving properties. After that, the variant of the op-
erators Tn,α , such as Kantorovich type operators, Durrmeyer type operators, Complex
type operators, Stancu type operators, q -Kantorovich operators, have been studied by
a lot of researchers, see for examples [2, 3, 4, 5, 6].

In 1937, in order to generalize the Bernstein operators, Chlodovsky [7] introduced
the operators Cn( f ,x) , which are defined by

Cn( f ,x) =
n

∑
k=0

f
(kbn

n

)
pn,k

( x
bn

)
, (2)

where x ∈ [0,bn] , pn,k( x
bn

) = (nk)(
x
bn

)k(1− x
bn

)n−k , and (bn)∞
n=1 is a sequence of in-

creasing positive numbers with the properties limn→∞ bn = ∞, limn→∞ bn/n = 0.

Many scholars have done a lot of relevant research work on Cn( f ,x) and the re-
lated operators, we can see references [8, 9, 10, 11] and some other studies about posi-
tive linear operators [12, 13, 14, 15, 16, 17].

Base on the operators of (1) and (2), Smuc [18] proposed a new family of Chlo-
dovsky operators Cn,α( f ,x) in the following way:

Cn,α( f ,x) =
n

∑
k=0

f
(kbn

n

)
p(α)

n,k

( x
bn

)
. (3)

When α = 1, the operators Cn,α reduces to the Chlodovsky operators Cn . When bn =
1, the operators Cn,α reduces to the operators Tn . In [18], the author studied some
results concerning uniform convergence and estimates of the degree of approximation.

To approximate the integrable functions on [0,bn] , we construct the kantorovich
variant of the operators (3) which are defined by

CKn,α( f ,x) =
n+1
bn

n

∑
k=0

p(α)
n,k

( x
bn

)∫ (k+1)bn
n+1

kbn
n+1

f (t)dt. (4)

Also, CKn,α reduce to the operators discussed by Mohiuddine [2] and Pych-Taberska
[19, 20] for bn = 1 and α = 1 respectively. For more details about the kantorivich
operators, we refer to [21, 22].

2. Preliminaries

LEMMA 1. [18] For x ∈ [0,bn] and Cn,α( f ,x) defined by (3), we have

Cn,α(1,x) = 1,

Cn,α(t,x) = x,

Cn,α(t2,x) = x2 +
n+2(1−α)

n2 · x(bn− x).
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LEMMA 2. For x ∈ [0,bn] , we have

CKn,α(1,x) = 1, (5)

CKn,α(t,x) = x+
bn−2x
2n+2

, (6)

CKn,α(t2,x) = x2 +
n(4bnx−3x2−6)+b2

n +6(1−α)x(bn− x)−3
3(n+1)2 . (7)

Proof. By Lemma 1, we have

CKn,α(1,x) =
n+1
bn

n

∑
k=0

p(α)
n,k

( x
bn

)∫ (k+1)bn
n+1

kbn
n+1

1dt = Cn,α(1,x) = 1.

CKn,α(t,x) =
n+1
bn

n

∑
k=0

p(α)
n,k

( x
bn

)∫ (k+1)bn
n+1

kbn
n+1

tdt

=
n

n+1

n

∑
k=0

kbn

n
p(α)

n,k

( x
bn

)
+

bn

2n+2

n

∑
k=0

p(α)
n,k

( x
bn

)
=

n
n+1

Cn,α(t,x)+
bn

2n+2
Cn,α(1,x)

= x+
bn−2x
2n+2

.

CKn,α(t2,x) =
n+1
bn

n

∑
k=0

p(α)
n,k

( x
bn

)∫ (k+1)bn
n+1

kbn
n+1

t2dt

=
( n

n+1

)2 n

∑
k=0

(kbn

n

)2
p(α)

n,k

( x
bn

)
+

nbn

(n+1)2

n

∑
k=0

kbn

n
p(α)

n,k

( x
bn

)
+

b2
n

3(n+1)2

n

∑
k=0

p(α)
n,k

( x
bn

)
=

( n
n+1

)2
Cn,α(t2,x)+

nbn

(n+1)2Cn,α(t,x)+
b2

n

3(n+1)2Cn,α(1,x)

= x2 +
3nx(2bn−3x)−3x2 +6(1−α)x(bn− x)+b2

n

3(n+1)2 . �

By Lemma 2 and Cauchy Schwarz inequality, we get

CKn,α(t− x,x) =
bn−2x
2n+2

, (8)

CKn,α((t − x)2,x) =
3x(bn− x)(n+1−2α)+b2

n

3(n+1)2 = η2
nα(x). (9)
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CKn,α(|t − x|,x) �
√

CKn,α((t − x)2,x) ·
√

CKn,α (1,x) = ηnα(x). (10)

Using the same methods, and after some easy but tedious computations, we also can
obtain the following result:

CKn,α((t − x)4,x) = O

(
b2

n

n2

)
. (11)

Let CB[0,∞) denote the space of all real-valued bounded and uniformly continu-
ous functions f on [0,∞) , endowed with the norm ‖ f‖ = supx∈[0,∞)| f | .

LEMMA 3. For f ∈CB[0,∞) , x ∈ [0,∞) , the following inequalities hold

‖CKn,α( f ,x)‖ � ‖ f‖. (12)

Proof. Since CKn,α(1,x) = 1, we get

‖CKn,α( f ,x)‖ � CKn,α(1,x) · ‖ f‖ = ‖ f‖. �

Let

ϑn,α

( x
bn

,
t
bn

)
=

n

∑
k=0

n+1
bn

p(α)
n,k

( x
bn

)
χk(t)

and

λn,α

( x
bn

,
t
bn

)
=

∫ t

0
ϑn,α

( x
bn

,
s
bn

)
ds,

where χk(t) is the characteristic function of the interval [ kbn
n+1 , (k+1)bn

n+1 ] with respect to
I = [0,bn] . By the Lebesgue-Stieltjes integral representations, we have

CKn,α( f ,x) =
∫ bn

0
f (t)ϑn,α

( x
bn

,
t
bn

)
dt =

∫ bn

0
f (t)dtλn,α

( x
bn

,
t
bn

)
. (13)

LEMMA 4. (i) For 0 � y < x < bn , there holds

λn,α

( x
bn

,
y
bn

)
=

∫ y

0
ϑn,α

( x
bn

,
s
bn

)
ds � 1

(x− y)2 η2
nα(x). (14)

(ii) For 0 < x < z < bn , there holds

1−λn,α

( x
bn

,
z
bn

)
=

∫ 1

z
ϑn,α

( x
bn

,
s
bn

)
ds � 1

(x− z)2 η2
nα(x). (15)



KANTOROVICH VARIANT OF THE BERNSTEIN-CHLODOVSKY OPERATORS 801

Proof. (i) By (9) and (13), we get

λn,α

( x
bn

,
y
bn

)
=

∫ y

0
ϑn,α(

x
bn

,
t
bn

)dt

�
∫ y

0

(
t− x
x− y

)2

dtλn,α

( x
bn

,
t
bn

)
� 1

(x− y)2

∫ bn

0
(t − x)2dtλn,α

( x
bn

,
t
bn

)
=

1
(x− y)2CKn,α((t− x)2,x)

=
1

(x− y)2 η2
nα(x).

(ii) Using a similar method, we can get (ii) easily. �

3. Main results

THEOREM 1. Let f ∈CB[0,∞) , then

lim
n→∞

CKn,α( f ,x) = f (x),

uniformly in each compact subset of [0,∞) .

Proof. From (5) and (9), we get

lim
n→∞

CKn,α(1,x) = 1,

lim
n→∞

CKn,α((t − x)2,x) = 0.

Hence by Theorem 3.2 of [23], we get Theorem 1 immediately. �

Now we give the rate of convergence of the operators by means of the modulus of
continuity which is denoted by ω( f ;δ ) .

Let f ∈CB[0,∞) and ∀x1,x2 ∈ [0,∞) , the definition of the modulus of continuity
of f is given by

ω( f ;δ ) = sup
|x1−x2|�δ

| f (x1)− f (x2)| .

THEOREM 2. For f ∈CB[0,bn] and x ∈ [0,bn] , we have∣∣CKn,α( f ,x)− f (x)
∣∣ � 2ω ( f ;ηnα (x)) . (16)
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Proof. In view of CKn,α (1,x) = 1,

|CKn,α( f ,x)− f (x)| =

∣∣∣∣∣ n

∑
k=0

[
f
(kbn

n

)
− f (x)

]
p(α)

n,k

( x
bn

)∣∣∣∣∣
�

n

∑
k=0

∣∣∣∣ f( kbn

n

)
− f (x)

∣∣∣∣ p(α)
n,k

( x
bn

)
�

n

∑
k=0

ω
(

f ;

∣∣∣∣kbn

n
− x

∣∣∣∣) p(α)
n,k

( x
bn

)
.

As we know ω( f ;λ δ ) � (1+ λ )ω( f ;δ ) for λ > 0, so

ω
(

f ;

∣∣∣∣kbn

n
− x

∣∣∣∣) = ω

⎛⎝ f ;

∣∣∣ kbn
n − x

∣∣∣
ηnα(x)

·ηnα(x)

⎞⎠
�

⎛⎝1+

∣∣∣ kbn
n − x

∣∣∣
ηnα(x)

⎞⎠ ·ω ( f ;ηnα (x)) .

Then

|CKn,α( f ,x)− f (x)| �
n

∑
k=0

⎛⎝1+

∣∣∣ kbn
n − x

∣∣∣
ηnα(x)

⎞⎠ ·ω ( f ;ηnα(x)) · p(α)
n,k

( x
bn

)

=

(
1+

1
ηnα(x)

n

∑
k=0

∣∣∣∣kbn

n
− x

∣∣∣∣ p(α)
n,k

( x
bn

))
·ω ( f ;ηnα (x))

=
(

1+
1

ηnα(x)
·CKn,α(|t− x|,x)

)
·ω ( f ;ηnα (x))

� 2ω ( f ;ηnα (x)) .

The last inequality is obtained by (10). �

REMARK 1. When bn = 1, Theorem 2 is the form of the Theorem 1 of Mohiud-
dine [2].

For t > 0 and W 2[0,∞) = {g∈CB[0,∞) : g′′ ∈CB[0,∞)} , the appropriate Peetre’s
K-functional is defined by

K2( f ,t) = inf
g∈W2[0,∞)

{‖ f −g‖+ t‖g′′‖}.

Let
ω2( f , t) = sup

0<|h|�t
sup

x,x+h,x+2h∈[0,∞)
| f (x+2h)−2 f (x+h)+ f (x)|,

where ω2 is the second order modulus of continuity of f ∈CB[0,∞) .
From [24], there exists an absolute constant A > 0, such that

K2( f ,t) � Aω2( f ,
√

t). (17)
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THEOREM 3. For f ∈ CB[0,bn] , then there exists an absolute constant A > 0 ,
such that

|CKn,α( f ,x)− f (x)| � Aω2

⎛⎝ f ,

√√√√1
8

(
η2

nα(x)+
(

bn−2x
2n+2

)2
)⎞⎠+ω

(
f ;
|bn−2x|
2n+2

)
.

(18)

Proof. For f ∈CB[0,bn] , we consider the following auxiliary operators

ĈKn,α( f ,x) = CKn,α( f ,x)+ f (x)− f

(
x+

bn−2x
2n+2

)
. (19)

By Lemma 2, we get

ĈKn,α(1,x) = 1, ĈKn,α(t,x) = x. (20)

Let g ∈W 2 . By Taylor’s expansion, we get

g(t) = g(x)+g′(x)(t − x)+
∫ t

x
(t −u)g′′(u)du.

By (20), we have

ĈKn,α(g,x) = g(x)+ ĈKn,α

(∫ t

x
(t −u)g′′(u)du,x

)
.

So

ĈKn,α(g,x)−g(x) = CKn,α

(∫ t

x
(t−u)g′′(u)du,x

)
−

∫ x+ bn−2x
2n+2

x

(
x+

bn−2x
2n+2

−u

)
g′′(u)du.

As we know ∫ t

x
(t−u)g′′(u)du � ‖g′′‖

2
(t− x)2,

then ∣∣∣ĈKn,α(g,x)−g(x)
∣∣∣ � ‖g′′‖

2
CKn,α

(
(t − x)2;x

)
+

‖g′′‖
2

(
bn−2x
2n+2

)2

=
‖g′′‖

2

(
η2

nα(x)+
(

bn−2x
2n+2

)2
)

.

Since the definition of ĈKn,α( f ,x) and Lemma 3, we know∣∣∣ĈKn,α( f ,x)
∣∣∣ � 3‖ f‖.
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Later, we have

|CKn,α( f ,x)− f (x)| � |ĈKn,α( f −g,x)|+ |ĈKn,α(g,x)−g(x)|+ | f −g|
+
∣∣∣∣ f (bn−2x

2n+2

)
− f (x)

∣∣∣∣
� 4‖ f −g‖+

‖g′′‖
2

(
η2

nα(x)+
(

bn−2x
2n+2

)2
)

+ω
(

f ;
|bn−2x|
2n+2

)
.

Taking the infimum on the right hand side over all g ∈W 2 , we obtain

|CKn,α( f ,x)− f (x)| � 4K2

(
f ,

1
8

(
η2

nα(x)+
(

bn−2x
2n+2

)2
))

+ ω
(

f ;
|bn−2x|
2n+2

)
.

By (17), we get (18) immediately. This completes the proof of Theorem 3. �

REMARK 2. When bn = 1, Theorem 3 is the form of the Theorem 2 of Mohiud-
dine [2].

Let φ(x) =
√

x and f ∈CB[0,∞) , the first order Ditzian-Totik modulus of smooth-
ness and corresponding K-functional are given by

ωφ ( f , t) = sup
0<h�t

∣∣∣∣ f(x+
hφ(x)

2

)
− f

(
x− hφ(x)

2

)∣∣∣∣ , x± hφ(x)
2

∈ [0,∞),

and
Kφ ( f ,t) = inf

g∈Wφ [0,∞)
{‖ f −g‖+ t‖φg′‖}(t > 0),

respectively. Here Wφ [0,∞) = {g : g ∈ AC[0,∞),‖φg′‖ < ∞} means that g is differ-
entiable and absolutely continuous on every compact subset of [0,∞) . By [25], there
exists a constant B > 0 such that

Kφ ( f ,t) � Bωφ ( f ,t). (21)

THEOREM 4. For f ∈ CB(0,∞) , then there exists an absolute constant B > 0 ,
such that

|CKn,α( f ,x)− f (x)| � Bωφ

(
f ,

ηnα(x)√
x

)
. (22)

Proof. Applying the operators Cn,α(·,x) to the representation

g(t) = g(x)+
∫ t

x
g′(u)du,
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we have

CKn,α(g,x) = g(x)+CKn,α

(∫ t

x
g′(u)du,x

)
.

For any x, t ∈ (0,∞) , we can get∣∣∣∣∫ t

x
g′(u)du

∣∣∣∣ =
∣∣∣∣∫ t

x

g′(u)φ(u)
φ(u)

du

∣∣∣∣ � ‖φg′‖
∣∣∣∣∫ t

x

1
φ(u)

du

∣∣∣∣ � 2‖φg′‖ |t− x|
φ(x)

.

By (10), we have

|CKn,α(g,x)−g(x)| � 2‖φg′‖ ·φ−1(x) ·CKn,α(|t − x|,x)
� 2‖φg′‖ ·φ−1(x) ·ηnα(x).

Thus

|CKn,α( f ,x)− f (x)| � |CKn,α ( f −g,x)|+ | f −g|+ |CKn,α(g,x)−g(x)|
� 2‖ f −g‖+2‖φg′‖ ·φ−1(x) ·ηnα(x).

For all g ∈Wφ (0,∞) , taking the infimum on the right hand side, we can get

|CKn,α( f ,x)− f (x)| � 2Kφ
(
f ,φ−1(x) ·ηnα(x)

)
.

By (21) and the above inequality, we get (22) immediately. �
As we know, a function f belongs to the Lipschitz class LipM(β ) (0 < β � 1,

M > 0) if the inequality
| f (t)− f (x)| � M|t− x|β

holds for all t,x ∈ R . Now we compute the rate of convergence of the operators
Cn,α( f ,x) for the Lipschitz class functions.

THEOREM 5. For x ∈ [0,∞) and f ∈ LipM(β )
⋂

CB[0,∞) , we have∣∣CKn,α( f ,x)− f (x)
∣∣ � M [ηnα(x)]β . (23)

Proof. Applying the Hölder inequality with p = 2
β , q = 2

2−β , we get∣∣CKn,α ( f ,x)( f ,x)− f (x)
∣∣ � CKn,α (| f (t)− f (x)|,x)
� M ·CKn,α

(
|t− x|β ,x

)
� M · [CKn,α((t− x)2,x)

]β/2 · [CKn,α (1,x)](2−β )/2

= M [ηnα(x)]β .

The last equation is obtained by (5) and (9). �
Now, we give a Voronovskaja type asymptotic formula for the operators CKn,α( f ,x) .
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THEOREM 6. Let f ∈CB[0,∞) , if f ′′ exists at a point x ∈ [0,∞) , then

lim
n→∞

n
bn

[CKn,α( f ,x)− f (x)] =
1
2

f ′(x)+
x
6

f ′′(x). (24)

Proof. By Taylor’s expansion, we may write

f (t) = f (x)+ f ′(x)(t− x)+
1
2

f ′′(x)(t − x)2 + φ(t;x)(t − x)2,

where φ(t;x) is the Peano form of the remainder, and φ(t;x) ∈C[0,∞), lim
t→x

φ(t;x) = 0.

By applying the operators Cn,α( f ,x) to the above relation, we obtain

n
bn

[CKn,α( f ,x)− f (x)] =
n
bn

f ′(x)CKn,α (t− x,x)+
n

2bn
f ′′(x)CKn,α

(
(t− x)2,x

)
+

n
bn

CKn,α
(
φ(t;x)(t − x)2,x

)
. (25)

By the Cauchy-Schwartz inequality, we have

CKn,α
(
φ(t;x)(t − x)2,x

)
�

√
CKn,α (φ2(t;x),x) ·

√
CKn,α ((t− x)4,x).

Observe that φ2(x;x) = 0 and φ2(t;x) ∈C[0,∞) , then it follows from Theorem 1 that

lim
n→∞

CKn,α
(
φ2(t;x),x

)
= φ2(x;x) = 0.

From (11), we know
√

CKn,α ((t− x)4,x) = O( bn
n ) , which implies that

lim
n→∞

n
bn

CKn,α
(
φ(t;x)(t − x)2,x

)
= 0. (26)

From (8) and (9), we have

lim
n→∞

n
bn

f ′(x)CKn,α (t− x,x) =
1
2

f ′(x). (27)

and
lim
n→∞

n
2bn

f ′′(x)Cn,α
(
(t − x)2,x

)
=

x
6

f ′′(x). (28)

Theorem 6 now follows from (25)–(28). �
Finally, we would like to study the rate of convergence of CKn,α( f ,x) for an abso-

lutely continuous functions f having a derivative f ′ to a functions of bounded variation
on [0,∞) .

We say a function f ∈ DBV [0,∞) , if f satisfies

f (x) = f (0)+
∫ x

0
h(t)dt,

where h∈BV [0,∞) , i.e., h is a function of bounded variation on every finite subinterval
of [0,∞) . As for the approximation of operators to this kind of functions, we can refer
to [26, 27, 28, 29].
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THEOREM 7. Let f ∈ DBV [0,∞) . If h(x+) and h(x−) exist at a fixed point
x ∈ (0,bn) , then we have

∣∣∣CKn,α( f ,x)− f (x)− τ1(bn−2x)
4n+2

∣∣∣ � |τ2|
2

ηnα(x)+
2η2

nα(x)bn

x(bn− x)

[
√

n]

∑
k=1

x+ bn−x
k∨

x− x
k

(ϕx)

+
bn√
n

x+ bn−x√
n∨

x− x√
n

(ϕx),

where τ1 = h(x+)+h(x−),τ2 = h(x+)−h(x−) ,

ϕx(t) =

⎧⎪⎪⎨⎪⎪⎩
h(t)−h(x+), x < t � bn;

0, t = x;

h(t)−h(x−), 0 � t < x.

Proof. Let f satisfy the conditions of Theorem 7, by using Bojanic-Cheng’s method
[26], we have

f (t)− f (x) =
∫ t

x
h(u)du (29)

and h(u) can be expressed as

h(u) =
τ1

2
+ ϕx(u)+

τ2

2
sign(u− x)+ δx(u)

[
h(x)− τ1

2

]
, (30)

where

δx(u) =
{

1, u = x;
0, u 	= x.

sign(x) =

⎧⎨⎩
1, x > 0;
0, x = 0;
−1, x < 0.

Since
∫ t
x sign(u− x)du = |t− x| and

∫ t
x δx(u)du = 0, we have

CKn,α( f ,x)− f (x) = CKn,α( f (t)− f (x),x) = CKn,α(
∫ t

x
h(u)du,x)

=
τ1

2
CKn,α(t − x,x)+

τ2

2
CKn,α(|t − x|,x)+CKn,α(

∫ t

x
ϕx(u)du,x).

By the expression of (8) and (10)), we have∣∣∣∣CKn,α( f ,x)− f (x)− τ1(bn−2x)
4n+2

∣∣∣∣ � |τ2|
2

ηnα(x)+
∣∣∣∣CKn,α(

∫ t

x
ϕx(u)du,x)

∣∣∣∣ . (31)

Next, we estimate another item CKn,α(
∫ t
x ϕx(u)du,x) .
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By the Lebesgue-Stieltjes integral representations of (13), the last term of (31) can
be expressed as

CKn,α

(∫ t

x
ϕx(u)du,x

)
=

∫ bn

0
(
∫ t

x
ϕx(u)du)dtλn,α

( x
bn

,
t
bn

)
= Σ1 + Σ2, (32)

where

Σ1 =
∫ x

0
(
∫ t

x
ϕx(u)du)dtλn,α

( x
bn

,
t
bn

)
,

Σ2 =
∫ bn

x
(
∫ t

x
ϕx(u)du)dtλn,α

( x
bn

,
t
bn

)
.

Applying the integration by parts and noticing λn,α( x
bn

,0) = 0,
∫ x
x ϕx(u)du = 0, we get

Σ1 = λn,α

( x
bn

,
t
bn

)∫ t

x
ϕx(u)du

∣∣x
0−

∫ x

0
λn,α

( x
bn

,
t
bn

)
ϕx(t)dt

= −
∫ x

0
λn,α

( x
bn

,
t
bn

)
ϕx(t)dt = −(

∫ x− x√
n

0
+

∫ x

x− x√
n

)λn,α

( x
bn

,
t
bn

)
ϕx(t)dt.

Thus, it follows that∣∣Σ1
∣∣ �

∫ x− x√
n

0
λn,α

( x
bn

,
t
bn

) x∨
t

(ϕx)dt +
∫ x

x− x√
n

λn,α

( x
bn

,
t
bn

) x∨
t

(ϕx)dt.

From Lemma 4 (i) and 0 � λn,α( x
bn

, t
bn

) � 1, we get

∣∣Σ1
∣∣ � η2

nα(x)
∫ x− x√

n

0

∨x
t (ϕx)

(x− t)2 dt +
x√
n

x∨
x− x√

n

(ϕx). (33)

Putting t = x− x
u for the integral of (33), we get

∫ x− x√
n

0

∨x
t (ϕx)

(x− t)2 dt =
1
x

∫ √
n

1

x∨
x− x

u

(ϕx)du � 2
x

[
√

n]

∑
k=1

x∨
x− x

k

(ϕx). (34)

From (33) and (34), it follows that

∣∣Σ1
∣∣ � 2η2

nα(x)
x

[
√

n]

∑
k=1

x∨
x− x

k

(ϕx)+
x√
n

x∨
x− x√

n

(ϕx). (35)

From Lemma 4 (ii), using the same method, we also get

∣∣Σ2
∣∣ � 2η2

nα(x)
bn− x

[
√

n]

∑
k=1

x+ bn−x
k∨

x

(ϕx)+
bn− x√

n

x+ bn−x√
n∨

x

(ϕx). (36)

Theorem 7 now follows from (31), (32), (35) and (36). �
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