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WEIGHTED A-STATISTICAL CONVERGENCE AND BOGEL
APPROXIMATION BY OPERATORS OF EXPONENTIAL TYPE

P. N. AGRAWAL, A. M. AcU AND R. CHAUHAN

(Communicated by M. Krni¢)

Abstract. We give a proper definition of an exponential type operator proposed by Ismail and
May [21] so that it acts from C(S) into C(S) and explore its non-multiplicativity, #"* order
generalization and weighted A-statistical convergence in the univariate case. Next, we define
properly the associated tensor product of the operators and investigate its approximation proper-
ties. Lastly, we introduce the associated Generalized Boolean Sum (GBS) operators and present
error estimates using mixed modulus of smoothness for Bogel continuous functions.

1. Introduction

For f € C[0,1) and each ¢ € N, Ismail and May ([21], p. 457) defined an expo-
nential type operator as

oo (-1
Botrin) = o3 0TI e

=0

l
G——l—f)’ 0<x<l1 (1.1)
and studied some local direct and inverse theorems. Gupta and Agrawal [19] introduced
a link operator of an alternate form ([21], p. 457, Eq. (3.14)) of the operator (1.1) by
means of Paltanea basis functions and studied some direct results and Voronovskaja
type asymptotic theorems. Considering the definition (1.1) of fRs to be true for the
space C(S) :={y:S— R: yiscontinuous}, S=[0,1]. Lipi and Deo [28] studied the
Bezier variant and the tensor product of these operators for the functions in C(S) and
C(S?), 8§ = 8§ x S respectively. Mishra and Deo [29] defined a Kantorovich variant
of the operators (1.1) on C(S) and proved some direct theorems for the univariate and
bivariate cases by means of the modulus of continuity and the Peetre’s K-functional.
We observe here that for the operator (1.1) to be defined from C(S) into C(S), a
proper modification in its definition needs to be made as follows:

oo -1
ot = 3 PO ey

=0

l
— ), 0<x<1 (1.2)
o+() T
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and Rs(f;1) = f(1), x= 1. Then it turns out that ;im R (f3x) = f(x), uniformly

in x € S forall f € C(S) and so R is well defined for each positive integer © .

In the present paper, first we study a Griiss Voronovskaja type theorem and then
introduce a " order generalization of the operators (1.2) to study the approximation
behaviour for the elements of the sufficiently smooth Lipschitz class functions. Next,
we study the Korovkin type theorem and Voronovskaja type theorem for the weighted
A-statistical convergence of these operators. Further, we investigate the approximation
degree of the tensor product of the operators (1.2) with the aid of the total and par-
tial modulus of continuity, Voronovskaja type theorem and the Peetre’s K-functional.
Lastly, we define the associated GBS operator and determine the error in the approxi-
mation by means of the mixed modulus of smoothness for functions in the Bogel space.

In what follows, let C(S) be endowed with the norm || f||¢(s) = sulsa |f(x)].

xXe

LEMMA 1. [28] For the operator Re(;x) given by (1.2) and 0 < x < 1, we have
(i) Ro(L;x)=1;

(i) Ro(six) = ——x;

o+1
(iii) R (s2x) = A S
T (6+1)(0+2) (c+1)27
o’ 0’30 +4) c
D R 3; — 3 2 :
() Ro(s) = o120 53)" T or 12022 T o1
c? . 20°3Bc*+1l0+9)

™) Ros) = e e T N D) 2

0%(76*+180+12) , c
x4+ X.
(o+1)3(c+2)3 (c+1)*

(6+1)2(c+2)%(0+3)

LEMMA 2. [28] For 0 < x < 1, the central moments for the operator Rg are
given by:

; . — _x .
(i) Re((s—x);x) = L
y e —(e=2) o )
(i) Ro((s —x)%x) = (c+D)(c+2)" + (c+12"
302 — 460 + 24 .

(iii) Ro((s —x)*;x) =

(61 1)(c+2)(c+3)(c+4)"
(—60° +360%+2160 +216)0x°
(0+1)2(c+2)%(0 +3)2
(30° —60% 360 — 32)x2 ox
(o+1)3(c+2)3 (c+1)%

+0o
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REMARK 1. [28] For 0 < x < 1, there hold the following results:
() limg_.eo 6R((5 —x)3x) = —x;
(ii) limg e 6NRs((s —x)%;x) = x(1 —x);

(i) limg—w 0?Re((s —x)*;x) = 3% (x — 1)2.

LEMMA 3. [28] Let f € C(S). Then we have

1R (Hlles) < I llees)-

2. /" generalization of the operator

From the investigations of Voronovskaja [36] and Korovkin [27], it turned out
that the linear positive operators possess a very slow rate of convergence O(n~!), as
n — oo, even when the function is sufficiently smooth. To address this problem, Kirov
and Popova [26], considered a generalization of linear positive operators by means of
a Taylor polynomial and established some approximation results. Inspired by their
method, we introduce a " order (r € N) generalization of (1.2) as follows:

é)j

—ox < G(G+€)e71 —x\/{ c () X (x_ o+t <
r ; - - N . ) ~ 1
Ror(fix) =e Z{) 7 (xe™) be ori i 0<x<

2.1
and R -(f:1) = f(1).
THEOREM 1. Let f € C"(S) and f) € Lipy(§), 0< & <1 thenforany ¢ €N

M ¢
(r—1)¢+r

B [Rolx—a179)| . .

lf— %m(f)llc(s) < c(s)

where B(E,r) is Beta function.

Proof. From equation (2.1), we may write

J(x) =Ror(f3x) (2.2)

= e"’xi M(xe’x)K fx)— if(j) ( ¢ ) (x_ GLM)J
=0

!
=5 0!
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In view of Taylor’s formula [26], we get

J
f(@—if”’( . )<X_GL+€> (2.3)

j!

Since f") € Lipy({),

¢
ik L — £ DV et -
o+/ o+/ o+/ o+/{

Using the properties of Beta function, we can write

1
[)vg(l_v)rldv:B(l-f—cJ‘):%B(Cﬂ’). (2.5)
Using (2.4) and (2.5) in (2.3), we get
‘.
oo N\ =) |x_Lr+§1
_y ) o+ ! [z | I E
f(x) ,gofj<0+f) T <M /OV(I v) ldv

r+§

= A

S T O

Therefore from (2.2), we have

4

EB(Q”)||9%o(|x—f|n+g)Hc(s)~ g

I1f = Re.r(Hlles) <

REMARK 2. Consider the function f* defined as
Fo) = ="
Using the well known inequality
|[a®* —b*| < atla—b|, for 0<a,b<1 and o > 1,
it follows that f* € Lip,, 1. Since f*(x) =0, we have

190 < (1+2%2) w(r:5)

where Ng2 = [|[Re(t —x)2||c(5). Choosing 6 = /1 ,, from Theorem 1, we obtain

¢

I1f = Ror(Hlles) < mm

B(C’ r)(r+ C)\/ﬁo'g'
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3. Weighted A-statistical convergence

In 1959, the concept of the statistical convergence was given by Zygmund [38]. In
the same year, Fast [17] and Steinhaus [34] independently introduced statistical conver-
gence to assign a limit to the sequences which are not convergent in the usual sense.

In 2009, the concept of weighted statistical convergence was defined by Karakaya
and Chishti [24] and further studied by Mursaleen et al. [31]. Mohiuddine [30] intro-
duced the notion of statistical weighted A-summability of a sequence and established
its relation with the weighted A-statistical convergence.

Our aim in this section is to study the weighted A-statistical approximation prop-
erties of the operator Ry . Let us begin with some notations and definitions as follows:

The notion of the asymptotic (or natural) density of a set J C N is defined as:

o1
8() =lim—[{¢<o:leT},

whenever the limit exists. A sequence (xy) is called statistically convergent to a number
v if forevery € >0,

hm \{é o:lxy—v|=e}=0.

Let A = (ags) be a non-negative infinite summability matrix. For a given sequence
(x¢), the A-transform (Ax)s is defined as

(Ax)g = Z Ay
/=1

provided the series converges for each o.

In particular, if A = C, the Cesdro matrix of order one, the A-statistical con-
vergence reduces to the statistical convergence. However, if we consider A = I, the
identity matrix, then A-statistical convergence is same as the usual convergence. For
further details, one can refer to ([15], [16], [18] and [23] etc.).

Let 1 = (t;) be a sequence of non-negative real numbers such that 7; > 0 and
Ts =37 |ty — oo, as 0 — co. An infinite matrix A = (ag/) is called weighted regular
matrix if

1 & &
11(1;11T— Z Zlma,nng =1,
O m=1/=1

whenever limg x5 = [.

If A = (agy¢) be a non-negative weighted regular matrix then a sequence x = (x)
of real or complex numbers is said to be weighted A-statistically convergent to a number
L, if for every € > 0,

hm— 2 2 Qe =
O'm 1l€E,
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where E. = {{ € N: |x,— L| > €} . In this case, we write §f —limsxs = L. In partic-
ular, if 7, = 1, forall m=1,..., o then the weighted A-statistical convergence reduces
to the A-statistical convergence.

Let A = (ag¢) be a non negative weighted regular matrix and (bs) be a positive
non increasing sequence. Then the sequence (xg) is said to converge weighted A-
statistically to the number ! with the rate o(bs) provided for every € > 0,

hm—{ vy tmam/}

Ts m=1/(cE;

We denote it as x5 — [ = §t4y —o(bs). The sequence (xg) is called Weighted A-statis-

tically bounded with the rate O(b¢), if for every € > 0, sup 5 { 2 2 tmam/}
o m=1(€Eg

< oo, and it is denoted by x5 = 5ty — O(bg), as G — oo,
Throughout this section, let us assume that A = (ag¢) is a non-negative weighted
regular matrix and # = (¢;) is a given sequence of non-negative integers such that 7; > 0
o

and Ts = Y 1y — 0, as G — oo.
(=1
First, we establish the basic convergence theorem for the operators (1.2) in weighted

A-statistical approximation.

THEOREM 2. For any function f € C(S), we have

sty —lim | Rof — f lews)=

Proof. Following ([18], Theorem 1), it is enough to show that sty —limg || Re (er) -
ei llcsy= 0, where e;(s) =s', i =0,1,2. Applying Lemma 1, we have
| R (eo) —eo [lc(s)= 0.
Hence,

SNIXV —lién | Ro(e0) —eo ”C(S): 0.

Again from Lemma 1,

ox
Rol(er) —e =sup|—— —x
| Re(er) 1Hc( XEISJ o+1
1
=551 Al

Now, let us define the sets:

M= {0 eN:[[Ro(e1) —ei |lcs)> €}
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and

1 (e}
T_ z Im z T tm 2 Ame-
O m=1 (eIl O m=1 [(ell
Since
t lim !
sty —lim—— =
A s o+l ’
we have
sty —lim [ Ro(er) —er flc(s)=0.
Similarly,

o232 ox

| Ro(e2) —e2 ||C(S) = sup

ws|(o+1)(c+2) (o+1)2 -

30+2 o
S (o+1D)(c+2) (o+1)%

Let us consider the sets:

I, = {O' eN: lié_n | Ro(e2) — ez HC(S)> 6}

30+2 €
3=qoeN: ————— >~
3 { (c+1)(c+2) 2}

[0} €
I, = N:—>— 5.
: {06 (c+1) 2}

Then, we can write I, C I3 UTl4, which leads us to

(o2
Ztmzam/ T tmzam/+T
0'm 1 (el O m=1 (elly O m=1 [lemy
Now, since
- 30+2
w .
sty —lim—— =0,
4 %6 (o+1)(o+2)
and

~W _
54 hén(a+1)2

tm Z Amy-

833
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it follows that

ﬁ?—4?1H%o@ﬁ—%th&=0- U

Next, we establish the Voronovskaja type theorem for the operators given by (1.2)
in weighted A-statistical approximation.

THEOREM 3. For every f" € C(S), we have
sty —limo (R (f1x) = f(x) = —xf' () + =5
uniformly with respect to x € S.

Proof. For f” € C(S), we can write

(s—x)°
2!

F" () + (s = x)*O(s,x),

where O(s,x) € C(S) and O(s,x) — 0 as s — x. Operating by the operator fR4(;x) on
the above equation, we get

o (Ro(frx) = f(x))

2.
= f'(x)0Re ((s — x);x) + GW]‘"@) + 0Re((s —x)z@(s,x);x).
In view of Remark 1, we get

sty —limo(Ro(f1x) — £(x))

x(1—x)
2

Using Cauchy-Schwarz inequality

= —xf'(x) + F(x) + 5t — lim6%Rq (s —x)?0(s,x);x).

0[Rq (s —x)7O(s,x);x)| < \/azmo((s —x)*x) \/mg(®2((s,x);x)),
it is clear that
S 1i(ryn 0Ro((s —x)*O(s:x);x) =0,
uniformly in x € §, as by Theorem 2,
sty — nénmg(eﬂ (5,x);x) = ©%(x,x) =0,
uniformly in x € S, since ©(s,x) € C(S), and st} — li(Iyncfzi)f{G((s —x)hx) =33 (x— 1)%,
uniformly in x € S, from Remark 1. [

The following theorem determines the rate of weighted A-statistical convergence
by R (f), for f € C(S).
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THEOREM 4. Let f € C(S) and (bs) be a positive non-increasing sequence. As-
sume that,

o(f;/Moa) =ty —o(bs), as G — .
Then the operators Rg verify
1R6(f) = flles) =Sty —o(bs), as 6 — oo,

where 1 > is defined as in Remark 3.

Proof. In view of Lemma 1,

1
IR0~ lets < {14+ g51Rall~3P)lcs bolr:3), 50
= zw(f’ V 770.,2)’
where 6 = /M5, .

Hence, for any € > 0

1(1 113
b—{T— 2 2 l‘mam(} < b—{T— 2 2 tmamk’}~ 3.D
O N0 m=1&|R(f)~fllc(s) e O AT m=1t20(f5y /M) >€

Since

o(f\/Mo2) = i) —o(bo),
from (3.1) it follows that
1 1
hmb_{T_ Z Z tmam(} =0,
7 00 LL0 m=1 bRy (£)~Fllc(s) 2
hence

1R6(f) = fllcs) =5ty —o(bs), as 0 —eo. O

Our next result is an asymptotic convergence theorem in weighted A-statistical
approximation by means of the modulus of continuity.

THEOREM 5. Let f" € C(S) and (cs) be a positive non-increasing sequence such
=1 ~
that o(f;67 ) = st —o(cs), as G — oo then for each x € S,

_f”(x){ —(0-2)2 o }'
2! | (o+1)(o+2) (o+1)?

X

& R (fx) = F3) + 1 ()

=5ty —o(co), as G — oo.
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Proof. Since f” € C(S), we have

t—x)? '
10 = 169+ 607" + S0 4 [0 - e
We apply the operator R4 (.;x) to the above equation and use Lemma 2. Then,

f”(X){ —(0-2)¢ . © 2XH

X
o+1

Ro(fix) = fx)+ fx) == (c+1)(c+2)  (6+1)

<Re ( ;x) . 3.2)

= ullr"w) = £
t
Using the elementary inequality

2
-l < {1+ "5 Lotrie). 550, uxes

N

(
< Mo ( /,x\t—u\{l O S
(

and the Remark 1,

[ =l )~ £ )

)

;x> o(f";8)

52

x Y
/ a1+

o(f":8)Rs ((r o ;;‘ )4;x>

-1
for some constant M >0 and 6 = o2 . Hence,

Xy L0 [ —(0-2)2 °
or1! W {(c+1)(0+2) (G“)zx}'

< Mo(f";07). (3.3)

Ro(f3%) = f(x) +

(&

For any € > 0, let us consider the sets:

X
o+1

_f”<x>{ (622 o }
2! (c+1)(0+2) (o+1)2

U= {GeNzciﬁo(f;x)—f(X)Jr f(x)

el

and

ng{ceN:Mw(f”;a%l) > e}
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Then, from (3.3) it is clear that U; C U, and hence

{TG > 2 ’mam/} { >y tmame} (3.4)

=1/el, O m=1(ecl,

By our hypothesis, o(f” ;G%l) =% — o(co), therefore from (3.4), we obtain the
assertion. []

Griiss [20] obtained an estimate of the difference

T(f.8 b— / f(t) _la)z/abf(t)dt/abg(t)dt

Our aim is to look at this result from an another angle. We wish to see how non-
multiplicative can the linear operator (1.2) be. For this purpose, we establish the Griiss
Voronovskaja type theorem in weighted A-statistical approximation which shows the
non-multiplicative character of the operator R .

THEOREM 6. Let f”, g" € C(S) then there holds:
sty —limo{Ro(fg:x) = R (f11)Ro (i)} =x(1 —0)f ()8 (x),
uniformly in x € S.

Proof. Using the identity
(f8)"(x) = f"(x)g(x) +28'(x) ' (x) + 8" (x)f(x), x€S
by simple calculations, we may write
o {Ro(fg:x) — Ro(f3%)Ro (g:%)}

S—x 2.x " X
= G(%a(fg;x) P90 — (f2) ()R (s — x)sx) — elE=DTOF8) ()

2
—et0) (ol ) = 10) (s~ ) ~ T o)
() (Ralei) ~g06) (s =) - T )
$90((5 - 20 08 (0) + 00 22 I ) o )
(0 ((s = 0i2) () ~ o110 ). 6:3)

Now, from Remark 1,

T licrynciﬁg((s —X);X) = —x,
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and

T lim6%Rq (s —x)%x) = x(1—x),
hence, applying Theorem 2 and Theorem 5, we have

sty —limo{Ro(fg:x) ~ R (f10)Ro(g:2)} = {7 —limoRo (s —x)*x)}f ()8 (x)
= x(1—x)f'(x)g'(x),

uniformlyin xe S. O

4. Bivariate case of the operator R,

Kingsley [25] initiated the study of Bernstein operators for the functions of two
variables of class C* (the class of k times continuously differentiable functions) on
a closed and bounded rectangle region. Butzer [13] investigated some approxima-
tion properties for these operators. Volkov [35] established the convergence theorem
for the sequence of linear positive operators for the continuous functions of two vari-
ables. Stancu [33] proposed another kind of generalization of Bernstein operators on
the isosceles right triangle A := {(u,v) : u+v < 1,u > 0,v > 0}. Zhou [37] introduced
multidimensional Bernstein-Durrmeyer operators in the L, space and studied some ap-
proximation properties. For further studies in this direction, authors refer the readers to
([11, 161, [71, [14], [2] and [9] etc.).

For f € C(5?), endowed with the supnorm [flles2y=sup  |f(x1,x2)[, the

x1,%0)ES?
tensor product of (1.2) is defined as )

) V4 V4
REL (F(s.1)ix1,x2) = zzmﬁa% xl,xzf( L _b ) @1

(=060 o1+l or+4s

where

(61x1+0212) O1 62((71 +£1)el (02 —|—€2)/32

AT (k™) (rae ™),

iﬁf}l% (x1,x2) = e~
(.Xl,xz) € [0, 1)2

and Rgy'3, (f1x1,72) = f(x1,x2), forall (x1,x2) € 52\ [0,1)2.
Let e;j =s't/, 0 <i+ j<2. Then, in view of Lemma 1 and (4.1), by simple
calculations we have:

LEMMA 4. For the operator defined by (4.1), there hold the identities:

(i) REE (eo0ix1,32) = 1;
9]
o1+1

(ii) mcl oz(elo,xl,xz) X1}
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()
o+ 1

el , )
(iii) Rq, 5,(e0,13X1,x2) = X2

2
i 2 01

X7+ X1,
G+ 101 +2)" " (o +1)7

. 0.0 ,
(iv) Rq,6,(€20:x1,%2) =

2
‘ o o
%€1762 ; , — 2 2 :
V) Noie(0241:2) = (6 (672 2 (o 1
(vi) méhfz (630')61 Xz) _ 013 3 012(361+4) 2
e (o1 +1)(o1+2)(01+3)"" " (01 +1)2(0; +2)27!
+ il XI5
(01—1-1)3 b
(Vll) Eﬁélb (eo 35;X] x2) = 023 x3 022(3G2+4) x2
oo (G2 +1)(02+2)(02+3) 2 (02+1)2(0r+2)272
+ % X2;
(o + 17377

o
(o1+1)(o1+2)(01+3)(01+4)
207 (307 + 1101 +9) r
(01 +1)2(01+2)%(01 +3)2"!
o (70} +1801+12) , o1
3 ERR et
(o1+1)% (o1 +2) (o1+1)

01, . 4
(viii) Re, 5, (ea05X1,%2) = M

4
)
(o4 1)(024+2)(02+3)(02+4)
205307 + 1102 +9) 2
(02 +1)2(02+2)2(0r+3)2 72
cr22(7cr22—i—18cr2—i—12)x2 o
(o +103(02+2)3 2 (o+ D)V ™

. 0.0 ,
(ix) Ro,'5,(€0.4:x1,X2) = x3

LEMMA 5. [28] For 0 < x1,x2 < 1, the central moments for the operator Eﬁf}l’%z

are given by:

—(01-2) 2 o1 .
1 2.x1,
o+1)(o1+2) " (o1+1)

(i) %?l’féz((s —x1)%x1,x0) = (

—(02-2) , 02
X5+ X2
o+ 1)(024+2) 2 (oa+1)2 72

(i) R (1 —x2)%5x1,00) = (
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307 — 460 +24 x4
(o1 +1)(01+2)(01+3) (01 +4)" !
(=607 + 360} 421601 +216) 011
(o1+1)*(014+2)%(01 +3)?

01,0
(iii) RS ((s —x1)*5x1,%0) =

Lo (30 — 60} — 3601 — 32) o, _oin
(o1 +1)P3(o1+2)3 "1 (o +1)¥
307 — 460, +24 .

/1,/2 4. —
() Aot =) 5x0) = (o (6, 72) (0 3) (00 14

(=605 +360; 42160, +216)0>x3
(o2 +1)2(02+2)%(02 +3)2
(305 — 605 —360, — 32))62 022
(G2 + 1) (02420 2 (o2 +1)%

+ o0

For f € C(S?), the first order total modulus of continuity for the two dimensional
case is defined as follows:

o(f361,6) =SUP{|f(s,t)—f(X17X2) s —x| <Ot —xf < 52}

where 01,0, > 0. It is known that:
(@) o(f;81,00) — 0, if 6, — 0 and 6, — 0,

(®) | f(s,0) = fx1,x2)| < o(f; 51,52)< |S_5x1|) <1+ i :szxz). in our further
I

consideration, let us assume

8oy = 196 &, (s —x)) g2
and

Boyi = |1R,'3, (1 —x2)) (s
fori=1,2,...

Now, we give an estimate of the rate of approximation for the two dimensional
case of Ry in terms of the total modulus of continuity.

THEOREM 7. Let f € C(S?). Then, we have

183,05~ Flleqse) <4051/ 80,20/85,.2).

Proof. By using the property of %@1’%2 (;x1,x2) and the modulus of continuity,

IREZ (Frx1,02) — flx1,32)]
< m?{%’zqf(s:t) _f(xlax2)‘;x1ax2)a
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_ , T
w(f;al,cm(m@;fézu;xhxm5—%@;,%(s—x1;xm)

L o0 0.0
+—%é{,éz(lt—X2\;xl,xz)+—%&l’,§2(ls—xl\;x1m)

& 616
L1,6n .
X m61762(|t —)Cz,)Q)) .
Applying Cauchy-Schwarz inequality and Lemma 1
01,0 .
|m0'11 (%'2 (fsxl 7x2) - f(xl 7)(:2)‘

a(:5.8) (1 +Simfl;%zus—xl)z;xhxz)

1 0,
1,42
\/%0'1,0'2 x17x2)
l1,0 Ly, .
5162 \/mdll éz xl xlax2 \/mdll 0'2 X2)2,)C1,)C2)> .

Now, choose 0; = 1/0g, 2 and &, = /0, 2, to complete the proof. [

For f € C(S%) and & > 0, the partial moduli of continuity with respect to x; and
Xp is given by

1 (f;0) :sup{f(x17x2)—f(x27x2)| ‘xp € S and |x; — x| < 5}
and

3 (f:5) =sup{f(xl,y1) ~ f(ry)] 1 €S and [y — ya] < 6}.

It is well known that they satisfy the properties of the usual modulus of continuity.
In the following result, we determine the convergence estimate for the operators
(4.1) by means of the partial moduli of continuity.

THEOREM 8. Let f € C(S2). Then, we have
182, ()~ Flleissy < 2051/ 80,2) + 01(f31/ 85, 2))

Proof. In view of the definition of partial moduli of continuity, we have

Re,'3, (fix1,x2) — fx1,30))]
<SRG (f(5.0) = f(5,32) [1x1,%2)

FRAEZ (| f(5,x2) — fx1,32) 561, %2)

: 1
aa(f;éﬁ(m?;%z(l;xl,xz)+g<m§;f§2|t—xz;xl,m)

: 1 :
+o(f;61) (9‘{{&'{%2(1;361,362) + 5—1%@{% (s —x1 ;X1,X2)> :
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Applying the Cauchy-Schwarz inequality and Lemma 1,

R (Fix1,0) — fx1,32) < 02(f38) <1+ \/9‘{91%2 xz)z;xz))

+o1(f;01) (H- \/mfy'{% x1)2§x1))

Hence on choosing 6; = /g, 2 and 6, = \/0g, 2, We get the required result. [

Jiti
Let C?(8?) := {f € C(S?): 3 lafj € C(S8?), for 0 <i+ j<2} with the norm
defined as:
'f J'f *f
e, =Wteo+ 3 (|55 +|55]..) 7o)

The Peetre’s K-functional of the function f € C(S?) is defined as:
H(f:6) = geélngsz){ﬂf—gﬂc(sz) +6llglle2(s2) ), 6>0.
Also by [12], it follows that
#7:8) < m{ @n(VB) + min( 1)l @2)
holds for all § >0 and M does notdepend on & and f, where @, (f;V/8) is the second
order modulus of continuity for the two dimensional case.

In the following theorem, we investigate the approximation degree for the opera-
tors (4.1) with the aid of the Peetre’s K-functional.

THEOREM 9. For f € C(S?), we have

|9°{fy'{f§2 (fixi,x2) = f(x1,x2)]

< M{@(f; ﬁV (\/Bor2+ 1/B03.2)% + (86, 1 + 8031 )?)

+min{1, ( 60'172 + \V 60'272)2 + (66171 + 60271)2}Hf| C(Sz)}

+w(f V(B 1)+ (86,12 )

Proof. Consider an auxiliary operator as follows:

01,0 0.0 0.0 0.0
Ro'o; (frx1,02) = Ry, 6, (fix1,%2) — F(Ra,5, (83x1,X2), R, 5, (t:x1,%2)) + f(x1,x2).
4.3)
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In view of Lemma 1, R;f{;ff(l;x17x2) =1,

.
R, o2 ((s—x1)5x1,%2) =0

and
0,0 . .
R, o2 ((t —x2);x1,x2) = 0.
Let g € C%(S?) and x;,x; € S be arbitrary. Using the Taylor’s formula,

g(s,1) —g(x1,x2) = g(s,y) — g(xl,xz) +g(s,1) — g(s y)

_ dglu.x )
osth) 2) +/ s—1 7dn
X1.,X 2 X

+—3g(;y’ 2)<z—x2>+ [ <z—¢>—a el
t s 9%g(n,¢)

+/y | Tonac 9ndt.

Applying RG[IIQ,Z (.;x1,x2) on both sides of the above equation and using (4.3) we find

01,0
Roor (8(5,1)ix1,x2) — g(x1,x2)

b 0 s (92 ,
R o2 (/ (S—Tl)%dn;xl,xz)

sogita [l c:)a ffgf’dc;xl,xz)

”(;_[11(522 / / 8 8C dndCsxl 7-x2)
, 5 3%g(n,
mg{%z(/ (S—Tl)$dn;xl,x2>

‘ﬁffl[g (s3x1,%2) 02
+ /x v (%ﬁ)‘ll,/o'z(s x17x2) n) gg;r]z’y)dn'
8(x,¢)

" t 02
HG( -0 5 At )

<

RA'2 (123 x2) 0>
H [T it ) - 0 P55 ay

+ ?{%(// ] 5§ dndc;xl’m)

/‘.Rall gz(txl,xz)/%ﬁ,l%(sxl 1) 92 g(n, C)’
: s nac |
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Hence,

1,0 .
%:'}110'22( (s7t)7xl7x2) _g(xlax2)

< SRS =302l + 1965, — ) g
+Rey3, (1 = x2)lles2) + 1R S (s — 1) 22,
1963 =312y 13 0 — 22
+H%Q{,§2 (S—XI)HC(SZ) H%Q{,gz (t —x2)HC(52)}||8||CZ(52)

1
= 5{( 60'12"' \/ 60'272)24' (60'171 +6C72~,1)2}||g||c2(52)'

4.4)
Also, using Lemma 3
*0,0
|%0'11,’622(f;x1ax2)|
00 :
< |RG G, (Frxr, )| + (RS, (s:31,362), Ry &, (12x1,32)) | + 1 f (x1,x2))|
< 3[|fllees2)- (4.5)

Hence, using (4.5) and (4.4), for any g € C?(S5?)

01,0
|m011’7§'2 (fix1,x2) — flx1,x2)]
l1,0 ,
< |R*6117022(f gs-xl7x2)|+|R*Ull,(72 (gs-xla-xz) g(xl,xz)|+|g(x1,x2)—f(x1,x2)|

Ly, 0,0
+ f(mellr,éz(S;xl7x2)7R*611,6'22(t;x1ax2)) —f(.X1,.X2)

y
< AIf —gllees2y) +|Rcl'c§(gx1,x2) g(x1,x2)]

Ly 0 Ly 0
+ f(mﬁlléz (S;x17x2)7m611',(%‘2 (t;xlax2)) —f(.X1,.X2)

1
< <4|f_g|C(Sz) + 5{( 6612"' \/ 60'272)24'(66171 +60'2,1)2}H8HC2(52)

+w<f V/ By 2+ (8,12 )

Now, we use the definition of the K-functional and the relation (4.2) to establish the
assertion. [
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5. GBS case of the operator R

The study of GBS operators was initiated by Bogel ([10], [11]) who introduced the
idea of Bogel continuous (B-continuous) and Bogel differentiable (B-differentiable)
functions. Badea et al. [4] proved the very famous “Test function theorem” for B-
continuous functions. Badea et al. [5] gave the Korovkin-type theorem in the quan-
titative form. For more insight on this topic, we refer the readers to some interesting
articles ([1], [9], [22], [8] and [32]) and the book [19] etc.

In this section, we propose to define the GBS operator related to the operator R
defined in (1.2) and study its approximation properties. We begin with some definitions
and notations as described below:

Let 4, and 4, be the compact real intervals.

A function f:4; x i, — R is called a B-continuous function in £f; x 44, iff

lim Ay fx,x2) =0,

(s:)—=(x1.x2)

for each (x1,x2) € 4, x &l,, where

A(S7t)f(xlax2) = f(S,t) —f(s,xz) —f()Cl,t) +f(x1ax2)

is called the mixed difference of f. The set of all B-continuous functions is denoted by
Cb (ﬂl X ill) .
A function f is called a B-differentiable function in 4, x &, iff

. A(s,t)f(xl7x2)
lim —
(S7t)—>(X17x2) (S_xl)(t _xz)

b

exists and is finite for every (x,x;) € 4, x 4l, . We denote the set of all B-differentiable
functions by Dy (4, x &L5).

A function f is called B-bounded on 4, x i, iff there exists some k& > 0 such
that |Aq ) f(x1,%2)] <k forany (s,1), (x1,x2) € Uy x 4, . Let B(S?) denote the space
of bounded functions (in the usual sense) on S> with the norm |.||.. and C(8?) = {f €
B(S?): f is continuous} .

The mixed modulus of smoothness of f € Bj(4l, x 4l,) is defined as

(Dmixed(f; 61752) = Sup{}A(s?t)f(xh)Q)} : ‘S—X1| < 61,|l—)€2‘ < 62}7

for all (x1,x2), (s,¢) € S* and for any &;,8, > 0.
A function f is called uniformly B-continuous on &, x if, iff for any € >0, 3
0 = 6(g) > 0 such that

A f(x1,x2)] <&,

whenever max{|s — x|, |t — x|} < &. It is known [3] that @ppeq(f,01,0:) — 0, as
01, 6, — 0 iff f is uniformly B-continuous on ; x {, and

Omived (f32161,2282) < (1+ A1) (1 4+ A2) Opivea(f3:01,82), A1,42>0.  (5.1)
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The GBS operator Gf}l’% : Cp(8?) — C(S?) associated to the operator given by (4.1) is
defined as

01,0 .
Gcll,g'z (f(S,t),)Cl ,)CQ)

= R (f(x1,0) + f(5,22) — f(s,0)531,%2)

Ez gl gl €2
(121(22 S}{(',\'1 (o5} xlax2 (f <x1’62+£2>+f<61+€1 ,)CQ) _f<0_1+€1’62+£2>)’

(5.2)

forall (x;,x2) € [0,1)2 and G2, (f3x1,%2) = f(x1,%2) forall (x;,x2) € §2\ [0, 1)
Now we estimate the rate of convergence of (5.2) in terms of ®y;xeq -

THEOREM 10. For every f € Cy(S?), we have

IGS G (1) = Fllerszy <4 Omivea(f3\) 861,201/ 86,.)-

Proof. From the definition of ;¢ and the inequality (5.1),
|A(.¥,t)f(x1’x2)| < wmixed(f; |S —X1 |a |t _x2|)

< (1 + |S—6—Xl> (1 + |t_x2> wmixed(f;61762)7 (53)

I &

for every (s,r) € 8%, (x1,x2) € §% and for any &;,8 > 0. From the definition of
A(s,z)f(xl,xz) , we get

f(xl J) +f(s7x2) - f(S,l) = f(xl 7x2) - A(s,t)f(xl 7x2)~
Applying iﬁﬁ}l% (;x1,x2) on the above equation, in view of (5.3) we have
Garidy ((F31,22) = F(x1,32) R &, (1501,32) = Ry G, (A f(x1,32)31,32) (5.4)
Hence using (5.2), we obtain
G/, (f3x1,30) — fx1,3))|
I
< 5)%(711/,(3'2 (|A(s,t)f(x17x2)|;x17x2)
: 1 :
< (méf@zu;xl X) + 5—19%@;%2(|s —x1|:x1,%2)

1 ., :
+=RE2 (| — xafs21,32) + RA2 (s — x1 |31, %2)

1
85 816,
< ROE (I —x2|;x2>) O (£551,52).

Applying Cauchy-Schwarz inequality and choosing 6; = /8¢, 2 and 0, = /g, 2, We
get the desired result. [
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For f € Cy(S?), the Lipschitz class Lip¥ (v,n) with v,n € (0,1] is defined by
Lipy (v.n) = {f € Cy (S?) : | A f(x1.x2)| M |s —x1|" |t —x2| T,
for (s,7), (x1,x2) € S?}.

In the following theorem, we obtain an error estimate of f by Gf}l’%z (f) for f e
Lipjf (v,n).

THEOREM 11. For f € Lip¥ (v,n), we have
01,0 v n
1G o6, () = fllesz) < M(86,.2) (86,.2)7
for M > 0.

Proof. From (5.4) and our hypothesis, we get
0,0 0,0
GG, (fi01,52) = £ (51,32)| < REG, (A f(r1,02)
0,0
< MRGS, (Is—x1|" [t —x2|"5x1,x2)

- M{Rf}l’%z (|s—x1 | ;x17x2) %f}l’% (|s —x|" ;xl,xz) .

$X1,%2)

Now, we apply the Holder’s inequality by taking I} =2/v,m; =2/(2—vV) and I, =
2/n,my=2/(2—mn), to get the assertion. [J

Our next result provides the rate of approximation for B-differentiable functions
0,0
by G4/3, -
THEOREM 12. Let f € Dy(S?) with Dgf € Cy(S*) N B(S?), then there holds the
following inequality:

IG,3, (f) = flles) (|DBf|m+wm,;xed<DBf;ol1/2,021/2>),

<M
S Vo
for some constant M > 0.
Proof. Since f € Dy(S?), using mean value theorem
A f(x1,%2) = (s —x1)(t —x2)Dpf(v,n), withx <v <s;y<n <t. (5.5)
Taking into account
Dpf(v,n) = Ay Dpf(x1,x2) + Dpf(v,x2) + Dpf(x1,n) — Dpf(x1,%2),
and Dgf € Cp(S?) NB(S?), in view of (5.5) we may write
19863, (A f (1 x2)01,22)|
= [, G, (s —x1)(t —x2) Do f(v,n)sx1,33)]
< Ry (Is =1l —xal | Ay D (31, x2) et 32)

+9RG,3, (Is — x|t — x2| (1D (v, )]
+[Dpf(x,n)| + [Dpf(x1,x2)|);x1,%2)
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< RS, (Is — 11t — 22| Opivea (Dp.f2|V — 211,10 — x2])3261,32)
+3 ‘ |DBf‘ |°° mg{%’z (|S — X1 ‘ |t —)CQ‘;X] 7x2)' (56)
Hence from (5.4), (5.6) and the Cauchy-Schwarz inequality, we obtain
Goy&, (frx1,x0) — flx1,x))|

= R0, 8 A (r1,32)3x1, 3|

N2
< 3||Dp 203, (|5 —x1 ]t — xa2[1x1,32)
YAW4
+ (mcﬂ’,éz(ls —x1||t —x2l5x1,x2)

—1enly,l
+87 R E (s — x1)2 [t — x2|3x1,32)

— 01,0
+6, 1%(}1"§2(|s — x| (¢ —xg)z;xl,xg)

+5;16;1mf;1;f§2<<s—x1>2<r—x2>2;x17x2>) wg(Dpf;81,8)

01,0
< 3/|Ds - \/%oﬂ’,éz (s =01 20— x2)%1,3)
Lyl 2.
(\/mol 0'2 (l—)C2) ,X17)C2)
0,0
+6, \/9%'1’32 ((s —x1)*(t — x2)%;x1,x2)
0,0
+6, \/9%'1’32 ((s —x1)2(t —x2)*;x1,x2)

+5 16 l%frll ((s_xl) (t_x2)2;x17x2))wmixed(DBf;al762)7 (5.7

for any 81,8 > 0. In view of Remark 1, for (s,¢) € S?, (x1,x2) € S? and i,j = 1,2

01,0 i ; 0.0 /, .
Aoy '8, (s —x0) 2 (1 —x2)5x1,30) = Ry G, (5 —x1)Xxn,20) Ry 3, (1 — x2) ¥ 3x1,32).
M1 M,

\ k)
J
O'l 05

(5.8)

where My, M, are some positive constants.
Let 6 = \/— and 6, =
Then, by combining (5.7)— (5 8), we have

|G§}1{,€§2 (fix1,x2) — f(x1,%2)]

_ 3|DBf|°°O<\/Lg—1)O<%>

1 1
O — o — ) wpined(Dpfi01 Y2, 0,7 1/2 01,03 —
+ (\/a) (ﬁ) a(Dpf;o1 /7,007 /), as 01,02 — oo,

forall (x;,x) €S O



WEIGHTED A-STATISTICAL CONVERGENCE 849

Acknowledgement. This work was supported by a Hasso Plattner Excellence Re-

search Grant (LBUS-HPI-ERG-2020-07), financed by the Knowledge Transfer Center
of the Lucian Blaga University of Sibiu

[1]
[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]
[22]
[23]

[24]

REFERENCES

A. M. Acu, T. ACAR, C. V. MURARU, V. RADU, Some approximation properties by a class of
bivariate operators, Mathematical Methods in the Applied Sciences, 42 (2019), 5551-5565.

T. ACAR, A. ARAL, S. A. MOHIUDDINE, Approximation by bivariate (p,q)-Bernstein Kantorovich
operators, Iran. J. Sci. Technol. Trans. Sci. 42, 655-662 (2018).

1. BADEA, Modulus of continuity in Bogel sense and some applications for approximation by a
Bernstein-type operator, Studia Univ. Babes-Bolyai Ser. Math. Mech. 18 (2), 69-78 (1973) (Roma-
nian).

C. BADEA, 1. BADEA, H. H. GONSKA, A test function theorem and approximation by pseudopolyno-
mials, Bull. Austral. Math. Soc. 34, 95-108 (1986).

C. BADEA, 1. BADEA, H. H. GONSKA, Notes on the degree of approximation of B-continuous and
B -differentiable functions, J. Approx. Theory Appl. 4, 95-108 (1988).

D. BARBOSU, Some generalized bivariate Bernstein operators, Math. Notes. (Miskolc) 1 (1), 3-10
(2000).

D. BARBOSU, Bivariate operators of Schurer-Stancu type, An. Sti. U. Ovid. Co-Mat. 11 (1), 1-8
(2003).

D. BARBOSU, A. M. AcU AND C. V. MURARU, On certain GBS-Durrmeyer operators based on
g-integers, Turk. J. Math., 41, 368-380 (2017).

B. BAXHAKU, A. KAJLA, Blending type approximation by bivariate generalized Bernstein type op-
erators, Quaest Math. 43, 14491465, (2020).

K. BOGEL, Mehrdimensionale differentiation von funtionen mehrerer verinderlicher, J. Reine Angew.
Math. 170, 197-217 (1934).

K. BOGEL, Uber die mehrdimensionale differentiation, integration und beschréinkte variation, J.
Reine Angew. Math. 173, 5-29 (1935).

P. L. BUTZER, H. BERENS, Semi-groups of Operators and Approximation, Springer, New York
(1967).

P. L. BUTZER, On two-dimensional Bernstein polynomials, Canad. J. Math. 5, 107-113 (1953).

O. DOGRU, V. GUPTA, Korovkin-type approximation properties of bivariate q-Meyer-Konig and
Zeller operators, Calcolo 43 (1), 51-63 (2006).

O. DUMAN, C. ORHAN, Statistical approximation by positive linear operators, Stud. Math. 161,
187-197 (2004).

E. DUMAN, O. DUMAN, Statistical approximation properties of high order operators constructed
with the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. 218 (5), 1927-1933 (2011).

H. FAST, Sur la convergence statistique, Colloq. Math. 2, 241-244 (1951).

A. GADIJIEV, C. ORHAN, Some approximation theorems via statistical convergence, Rocky Mt. J.
Math. 32, 129-138 (2002).

V. GUPTA, T. M. RASSIAS, P. N. AGRAWAL, A. M. ACU, Recent Advances in Constructive Approx-

imation Theory, Springer Optimization and its Applications. Vol. 138, Springer, Cham (2018).

O .
G. GRUSS, Uber das maximum des absoluten Betrages von b—a) /. : f(x)g(x)dx—
—a

1 . .
o [P f(x)dx [P g(x)dx, Math. Z. 39, 215-226 (1935).
E. H. ISMAIL, C. P. MAY, On a family of approximation operators, J. Math. Anal. Appl. 63, 446-462
(1978).
A. KAJLA, D. MICLAUS, Blending type approximation by GBS operators of generalized Bernstein-
Durrmeyer type, Results Math. 73 (1) (2018), https://doi.org/10.1007/s00025-018-0773-1.
A. KAJLA, Generalized Bernstein-Kantorovich type operators on a triangle, Math. Methods Appl.
Sci. 42 (12), 4365-4377 (2019).
V. KARAKAYA, T. A. CHISHTI, Weighted statistical convergence, Iran. J. Sci. Technol, Trans. A. Sci.
33, 219-223 (2009).


https://doi.org/10.1007/s00025-018-0773-1

850

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

P. N. AGRAWAL, A. M. ACU AND R. CHAUHAN

E. H. KINGSLEY, Bernstein polynomials for functions of two variables of class Cc® | Proc. Amer.
Math. Soc. 2 (1), 64-71 (1951).

G. KIROV, I. POPOVA, A generalization of linear positive operators, Math. Balkanica, 7, 149-162
(1993).

P. P. KOROVKIN, Linear Operators and the Theory of Approximations, Fizmatgiz, Moscow (1935).
K. L1p1, N. DEO, General family of exponential operators, Filomat, (in press) (2020).

N. S. MISHRA, N. DEO, Kantorovich variant of Ismail-May Operators, Iran. J. Sci. Technol. Trans.
Sci., 44, 739-748 (2020).

S. A. MOHIUDDINE, Statistical weighted A-summability with application to Korovkin’s type approxi-
mation theorem, J. Inequal. Appl. 2016, 101 (2016).

M. MURSALEEN, V. KARAKAYA, M. ERTURK, F. GURSOY, Weighted statistical convergence and its
application to Korovkin type approximation theorem, Appl. Math. Comput. 218, 9132-9137 (2012).
O. T. Popr, Approximation of B-continuous and B -differentiable functions by GBS operators defined
by infinite sum, J. Inequal. Pure Appl. Math. 10 (1), (2009) 8 pp.

D. D. STANCU, A method for obtaining polynomials of Bernstein type of two variables, Amer. Math.
Monthly, 70 (3), 260-264 (1963).

H. STEINHAUS, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73-74
(1951).

V. 1. VOLKOV, On the convergence of sequences of linear positive operators in the space of continuous
functions of two variables, Dokl. Akad. Nauk. SSSR (N.S.) 115, (1957).

E. V. VORONOVSKAJA, Determining the asymptotic kind of the approximations of functions by S. N.
Bernstein’s polynomials, DAN SSSR, 4, 74-85 (1934).

D. X. ZHOU, Inverse theorems for multidimensional Bernstein-Durrmeyer operators in Lp. J. Approx.
Theory, 70 (1), 68-93 (1992).

A.ZYGMUND, Trigonometric Series, Cambridge University Press: New York (1959).

(Received September 6, 2021) P. N. Agrawal

Department of Mathematics
Indian Institute of Technology Roorkee
Roorkee-247667, India

e-mail: pnappfma@gmail.com

A. M. Acu

Department of Mathematics and Informatics

Lucian Blaga University of Sibiu

Str Dr I Ratiu, No. 5-7, RO-550012, Sibiu, Romania

e-mail: anamaria.acu@ulbsibiu.ro

R. Chauhan

Department of Mathematics

K. G. K. (P. G.) College
Moradabad-244001, India

e-mail: ruchichauhan753@gmail.com

Journal of Mathematical Inequalities

v.ele-math.com

jmi@

ele-math.com



