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IMPROVED JENSEN–TYPE INEQUALITIES VIA

QUADRATIC INTERPOLATION AND APPLICATIONS

DUONG QUOC HUY ∗ , THAI THUAN QUANG AND DOAN THI THUY VAN

(Communicated by M. Krnić)

Abstract. In the paper (J. Math. Inequal. 11 (2017), no. 2, 301–322.), Choi, Krnić and Pečarić
used the linear interpolation to improve Jensen-type inequalities for convex functions. Their
method also provides a unified approach with simpler proofs for many recent results related to
Young-type and Heinz-type inequalities. In this paper, we propose new refinements of Jensen-
type inequalities established by Choi, Krnić and Pečarić via the quadratic interpolation of convex
functions. We also give Young-type and Heinz-type inequalities for both scalars and operator
cases as an application.

1. Introduction

The classical Young inequality states that for all a,b > 0 and ν ∈ [0,1] , we have

(1−ν)a+ νb � a1−νbν ; (1)

moreover, the equality in (1) occurs if and only if a = b . The inequality (1) is also
known in the literature as the weighted arithmetic-geometric mean inequality.

A striking refinement of (1) was established by Kittaneh and Manasrah [6] in 2010
as

(1−ν)a+ νb � a1−νbν + r0(ν)(
√

a−
√

b)2, (2)

here r0(ν) = min{ν,1−ν} . One year later, these two authors themself also gave in [7]
a reversed version of (1) of the form

(1−ν)a+ νb � a1−νbν +R0(ν)(
√

a−
√

b)2, (3)

where R0(ν) = max{ν,1− ν} . The equality sign in the inequalities (2) and (3) also
happen when a = b .
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The proof technique of (2) is to apply the inequality (1) to the difference between
the weighted arithmetic mean (1−ν)a+νb and the quantity r0(ν)(

√
a−√

b)2 . Mean-
while, to prove (3), Kittaneh and Manasrah again used the inequality (2) and another
inequality involving Heinz mean given by

Hν(a,b) :=
a1−νbν +aνb1−ν

2
�
√

ab. (4)

These proofs can not explain fully the source of quantities r0(ν)(
√

a −√
b)2 and

R0(ν)(
√

a−√
b)2 in the inequalities (2) and (3), respectively. However, they will be-

come clear when we apply the famous Jensen-type inequalities

r0(ν)
( f (0)+ f (1)

2
− f

(1
2

))
� (1−ν) f (0)+ ν f (1)− f (ν)

� R0(ν)
( f (0)+ f (1)

2
− f

(1
2

)) (5)

to the convex function f (ν) = a1−νbν defined on [0,1] . The inequalities in (5) is the
refinement and reverse of Jensen’s inequality proposed by Dragomir [3] in 2006. It is
easy to see that

ϕ(ν) := (1−ν) f (0)+ ν f (1)− r0(ν)
( f (0)+ f (1)

2
− f

(1
2

))

is the linear interpolation of f at points ν = 0, 1
2 ,1. In 2017, Choi, Krnić, Pečarić in

[2] developed this idea via defining recursively the functions rn(ν) as

r0(ν) = min{ν,1−ν},
rn(ν) = min{2rn−1(ν),1−2rn−1(ν)}, (6)

for all ν ∈ [0,1] , and using them to establish a refinement of Jensen’s inequality as
follows: If N is a non-negative integer and f is a convex function defined on [0,1] ,
then

(1−ν) f (0)+ ν f (1) � f (ν)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν), (7)

here and in the future

Δ f (n,k) = f
(k−1

2n

)
+ f

( k
2n

)
−2 f

(2k−1
2n+1

)
, (8)

and χI is the characteristic function of the interval I given by χI(ν) = 1 if ν ∈ I and
χI(ν) = 0 otherwise. The inequality (7) is a new refinement of the left hand side of (5);
moreover, using it, the authors provided a unified method with simpler proofs for many
recent results involving Young’s inequality, its refinements and reverses established
by many researchers such as Kittaneh and Manasrah in [6, 7], Liao and Wu in [8],
Sababheh and Choi in [9], Zhao and Wu in [10, 11].
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An important observation is to establish the inequality (7), the authors built the
function

ϕN(ν) := (1−ν) f (0)+ ν f (1)−
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)

which is the linear interpolation of f at points ν = k
2N ,k = 0,1, . . . ,2N ; moreover, it has

the property ϕN(ν) � f (ν) for all ν ∈ [0,1] . However, it is significant to emphasize
that in very many situations, a quadratic interpolation will be better than a linear one
when we employ the same interpolation nodes. Furthermore, it is enormously useful
when we interpolate differentiable convex functions. Based on this significant obser-
vation, we utilize a quadratic interpolation to propose a new refinement of (7) in the
present article. We also apply it to derive improved versions of Young-type and Heinz-
type inequalities for both scalars and operator cases.

The paper is organized as follows. In Section 2, we propose a quadratic interpola-
tion of twice differentiable and convex functions. Applying this interpolation, we gain
improved Jensen-type inequalities and its reverses which is a refinement and reverse of
(7). The main results in this section is given in Theorem 2.3 below. In Section 3, we
provide applications of Theorem 2.3 to refine the most general forms of recent Young-
type and Heinz-type inequalities. In the last Section, we give operator versions of the
obtained inequalities in Section 3.

2. Improved Jensen-type inequalities related to convex and
piecewise convex functions

The main goal of this section is to give new refinements of Jensen-type inequalities
and their reverses. Our method is to utilize a quadratic interpolation for convex and
piecewise convex functions. Throughout the paper, we will also use the functions rn

given in (6); moreover, they can be expressed as multipart functions in the following.

LEMMA 2.1. ([2, Lemma 1]) Let 0 � ν � 1 and n be a non-negative integer. If
k−1
2n � ν � k

2n for 1 � k � 2n, then

rn(ν) =

⎧⎨
⎩

2nν − k+1, k−1
2n � ν � 2k−1

2n+1 ,

k−2nν, 2k−1
2n+1 < ν � k

2n .
(9)

Notice that the functions rn are continuous and linear on intervals ( k−1
2n+1 , k

2n+1 ) for
1 � k � 2n+1 . We can now define the quadratic functions rn via the functions rn and
get a quadratic interpolation in the following.

LEMMA 2.2. Let f be a function defined on [0,1] . For a positive integer N, we
define ψN by

ψN(ν) = (1−ν) f (0)+ ν f (1)−
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν), (10)
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where the quadratic functions rn are given by

rn(ν) = rn(ν)+ αrN−1(ν)(1/2− rN−1(ν)) (11)

with the arbitrary constant α �= 0 . Then, ψN is the quadratic interpolation of f at
points ν = k/2N for k = 0,1, . . . ,2N .

Proof. By Lemma 2.1, we have rn(k/2n) = 0 for 0 � k � 2n . Thus, the interval
of the characteristic function may contain boundary points. Following the proof of [2,
Lemma 2] and the representation (11) of the quadratic functions rn , we can rewrite ψN

as

ψN(ν) = ϕN(ν)−α
N−1

∑
n=0

rN−1(ν)(1/2− rN−1(ν))
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)

= (k−2Nν) f
( k−1

2N

)
+(2Nν − k+1) f

( k
2N

)

−αrN−1(ν)(1/2− rN−1(ν))
N−1

∑
n=0

2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)

(12)

for k−1
2N � ν � k

2N and 1 � k � 2N . Obviously, since rN−1( k
2N−1 ) = 0 for all k =

0,1, . . . ,2N−1 , we deduce that if k = 2m, then rN−1( k
2N ) = rN−1( m

2N−1 ) = 0; and, if

k = 2m−1, then rN−1( k
2N ) = rN−1( 2m−1

2N ) = 1/2. These two facts, combined with the

equality (12), implies that ψN( k
2N ) = f ( k

2N ) for k = 0,1, . . . ,2N , which show that ψN

is the quadratic interpolation of f at points ν = k
2N for k = 0,1, . . . ,2N . �

THEOREM 2.3. Let N be a positive integer. If f is a twice differentiable convex
function defined on [0,1] satisfying that 0 < m � f ′′(ν) � M < ∞, then

(1−ν) f (0)+ ν f (1) � f (ν)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν), (13)

and

(1−ν) f (0)+ ν f (1) � f (0)+ f (1)− f (1−ν)

−
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,2n− k+1)χ( k−1
2n , k

2n )(ν),
(14)

where the quadratic functions rn are defined as in (11) with α = 6m
(4N−1)M .

Proof. Observe first that rn(ν) ∈ [0, 1
2 ] for all n and ν ∈ [0,1] . Hence, for each

positive integer N , we have ϕN(ν) � ψN(ν) because rn(ν) � rn(ν) .
We will show ψN(ν) � f (ν) for all ν ∈ [0,1] . To see this, let us consider the

function
g(ν) := ψN(ν)− f (ν), ∀ν ∈ [0,1].
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By Lemma 2.2, it is easy to see that g( k−1
2N ) = g( k

2N ) = 0 for 1 � k � 2N . Hence, it

suffices to prove that g is concave on intervals ( k−1
2N , k

2N ) for 1 � k � 2N . Indeed, by
Jensen’s inequality, we have

0 � Δ f (n,k) � 2−2n−2M. (15)

On the other hand, from Lemma 2.1, it is easy to see that the quadratic functions rn are
twice differentiable on intervals ( k−1

2N , k
2N ) . Therefore, we obtain, for all ν ∈ ( k−1

2N , k
2N ) ,

g′′(ν) =
N−1

∑
n=0

2α(r′N−1(ν))2
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)− f ′′(ν)

= 2α
N−1

∑
n=0

22N−2
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)− f ′′(ν)

� αM
8

N−1

∑
n=0

22(N−n)− f ′′(ν)

=
αM
6

(4N −1)− f ′′(ν)

� αM
6

(4N −1)−m = 0,

which proves that g is concave on ( k−1
2N , k

2N ) for 1 � k � 2N . This fact leads to g(ν)� 0

on intervals [ k−1
2N , k

2N ] for 1 � k � 2N , namely, ψN(ν) � f (ν) for ν ∈ [0,1] , which is
equivalent to the desired inequality (13).

Since the functions rn are symmetric about ν = 1/2, replacing ν by 1− ν in
(13), we get

ν f (0)+ (1−ν) f (1) � f (1−ν)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(1−ν).

Hence,

(1−ν) f (0)+ ν f (1) = f (0)+ f (1)− [ν f (0)+ (1−ν) f (1)]

� f (0)+ f (1)− f (1−ν)−
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(1−ν).

Clearly, 1− ν ∈ ( k−1
2n , k

2n ) if and only if ν ∈ (1− k
2n ,1− k−1

2n ) . Thus, replacing k
by 2n − k + 1 in the inner summation of the above inequality, we obtain the desired
inequality (14). This finishes the proof of the theorem. �

REMARK 2.4. (i) The inequalities (13) and (14) in Theorem 2.3 refine the main
results in [2, Theorem 3].

(ii) From the proof of Theorem 2.3, we deduce that the inequalities (13) and
(14) are still valid for twice differentiable convex functions f on intervals of the form
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[ �−1
2N+1 ,

�
2N+1 ],1 � � � 2N+1 satisfying that 0 < m � f ′′(ν) � M < ∞ on those intervals,

and Δ f (N,k) � 0 for 1 � k � 2N .
(iii) When N = 1, the upper bound M/4 in (15) can be replaced by Δ f (0,1) if it

is different from zero. In that case we obtain the following inequalities

(1−ν) f (0)+ ν f (1)− f (ν) � r0(ν)Δ f (0,1)+
1
2
mr0(ν)(1/2− r0(ν))

�
(
r0(ν)+2

m
M

r0(ν)(1/2− r0(ν))
)
Δ f (0,1).

Notice that the first inequality above can also follow from the theory of strongly convex
functions. However, when N � 2, applying (7) to this theory gives us the weaker
results. More presicely, for N � 2, we have a series of inequalities

(1−ν) f (0)+ ν f (1) � f (ν)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)

� f (ν)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)

� f (ν)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(ν)

+
(ν(1−ν)

2
−

N−1

∑
n=0

rn(ν)
2n+2

)
m,

because, following [2], the inequality

ν(1−ν)
2

�
N−1

∑
n=0

rn(ν)
2n+2

holds for all ν ∈ [0,1] .

3. Improved versions of Young-type and Heinz-type inequalities

In this section, we use Theorem 2.3 to establish improved versions of Young-
type and Heinz-type inequalities. These results are refinements of recently established
inequalities by many mathematicians, for instance, Kittaneh and Manasrah in [6, 7],
Liao and Wu in [8], Sababheh and Choi in [9], Zhao and Wu in [10, 11].

The following theorem gives general refinements and reverses of Young-type in-
equalities.

THEOREM 3.1. Let 0< m � a,b �M < ∞ , 0� ν � 1 and N be a positive integer.
For each non-negative integer n, we denote by

rn(ν) = rn(ν)+
6m

(4N −1)M
rN−1(ν)(1/2− rN−1(ν))
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and by R0(ν) = 1− r0(ν). Then, we have

(1−ν)a+ νb � a1−νbν +
N−1

∑
n=0

rn(ν)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(ν)

= a1−νbν + r0(ν)(
√

a−
√

b)2 +
N−1

∑
n=1

rn(ν)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(ν)

(16)

and

(1−ν)a+ νb � a+b−aνb1−ν −
N−1

∑
n=0

rn(ν)
2n

∑
k=1

(ν)gn,k(b,a)χ( k−1
2n , k

2n )(ν)

= 2
√

ab−aνb1−ν +R0(ν)(
√

a−
√

b)2

−
N−1

∑
n=1

rn(ν)
2n

∑
k=1

(ν)gn,k(b,a)χ( k−1
2n , k

2n )(ν)

� a1−νbν +R0(ν)(
√

a−
√

b)2

−
N−1

∑
n=1

rn(ν)
2n

∑
k=1

(ν)gn,k(b,a)χ( k−1
2n , k

2n )(ν),

(17)

where gn,k(a,b) = Δ f (n,k) with f (ν) = a1−νbν , namely,

gn,k(a,b) = a1−(k−1)/2n
b(k−1)/2n

+a1−k/2n
bk/2n −2a1−(2k−1)/2n+1

b(2k−1)/2n+1

=
(√

a1−(k−1)/2nb(k−1)/2n −
√

a1−k/2nbk/2n
)2

.

Proof. Since f (ν) = a1−νbν is a twice differentiable and convex function on [0,1]
with its second derivative f ′′(ν) = (ln b

a )2a1−νbν and a,b ∈ [m,M], it follows that

m
(

ln
b
a

)2
� f ′′(ν) � M

(
ln

b
a

)2
,

which implies the constant α = 6m
(4N−1)M . Thus, the functions rn and R0 can be defined

as written above. Now, the inequality (16) follows directly from (13) and the first
inequality in (17) is deduced from (14). The second inequality in (17) is inferred from
the geometric-arithmetic mean inequality 2

√
ab � a1−νbν +aνb1−ν . �

REMARK 3.2. (i) The inequalities (16) and (17) provide new refinements of the
main results in [1, 9].

(ii) By taking N = 1 in (16) and (17), we obtain the following inequalities, which
are refinements of famous inequalities established by Manasrah and Kittaneh in [6] and
[7],

(1−ν)a+ νb � a1−νbν + r0(ν)(
√

a−
√

b)2
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and
(1−ν)a+ νb � a1−νbν +R0(ν)(

√
a−

√
b)2,

where r0(ν) = r0(ν)+2 m
Mr0(ν)(1/2− r0(ν)) and R0(ν) = 1− r0(ν) .

(iii) By choosing N = 2 in (16) and (17), we get new refinements of the results in
[11]:

(1−ν)a+ νb � a1−νbν + r0(ν)
(√

a−
√

b
)2

+ r1(ν)
[(√

a− 4
√

ab
)2χ(0, 1

2 )(ν)+
( 4
√

ab−
√

b
)2χ( 1

2 ,1)(ν)
]
,

and

(1−ν)a+ νb � a1−νbν +R0(ν)(
√

a−
√

b)2

− r1(ν)
(
(
√

b− 4
√

ab)2χ(0, 1
2 )(ν)+ (

√
a− 4

√
ab)2χ( 1

2 ,1)(ν)
)

,

where

r0(ν) = r0(ν)+
2m
5M

r1(ν)(1/2− r1(ν)),

r1(ν) = r1(ν)+
2m
5M

r1(ν)(1/2− r1(ν)),

R0(ν) = 1− r0(ν).

The following theorem provides complete refinements and reverses of Young-type
inequalities involving the Kantorovich constants.

THEOREM 3.3. Let 0< m � a,b �M < ∞ , 0� ν � 1 and N be a positive integer.
For each non-negative integer n, we denote by

sn(ν) = rn(ν)+
6m

(4N −1)MKN(a,b)1/2
rN−1(ν)(1/2− rN−1(ν))

and by S0(ν) = 1− s0(ν), where KN(a,b) is the Kantorovich constant given by

KN(a,b) =

(
a1/2N

+b1/2N)2

4(ab)1/2N .

Then, we have

(1−ν)a+ νb � KN(a,b)rN(ν)a1−νbν +
N−1

∑
n=0

sn(ν)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(ν)

= KN(a,b)rN(ν)a1−νbν + s0(ν)(
√

a−
√

b)2

+
N−1

∑
n=1

sn(ν)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(ν)

(18)
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and
(1−ν)a+ νb � a+b−KN(a,b)rN(ν)aνb1−ν

−
N−1

∑
n=0

sn(ν)
2n

∑
k=1

(ν)gn,k(b,a)χ( k−1
2n , k

2n )(ν)

= 2
√

ab−KN(a,b)rN(ν)aνb1−ν +S0(ν)(
√

a−
√

b)2

−
N−1

∑
n=1

sn(ν)
2n

∑
k=1

(ν)gn,k(b,a)χ( k−1
2n , k

2n )(ν)

� KN(a,b)−rN(ν)a1−νbν +S0(ν)(
√

a−
√

b)2

−
N−1

∑
n=1

sn(ν)
2n

∑
k=1

(ν)gn,k(b,a)χ( k−1
2n , k

2n )(ν),

(19)

where gn,k is defined as in Theorem 3.1.

Proof. Let f (ν) = KN(a,b)rN(ν)a1−νbν be a function defined on [0,1] . Observe
first that by Lemma 2.1, the function f is of the form γδ ν on each interval I� =
[ �−1
2N+1 ,

�
2N+1 ] for some δ ,γ > 0 and 1 � � � 2N+1 . Although f is not convex on [0,1] ,

it is convex and twice differentiable on each interval I� . Moreover, there exist positive
constants C� such that the second derivative f ′′ of f satisfies

mC2
� � f ′′(ν) � KN(a,b)1/2C2

� M

for all ν ∈ I� and 1 � � � 2N+1 . Hence, we can take the constant

α =
6m

(4N −1)MKN(a,b)1/2

and obtain the quadratic functions sn and S0 as above.
On the other hand, since rN( k

2N ) = 0 for k = 0,1, . . . ,2N , it is easy to compute and
get

Δ f (n,k) =

{
gn,k(a,b), 0 � n < N,

0, n = N,

which shows Δ f (N,k) � 0 for 1 � k � 2N . Thus, by Remark 2.4, we can apply The-
orem 2.3 to the function f to gain the inequality (18) and the first inequality in (19).
The second inequality in (19) follows directly from the arithmetic-geometric mean in-
equality

2
√

ab � KN(a,b)rN(ν)aνb1−ν +KN(a,b)−rN(ν)a1−νbν ,

this also finishes the proof of the theorem. �

REMARK 3.4. (i) For N = 1 and N = 2, the inequalities in (18) and (19) respec-
tively refine the results which proposed by Wu and Zhao in [10]

(1−ν)a+ νb � K1(a,b)r1(ν)a1−νbν + s0(ν)(
√

a−
√

b)2,
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(1−ν)a+ νb � K1(a,b)−r1(ν)a1−νbν +S0(ν)(
√

a−
√

b)2,

where

s0(ν) = r0(ν)+
2m

MK1(a,b)1/2
r0(ν)(1/2− r0(ν)),

S0(ν) = 1− s0(ν),

and by Liao and Wu in [8]:

(1−ν)a+ νb � K2(a,b)r2(ν)a1−νbν + s0(ν)(
√

a−
√

b)2

+ s1(ν)
[
( 4
√

ab−√
a)2χ(0, 1

2 )(ν)+ (
√

b− 4
√

ab)2χ( 1
2 ,1)(ν)

]
,

(1−ν)a+ νb � K2(a,b)−r2(ν)a1−νbν +S0(ν)(
√

a−
√

b)2

− s1(ν)
[
( 4
√

ab−
√

b)2χ(0, 1
2 )(ν)+ (

√
a− 4

√
ab)2χ( 1

2 ,1)(ν)
]
,

where

s0(ν) = r0(ν)+
2m

5MK2(a,b)1/2
r1(ν)(1/2− r1(ν)),

s1(ν) = rn(ν)+
2m

5MK1(a,b)1/2
r1(ν)(1/2− r1(ν)),

S0(ν) = 1− s0(ν).

Next, we will discuss the Heinz mean Hν(a,b) in parameter ν of two positive
numbers a,b which we have just mentioned in (4). The Heinz mean interpolates the
geometric mean and the arithmetic mean, namely,

√
ab � Hν(a,b) � a+b

2
. (20)

The right-hand side of this inequality was refined by Kittaneh and Krnić (see [5]) to

Hν(a,b) � (1−2r0(ν))
a+b

2
+2r0(ν)

√
ab. (21)

Now, by virtue of Theorem 2.3, we can give a general improved form of this result as
follows.

THEOREM 3.5. Let 0 < a,b < ∞ , 0 � ν � 1 and N be a positive integer. For
each non-negative integer n, we denote by

hn(ν) = rn(ν)+
12

√
ab

(4N −1)(a+b)
rN−1(ν)(1/2− rN−1(ν)).

Then, we have

a+b
2

−
N−1

∑
n=0

hn(ν)
2n

∑
k=1

[Hk−1
2n

(a,b)+H k
2n

(a,b)−2H 2k−1
2n+1

(a,b)]χ( k−1
2n , k

2n )(ν)

� Hν(a,b).

(22)
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Proof. Let f (ν) = Hν (a,b) = (a1−νbν +aνb1−ν)/2 be a twice differentiable and
convex function on [0,1] ; moreover, its second derivative is

f ′′(ν) =
a1−νbν +aνb1−ν

2

(
ln

b
a

)2
.

Clearly, √
ab

(
ln

b
a

)2
� f ′′(ν) �

(
ln

b
a

)2 a+b
2

,

which leads to the constant

α =
12

√
ab

(4N −1)(a+b)
.

Hence, applying Theorem 2.3 to f , we obtain the desired inequality (22). �

REMARK 3.6. For N = 1, we have a series of inequalities

Hν(a,b) � (1−2h0(ν))
a+b

2
+2h0(ν)

√
ab

� (1−2r0(ν))
a+b

2
+2r0(ν)

√
ab � a+b

2
,

where

h0(ν) = r0(ν)+
4
√

ab
a+b

r0(ν)(1/2− r0(ν)).

4. Operator versions of Young-type and Heinz-type inequalities

Our main goal in this section is to use scalar versions of Young-type and Heinz-
type inequalities from the previous section to establish their operator forms.

Throughout this section, invertible positive operators on a complex Hilbert space
H will be denoted by uppercase letters and I stands for the identity operator on H . We
also use the following notations:

(i) A � 0 (A > 0) if A is a positive (invertible positive) operator;

(ii) A � B (A > B) if A−B is a positive (invertible positive) operator.

For A,B > 0 and 0 � ν � 1, the ν -weighted arithmetic and geometric means of
A and B are defined respectively by

A∇νB = (1−ν)A+ νB,

A�νB = A1/2(A−1/2BA−1/2)νA1/2.

We also write A∇B and A�B instead of A∇ 1
2
B and A� 1

2
B , respectively.

The main idea for showing operator inequalities corresponding to their scalar ver-
sions is to use the operator monotonicity of continuous functions in the following.



822 D. Q. HUY, T. T. QUANG AND D. T. T. VAN

LEMMA 4.1. ([11]) Let X be an arbitrary self-adjoint operator. If f and g are
continuous real-valued functions on the spectrum Sp(X) satisfying that f (t) � g(t) for
all t ∈ Sp(X) , we then have an operator inequality f (X) � g(X) .

Now, we will discuss operator forms of Young-type inequalities. First, the operator
version of (1) says that for two invertible positive operators A,B and 0 � ν � 1, we
have

A∇νB � A�νB.

This inequality was improved by Dragomir [4] to

1
2

ν(1−ν)A� fminB � A∇νB−A�νB � 1
2

ν(1−ν)A� fmaxB,

where A,B > 0, 0 � ν � 1, and

fmin(x) = min{1,x}(lnx)2,

fmax(x) = max{1,x}(lnx)2,

for x > 0. The more general versions of these results were showed in [1] (see also [2]
for the matrix case) of the following forms

A∇νB � A�νB+2r0(ν)(A∇B−A�B)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

gn,k(A,B)χ( k−1
2n , k

2n )(ν)

and

A∇νB � A�νB+2R0(ν)(A∇B−A�B)−
N−1

∑
n=0

rn(ν)
2n

∑
k=1

gn,k(A,B)χ( k−1
2n , k

2n )(ν),

where A,B > 0, 0 � ν � 1,N is a positive integer, and

gn,k(A,B) = A� k−1
2n

B+A� k
2n

B−2A� 2k−1
2n+1

B, (23)

for all 1 � k � 2n . By virtue of Theorem 3.1, these results can be extended as follows.

THEOREM 4.2. Let A,B > 0 be such that Sp(A),Sp(B) ⊂ [m,M] for some posi-
tive numbers m,M. Then, for 0 � ν � 1, a positive integer N and rn,R0 are defined
as in Theorem 3.1, we have

A∇νB � A�νB+2r0(ν)(A∇B−A�B)+
N−1

∑
n=0

rn(ν)
2n

∑
k=1

gn,k(A,B)χ( k−1
2n , k

2n )(ν)

and

A∇νB � A�νB+2R0(ν)(A∇B−A�B)−
N−1

∑
n=0

rn(ν)
2n

∑
k=1

gn,k(A,B)χ( k−1
2n , k

2n )(ν),

where gn,k(A,B) are given in (23).
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Proof. From the inequalities (16) and (17) in Theorem 3.1, we have, for all x ∈
[ m
M , M

m ] ,

1−ν + νx � xν +2r0(ν)
(1+ x

2
−√

x
)

+
N−1

∑
n=1

rn(ν)
2n

∑
k=1

gn,k(1,x)χ( k−1
2n , k

2n )(ν)

and

1−ν + νx � xν +2R0(ν)
(1+ x

2
−√

x
)
−

N−1

∑
n=1

rn(ν)
2n

∑
k=1

gn,k(1,x)χ( k−1
2n , k

2n )(ν),

where
gn,k(1,x) = x(k−1)/2n

+ xk/2n −2x(2k−1)/2n+1
.

Thus, by Lemma 4.1, for any positive operator X with its spectrum in [ m
M , M

m ] , we have

(1−ν)I + νX � Xν +2r0(ν)
(1+X

2
−X1/2

)

+
N−1

∑
n=1

rn(ν)
2n

∑
k=1

gn,k(I,X)χ( k−1
2n , k

2n )(ν)

and

(1−ν)I + νX � Xν +2R0(ν)
( I +X

2
−X1/2

)

−
N−1

∑
n=1

rn(ν)
2n

∑
k=1

gn,k(I,X)χ( k−1
2n , k

2n )(ν),

where
gn,k(I,X) = X (k−1)/2n

+Xk/2n −2X (2k−1)/2n+1
.

Since Sp(A),Sp(B) are in [m,M] , we obtain the spectrum Sp(A−1/2BA−1/2) of
A−1/2BA−1/2 in the interval [ m

M , M
m ] . Therefore, replacing X by A−1/2BA−1/2 in the

above inequalities and multiplying the obtained inequalities by A1/2 both-sidely, we
get the desired inequalities. �

In view of Theorem 3.3, we can also propose improved versions of Young-type
inequalities involving the Kantorovich constant. Recall (see [2, 4]) that for any non-
negative integer N , the Kantorovich constant of order N is given by

KN(2,t) =
(1+ t1/2N

)2

4t1/2N , t > 0.

The function KN(2, ·) is decreasing on (0,1) and increasing on (1,∞) ; moreover, it
has the property

KN(2,t) = KN(2,1/t), ∀t ∈ (0,∞).

Now, we are ready to state the result as follows.
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THEOREM 4.3. Let A,B > 0 satisfy one of the following conditions:

(i) 0 < mI � A � γI < ΓI � B � MI,

(ii) 0 < mI � B � γI < ΓI � A � MI,

where 0 < m,M,γ,Γ < ∞ are scalars. With the notations S0,sn and gn,k being as in
Theorem 3.3 and in (23) respectively, we have

A∇νB � KN(2,h)rN(ν)A�νB+2s0(ν)
(
A∇B−A�B

)

+
N−1

∑
n=1

sn(ν)
2n

∑
k=1

gn,k(A,B)χ( k−1
2n , k

2n )(ν)

and

A∇νB � KN(2,h)−rN(ν)A�νB+2S0(ν)
(
A∇B−A�B

)

−
N−1

∑
n=1

sn(ν)
2n

∑
k=1

gn,k(A,B)χ( k−1
2n , k

2n )(ν),

where

KN(2,h) =

(
γ1/2N

+ Γ1/2N)2

4(γΓ)1/2N and KN(2,h′) =

(
m1/2N

+M1/2N)2

4(mM)1/2N .

Proof. Observe first that m
M � γ

Γ < 1 < Γ
γ � M

m . We now consider the case when
the operators A,B satisfy the condition (i). Utilizing the inequality (18), we have, for
all x ∈ [Γ

γ , M
m ] ⊂ [ m

M , M
m ] ,

(1−ν)+ νx � KN(2,x)rN(ν)xν + s0(ν)(1+ x−2
√

x)

+
N−1

∑
n=1

sn(ν)
2n

∑
k=1

gn,k(1,x)χ( k−1
2n , k

2n )(ν)

�
(

min
h�x�h′

KN(2,x)rN(ν)
)
xν + s0(ν)(1+ x−2

√
x)

+
N−1

∑
n=1

sn(ν)
2n

∑
k=1

gn,k(1,x)χ( k−1
2n , k

2n )(ν)

= KN(2,h)rN(ν)xν + s0(ν)(1+ x−2
√

x)

+
N−1

∑
n=1

sn(ν)
2n

∑
k=1

gn,k(1,x)χ( k−1
2n , k

2n )(ν),

(24)

where h = Γ
γ and h′ = M

m . By Lemma 4.1, for any invertible positive operator X with
its spectrum in [h,h′] , we obtain

(1−ν)I + νX � KN(2,h)rN(ν)Xν +2s0(ν)
( I +X

2
−X1/2

)

+
N−1

∑
n=1

sn(ν)
2n

∑
k=1

gn,k(I,X)χ( k−1
2n , k

2n )(ν).
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It follows from the condition (i) that the spectrum Sp(A−1/2BA−1/2) of the operator
A−1/2BA−1/2 is in [Γ

γ , M
m ] . Hence, replacing X by A−1/2BA−1/2 in the above inequality

and computing as in the proof of Theorem 4.2, we will gain the first inequality in the
theorem.

If the operators A,B satisfy the condition (ii), the inequality (24) still holds for all
x∈ [ m

M , γ
Γ ]⊂ [ m

M , M
m ] instead of [Γ

γ , M
m ] . The spectrum Sp(A−1/2BA−1/2) of A−1/2BA−1/2

in this case belongs in the interval [ m
M , γ

Γ ] . Since the remaining steps in the proof of this
case are similar to the previous case, we omit the details.

The other inequality is proved similarly to the first one, and so we do not again
present the details here. This also finishes the proof of the theorem. �

The operator versions of Heinz-type inequalities (20) and (21) are of the forms

A�B � Hν(A,B) � A∇B

and
A∇B−Hν(A,B) � 2r0(ν)(A∇B−A�B),

where A,B > 0, 0 � ν � 1 and

Hν(A,B) =
A�νB+A�1−νB

2
, (25)

see [5] for the details. Notice that the second inequality above refines the right-hand
side of the previous inequality. Due to Theorem 3.5, we can give the most general form
of this refinement in the last theorem of the paper as follows.

THEOREM 4.4. Let 0 � ν � 1 and N be a positive integer. Let A,B > 0 have the
spectra Sp(A),Sp(B) ⊂ [a,b] for some 0 < a < b < ∞ . Then, we have

A∇B−
N−1

∑
n=0

hn(ν)
2n

∑
k=1

[Hk−1
2n

(A,B)+H k
2n

(A,B)−2H 2k−1
2n+1

(A,B)]χ( k−1
2n , k

2n )(ν)

� Hν(A,B),

where hn are defined as in Theorem 3.5 and Hν(A,B) is given in (25).

Proof. From the inequality (22) in Theorem 3.5, we have

1+ x
2

−
N−1

∑
n=0

hn(ν)
2n

∑
k=1

[Hk−1
2n

(1,x)+H k
2n

(1,x)−2H 2k−1
2n+1

(1,x)]χ( k−1
2n , k

2n )(ν)

� Hν(1,x),

where x ∈ [ a
b , b

a ] . By Lemma 4.1, for any arbitrary invertible positive operator X with
Sp(X) ⊂ [ a

b , b
a ] , we deduce

I +X
2

−
N−1

∑
n=0

hn(ν)
2n

∑
k=1

[Hk−1
2n

(I,X)+H k
2n

(I,X)−2H 2k−1
2n+1

(I,X)]χ( k−1
2n , k

2n )(ν)

� Hν(I,X).
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On the other hand, since Sp(A),Sp(B) ⊂ [a,b] , we find that Sp(A−1/2BA−1/2) of
A−1/2BA−1/2 is in [ a

b , b
a ] . Therefore, replacing X by A−1/2BA−1/2 in the above in-

equality and multiplying the obtained inequality by A1/2 both-sidely, we will gain the
desired inequality. �
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